

ffi rs.indd 12/18/2015 Page ii

ffi rs.indd 12/18/2015 Page i

BEGINNING

ASP.NET FOR VISUAL STUDIO® 2015

INTRODUCTION . xxi

CHAPTER 1 Getting Started with ASP.NET 6.0 . 1

CHAPTER 2 Building an Initial ASP.NET Application . 27

CHAPTER 3 Designing Your Web Pages . 51

CHAPTER 4 Programming in C# and VB.NET . 87

CHAPTER 5 ASP.NET Web Form Server Controls . 129

CHAPTER 6 ASP.NET MVC Helpers and Extensions . 161

CHAPTER 7 Creating Consistent-Looking Websites . 197

CHAPTER 8 Navigation . 229

CHAPTER 9 Displaying and Updating Data . 267

CHAPTER 10 Working with Data—Advanced Topics . 323

CHAPTER 11 User Controls and Partial Views . 367

CHAPTER 12 Validating User Input . 413

CHAPTER 13 ASP.NET AJAX . 449

CHAPTER 14 jQuery . 499

CHAPTER 15 Security in Your ASP.NET Website . 541

CHAPTER 16 Personalizing Websites . 581

CHAPTER 17 Exception Handling, Debugging, and Tracing 605

CHAPTER 18 Working with Source Control . 661

CHAPTER 19 Deploying Your Website. 683

APPENDIX Answers to Exercises . 725

INDEX . 735

ffi rs.indd 12/18/2015 Page ii

ffi rs.indd 12/18/2015 Page iii

BEGINNING

ASP.NET for Visual Studio® 2015

ffi rs.indd 12/18/2015 Page iv

ffi rs.indd 12/18/2015 Page v

BEGINNING

ASP.NET for Visual Studio® 2015

William Penberthy

ffi rs.indd 12/18/2015 Page vi

Beginning ASP.NET for Visual Studio® 2015

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-07742-8

ISBN: 978-1-119-07712-1 (ebk)

ISBN: 978-1-119-07723-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015955845

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. Visual Studio is a registered trademark of Microsoft Corporation. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product
or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

ffi rs.indd 12/18/2015 Page vii

ABOUT THE AUTHOR

WILLIAM PENBERTHY has specialized in the Microsoft software development stack
since the initial deployment of .NET, performing client, service, and web develop-
ment in C# and VB.NET. He has directly participated in the development of over
135 applications, ranging from records retention management software to e-com-
merce storefronts, to geographic information systems, to point-of-sale systems and
many applications in between.

ABOUT THE TECHNICAL EDITOR

DAVID LUKE is a graduate of Rutgers University who is an adaptable software/product developer
with over 23 years of full life cycle experience. He has held positions with large companies and has
also been a serial entrepreneur. David currently is working as the CTO for TravelZork, a travel
industry startup.

ffi rs.indd 12/18/2015 Page viii

ffi rs.indd 12/18/2015 Page ix

Senior Acquisitions Editor
Kenyon Brown

Project Editor
Ami Frank Sullivan

Technical Editor
David Luke

Production Editor
Barath Kumar Rajasekaran

Copy Editor
Luann Rouff

Manager of Content Development &
Assembly
Mary Beth Wakefi eld

Production Manager
Kathleen Wisor

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology & Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Bell

Indexer
Nancy Guenther

Cover Designer
Wiley

Cover Image
©amaze646/Shutterstock

CREDITS

ffi rs.indd 12/18/2015 Page x

ffi rs.indd 12/18/2015 Page xi

ACKNOWLEDGMENTS

 KUDOS TO YOU, THE READER, for deciding to learn something new. As you work on software devel-
opment you will fi nd that you are learning something new almost every day; that is the nature of the
beast and one of the things that make it such a rewarding practice.

Combining both MVC and Web Forms into a single project is simple: That’s one of the features of
the new Visual Studio. However, combining them both into a single beginning book proved to be
diffi cult; giving enough information about each in a logical fashion meant that both approaches
to ASP.NET, MVC and Web Forms, were not completely covered. While not completely covered, I
think they have been covered in enough depth so that you can take the next step and go deeper into
one or both of these technical approaches as you may deem necessary.

I would also like to take this time to thank Ami Frank Sullivan and Luann Rouff who had the
unenviable job of helping turn my tortured prose into something that makes sense; I have never seen
so many polite ways of saying “This is gibberish!” Many thanks also to David Luke, the technical
reviewer, who spent a lot of effort to validate the various steps and code snippets and keep me on
the straight and narrow.

Lastly, none of this would be possible without the support of my wife Jeanine, who allowed me to
spend way too much of our free time working on this project.

ffi rs.indd 12/18/2015 Page xii

ftoc.indd 12/18/2015 Page xiii

CONTENTS

INTRODUCTION xxi

CHAPTER 1: GETTING STARTED WITH ASP.NET 6.0 1

An Introduction to ASP.NET vNext 2
Hypertext Transfer Protocol (HTTP) 2

Microsoft Internet Information Services 5
HTML 5 5

HTML Markup 5
Attributes in HTML 7
HTML Example 8

ASP.NET Web Forms 10
ViewState 10
ASP.NET Web Forms Events and Page Lifecycle 11
Control Library 13

ASP.NET MVC 15
Testability 16
Full Control over Output 17

Web Forms and MVC Similarities 17
Choosing the Best Approach 17

Using Visual Studio 2015 18
Versions 18
Downloading and Installing 19

The Sample Application 23
Summary 24

CHAPTER 2: BUILDING AN INITIAL ASP.NET APPLICATION 27

Creating Websites with Visual Studio 2015 28
Available Project Types 28

Web Site Project–Based Approach 28
Web Application Project 29

Creating a New Site 30
While Creating a Project 30
Empty Template 34
Web Forms Template 35
MVC Template 36
Web API Template 36

xiv

CONTENTS

ftoc.indd 12/18/2015 Page xiv

Single Page Application Template 37
Azure Mobile Service Template 38

Working with Files in Your Application 38
File Types of an ASP.NET MVC Application 38
File System Structure of an ASP.NET MVC Application 41
File Types of an ASP.NET Web Forms Application 43

MVC and Web Form File Differences 46
Creating the Sample Application 47
Summary 49

CHAPTER 3: DESIGNING YOUR WEB PAGES 51

HTML and CSS 52
Why Use Both HTML and CSS? 52
An Introduction to CSS 54

More CSS 58
Selectors 58
Properties 61
Precedence in Styles 65

The Style Sheet 67
Adding CSS to Your Pages 68
Creating Embedded and Inline Style Sheets 71

Applying Styles 72
Managing Styles 78
Summary 84

CHAPTER 4: PROGRAMMING IN C# AND VB.NET 87

Introduction to Programming 87
Data Types and Variables 88

Defi ning a Variable 88
Operators 91

Converting and Casting Data Types 93
Converting Data Types 93
Casting Data Types 96

Using Arrays and Collections 97
Using Arrays 97
Using Collections 99

Decision-Making Operations 101
Comparison Operators 102
Logical Operators 103
If Statement 104
Switch/Select Case Statement 106

xv

CONTENTS

ftoc.indd 12/18/2015 Page xv

Loops 106
For Loop 106
Foreach/For Each Loops 108
While Loop 109
Exiting Loops 110

Organizing Code 110
Methods: Functions and Subroutines 110
Writing Comments and Documentation 112

Object-Oriented Programming Basics 114
Important OO Terminology 115

Classes 115
Fields 116
Properties 117
Methods 120
Constructors 120
Inheritance 121
Events 123

Summary 125

CHAPTER 5: ASP.NET WEB FORM SERVER CONTROLS 129

Introduction to Server Controls 129
Defi ning Controls in Your Pages 130
Types of Controls 137

Standard Controls 138
HTML Controls 143
Data Controls 144
Validation Controls 144
Navigation Controls 145
Login Controls 145
AJAX Extensions 146
Other Control Sets 146

The ASP.NET State Engine 147
How the State Engine Works 148
Summary 157

CHAPTER 6: ASP.NET MVC HELPERS AND EXTENSIONS 161

Why MVC Has Fewer Controls Than Web Forms 162
A Different Approach 162

Razor 166
Controller 170

Routing 172

xvi

CONTENTS

ftoc.indd 12/18/2015 Page xvi

HTTP Verbs and Attributes 174
Form-Building Helpers 175

Form Extensions 175
Editor and EditorFor 177
Model Binding 177

Summary 194

CHAPTER 7: CREATING CONSISTENT-LOOKING WEBSITES 197

Consistent Page Layout with Master Pages 198
Creating and Using Master Pages in ASP.NET Web Forms 198
Creating a Content Page in ASP.NET Web Forms 208
Creating Layouts in ASP.NET MVC 212
Creating a Content View in ASP.NET MVC 215

Using a Centralized Base Page 219
Summary 225

CHAPTER 8: NAVIGATION 229

Different Ways to Move around Your Site 230
Understanding Absolute and Relative URLs 230
Understanding Default Documents 234
Friendly URLs 234

Using the ASP.NET Web Forms Navigation Controls 236
Using the Menu Control 240

Navigating in ASP.NET MVC 248
Routing 248

Default Confi guration and Route 249
Creating a Navigational Structure 252
Programmatic Redirection 255
Programmatically Redirecting the Client to a Different Page 255
Server-Side Redirects 258

Practical Tips on Navigation 262
Summary 263

CHAPTER 9: DISPLAYING AND UPDATING DATA 267

Working with SQL Server Express 268
Installation 269
SQL Server Management Studio 276
Connecting in Visual Studio 282

Entity Framework Approach to Data Access 285
Data First 285

xvii

CONTENTS

ftoc.indd 12/18/2015 Page xvii

Code First 286
Selecting Data from the Database 295

Data Controls in Web Forms 297
Details View 297
Web Form GridView 303

Data Display in MVC 310
List Display in MVC 311
Details Views 314

Summary 318

CHAPTER 10: WORKING WITH DATA—ADVANCED TOPICS 323

Sorting and Pagination 324
Sorting and Pagination in Web Form Server Controls 324
Sorting and Pagination in MVC Lists 330

Updating and/or Inserting Data 339
A Non-Code First Approach to Database Access 347

Using SQL Queries and Stored Procedures 350
Caching 358

Different Ways to Cache Data in ASP.NET Applications 358
Common Pitfalls with Caching Data 362

Summary 363

CHAPTER 11: USER CONTROLS AND PARTIAL VIEWS 367

Introduction to User Controls 368
Creating User Controls 369
Adding User Controls 373

Sitewide Registration of a User Control 376
Managing the IDs of Any Controls 379

Adding Logic to Your User Controls 381
Using Partial Views 387

Adding a Partial View 389
Managing the Controller for a Partial View 393

Templates 400
Summary 408

CHAPTER 12: VALIDATING USER INPUT 413

Gathering Data from the User 414
Validating User Input in Web Forms 415

Understanding Request Validation 424

xviii

CONTENTS

ftoc.indd 12/18/2015 Page xviii

Validating User Input in MVC 426
Model Attribution 426
Client-Side Validation 434
Request Validation in ASP.NET MVC 443

Validation Tips 444
Summary 445

CHAPTER 13: ASP.NET AJAX 449

Introducing the Concept of AJAX 450
F12 Developer Tools 451
Using ASP.NET AJAX in Web Forms 457

The Initial AJAX Experience 457
Enhancing the AJAX Experience 466

Using AJAX in MVC 469
Using Web Services in AJAX Websites 483
jQuery in AJAX 489
Practical AJAX Tips 495
Summary 496

CHAPTER 14: jQUERY 499

An Introduction to jQuery 499
Early JavaScript 500
jQuery’s Role 500
Including the jQuery Library 503
Bundles 506

jQuery Syntax 512
jQuery Core 513
Working with the jQuery Utility Methods 514
Selecting Items Using jQuery 516

Modifying the DOM with jQuery 519
Changing Appearance with jQuery 519
Handling Events 523

Debugging jQuery 532
Practical Tips on jQuery 536
Summary 537

CHAPTER 15: SECURITY IN YOUR ASP.NET WEBSITE 541

Introducing Security 542
Identity: Who Are You? 542

xix

CONTENTS

ftoc.indd 12/18/2015 Page xix

Authentication: How Can Users Prove Who They Are? 542
Authorization: What Are You Allowed to Do? 543
Logging in with ASP.NET 543
Confi guring Your Web Application for Security 547
Working with Users within Your Application 558

Roles 566
Confi guring Your Application to Work with Roles 567
Programmatically Checking Roles 572

Practical Security Tips 576
Summary 576

CHAPTER 16: PERSONALIZING WEBSITES 581

Understanding the Profi le 582
Creating the Profi le 582
Using the Profi le 590

Practical Personalization Tips 602
Summary 603

CHAPTER 17: EXCEPTION HANDLING, DEBUGGING,
AND TRACING 605

Error Handling 606
Different Types of Errors 606

Syntax Errors 606
Logic Errors 607
Runtime Errors 609

Catching and Handling Exceptions 612
Global Error Handling and Custom Error Pages 621
Error Handling in a Controller 627

The Basics of Debugging 629
Tools Support for Debugging 629

Moving Around in Debugged Code 629
Debugging Windows 631
Other Windows 634

Debugging Client-Side Script 638
Tracing Your ASP.NET Web Pages 647

Adding Your Own Information to the Trace 650
Tracing and Performance 654

Logging 654
Downloading, Installing, and Confi guring a Logger 655

Summary 658

xx

CONTENTS

ftoc.indd 12/18/2015 Page xx

CHAPTER 18: WORKING WITH SOURCE CONTROL 661

Introducing Team Foundation Services 661
Why Use Source Control 662
Setting Up a Visual Studio Online Account 662
Checking Code In and Out 669

Undoing Changes 670
Shelvesets 672
Getting a Specifi c Version from the Server 672
Seeing Changed Items in Solution Explorer 675
Looking at History and Comparing Versions 675
Labeling 676

Interacting with a Team 677
Changing Default Source Control Behavior in Visual Studio 677

Branching and Merging 678
Summary 681

CHAPTER 19: DEPLOYING YOUR WEBSITE 683

Preparing Your Website for Deployment 684
Avoiding Hard-Coded Settings 684
The Web.confi g File 685
Expression Syntax 685
The Web Confi guration Manager Class 687

Preparing for Deployment 691
Microsoft Azure 691

Publishing Your Site 695
Introducing Web.confi g Transformations 706
Moving Data to a Remote Server 713

Smoke Testing Your Application 720
Going Forward 722
Summary 722

APPENDIX: ANSWERS TO EXERCISES 725

INDEX 735

fl ast.indd 12/18/2015 Page xxi

 INTRODUCTION

IT WAS ESTIMATED IN JUNE 2015 that 45 percent of the world’s population has accessed the
Internet. That’s over 3 billion users, and the number is growing every day. This is a vast, connected
market that can reach any content you decide to make available, be it a simple web page or a
complex web application.

There are a lot of ways that you can make a simple web page available online. There are a lot fewer
approaches when you are trying to build a web application. One of these web application technolo-
gies is ASP.NET from Microsoft.

ASP.NET is a framework that supports the building of robust and performant web applications.
Think of it as the structural support for a car. You can add a couple of different body designs on
top of this structure: ASP.NET Web Forms and ASP.NET MVC. These two approaches both rest on
ASP.NET and depend on common functionality that is made available through ASP.NET.

Visual Studio 2015 is the primary tool used when creating and maintaining ASP.NET web applica-
tions. It will help you easily work with every aspect of your web application, from the “look and
feel” all the way through to deployment of your application—and skipping none of the steps in
between. In addition, because Microsoft is committed to supporting ASP.NET developers, it is avail-
able in a fully functional free version!

This book is an exploration of both ASP.NET Web Forms and MVC. As part of this exploration
you will become familiar with all of the various components of a functional web application, creat-
ing a sample application as you go through the different parts of the development process. You will
learn how the two frameworks do things, with some approaches being very similar while others are
completely different. No matter the style of approach, however, it is always clear that they both rest
on the same framework.

WHO THIS BOOK IS FOR

This book is designed for anyone who wants to build robust, performant, and scalable web applica-
tions. Although the development tools run in Microsoft Windows, you are free to deploy the appli-
cation onto virtually any current operating system; therefore, even organizations that don’t have
Microsoft servers have the capability to now run ASP.NET web applications.

If you are new to software development you should have no problem following along, as the book
has been structured with you in mind. Those of you who are experienced developers but new to web
development will also fi nd many different areas of interest and use, especially if C# is not your cur-
rent programming language.

Lastly, experienced ASP.NET developers should also fi nd many topics of interest, especially if your
experience is mainly related to either Web Forms or MVC, but not both. This book will give you

xxii

INTRODUCTION

fl ast.indd 12/18/2015 Page xxii

experience in both approaches as well as demonstrate how to integrate the two approaches into a
single application.

WHAT THIS BOOK COVERS

This book teaches you how to build a fully functional web application. You will have the opportu-
nity to build a complete site using both ASP.NET MVC and ASP.NET Web Forms approaches so
that you can develop an understanding of, and build a comfort level with, the complete ASP.NET
set of functionality. Each chapter takes you a step further along the development process:

 ➤ Chapter 1: Getting Started with ASP.NET 6.0—You will get an introduction to ASP.NET as
a general framework and specifi cally with Web Forms and MVC. You will also download
and install Visual Studio 2015.

 ➤ Chapter 2: Building an Initial ASP.NET Application—In this chapter you create the initial
project, including confi guring it to support both Web Forms and MVC.

 ➤ Chapter 3: Designing Your Web Pages—This chapter introduces you to HTML and CSS so
that you can build attractive and understandable web sites.

 ➤ Chapter 4: Programming in C# and VB.NET—ASP.NET is a developmental framework with
which you can use different programming languages, including C# and VB.NET. This chap-
ter provides an introduction to using them.

 ➤ Chapter 5: ASP.NET Web Form Server Controls—ASP.NET Web Forms offers many differ-
ent forms of built-in functionality that it provides as server controls. These controls enable
you to create complex and feature-rich web sites with very little code. This chapter covers the
most common controls.

 ➤ Chapter 6: ASP.NET MVC Helpers and Extensions—Whereas ASP.NET Web Forms have
server controls to provide features, ASP.NET MVC offers a different type of support through
the use of helpers and extensions. This chapter describes that different support.

 ➤ Chapter 7: Creating Consistent-Looking Websites—You will learn how ASP.NET enables
you to use master pages and layout pages to create a consistent look and feel throughout
your web application.

 ➤ Chapter 8: Navigation—In this chapter you learn the different ways to create menus and
other navigation structures. You also look at the different types of links that you can build in
both Web Forms and MVC.

 ➤ Chapter 9: Displaying and Updating Data—When you want to use a database with
ASP.NET, there are no better options than SQL Server. In this chapter, you install SQL
Server, create your initial database schema, and incorporate the creation and display of data
into your application.

 ➤ Chapter 10: Working with Data—Advanced Topics—Advanced topics include pagination,
sorting, and using advanced database items such as stored procedures to retrieve special sets

xxiii

INTRODUCTION

fl ast.indd 12/18/2015 Page xxiii

of information from the database. You will also learn how you can speed up responsiveness
by storing data in various places.

 ➤ Chapter 11: User Controls and Partial Views—ASP.NET offers server controls and helpers to
provide built-in functionality. Learn how to create your own items to provide common func-
tionality across multiple pages.

 ➤ Chapter 12: Validating User Input—A large part of your site’s functionality is defi ned by the
data that users input into your application. This chapter shows you how to accept, validate,
and process user input using tools for both Web Forms and MVC.

 ➤ Chapter 13: ASP.NET AJAX—AJAX is a technology that enables you to update parts of
your page without making a full-page call to the server. Learn how to do this for both Web
Forms and MVC.

 ➤ Chapter 14: jQuery—Everything covered up until this point has been based on doing work
on the server. In this chapter you are introduced to using jQuery for work on the client, with-
out having to call back to the server.

 ➤ Chapter 15: Security in Your ASP.NET Website—This chapter adds the concept of a user,
demonstrating how you can identify your visitors by requiring them to log in to your
application.

 ➤ Chapter 16: Personalizing Websites—Here you will learn how to customize the user informa-
tion you are using to get the information needed to ensure that users feel welcome at your
site. Capturing information about the user’s visit also helps you better understand what they
want when they visit your site.

 ➤ Chapter 17: Exception Handling, Debugging, and Tracing—Unfortunately, it’s very diffi cult
to write code that is totally problem-free. Learn how to manage these problems, including
fi nding and fi xing them as well as ensuring that when they happen, users are given the rel-
evant information as to why their actions were not successful.

 ➤ Chapter 18: Working with Source Control—Working within a team is an important aspect of
being a professional developer. Source control provides a way for you to share code among
users. It also manages backing up your source code with saved versions.

 ➤ Chapter 19: Deploying Your Website—After completing all the work to build your applica-
tion, the last step is getting out onto the web where your users can visit it!

HOW THIS BOOK IS STRUCTURED

The primary instructional approach in this book is a set of detailed hands-on steps that walk you
through the process of building a complete application. These “Try It Out” activities, which dem-
onstrate whatever topic is under discussion, are followed by a “How It Works” section that explains
what each step accomplishes. Each of the “Try It Out” sections builds on what was done previously,
so they should be followed sequentially.

xxiv

INTRODUCTION

fl ast.indd 12/18/2015 Page xxiv

Exercise questions at the end of the chapter enable you to test your understanding of the mate-
rial, and answers are available in the appendix. Some questions are specifi c, others more general.
Together they are designed to help reinforce the information presented in the chapter.

A lot of information is presented in this book; it covers two technological approaches that some-
times seem completely different. Additional sources of information are included in the chapters if
you want more detailed information about a particular approach or product.

WHAT YOU NEED TO USE THIS BOOK

In order to follow along with the chapter and its hands-on activities, you will need the following:

 ➤ Windows 7, 8, or 10 or Windows Server 2008 or 2012

 ➤ The minimum requirements for Visual Studio 2015, including RAM and hard drive space

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

TRY IT OUT

This is a hands-on exercise you should work through, following the text in the book.

 1. They consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps with your copy of the database.

How It Works

This section explains in detail the code from each “Try It Out” activity.

WARNING Boxes like this one hold important, not-to-be forgotten informa-
tion that is directly relevant to the surrounding text.

NOTE These are tips, hints, tricks, or asides to the current discussion, offset
and placed in italics like this.

xxv

INTRODUCTION

fl ast.indd 12/18/2015 Page xxv

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that’s particularly important in the present
context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at http://www.wrox.com/go/beginningaspnetforvisualstudio. You
will fi nd the code snippets from the source code are accompanied by a download icon and note indi-
cating the name of the program so you know it’s available for download and can easily locate it in
the download fi le. Once at the site, simply locate the book’s title (either by using the Search box or
by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

NOTE Because many books have similar titles, you may fi nd it easiest to
search by ISBN; this book’s ISBN is 978-1-119-07742-8.

After downloading the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful for your feedback. By sending in errata you may
save another reader hours of frustration, and at the same time you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On

http://www.wrox.com/go/beginningaspnetforvisualstudio
http://www.wrox.com/dynamic/books
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

xxvi

INTRODUCTION

fl ast.indd 12/18/2015 Page xxvi

this page you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list, including links to each book’s errata, is also available at www.wrox.com/misc-
pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem
in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P but in order
to post your own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://www.wrox.com/misc-pages/xxvi
http://www.wrox.com/misc-pages/xxvi
http://www.wrox.com/misc-pages/xxvi
http://www.wrox.com/contact
http://p2p.wrox.com

c01.indd 12/15/2015 Page 1

Getting Started with
ASP.NET 6.0

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ A brief history of ASP.NET and why it supports both Web Forms
and MVC

 ➤ About the two frameworks, Web Forms and MVC

 ➤ How to install and use Visual Studio 2015

 ➤ The sample application that will be used throughout this book

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the
chapter 01 download and individually named according to the names throughout the chapter.

The Internet has become a critical part of life to millions of people across the world. This
growth in the use of the Internet has been accelerating since the 1990s and will continue as
technology and access becomes more affordable. The Internet has become the go-to source for
shopping, leisure, learning, and communications. It has helped to both build new businesses
and give revolutionaries the capability to spread their message to the rest of the world.

This growth means that there will be a long-term demand for people with the skills to build
and maintain the next generation of web applications. As an increasing percentage of the
world’s business is accomplished with web applications, learning how to work on these appli-
cations is an obvious career move.

1

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

2 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 2

AN INTRODUCTION TO ASP.NET vNEXT

The Internet started off as a set of sealed, private networks designed to share information between
research institutions across the United States. The primary users of this system were the research sci-
entists in those labs. However, as the usefulness and fl exibility of this information-sharing approach
became obvious, interest grew exponentially. More and more institutions became involved, resulting
in the evolution of standards and protocols to support the sharing of additional types of informa-
tion. The initial networks quickly expanded as commercial entities became involved. Soon, Internet
service providers were available, enabling regular, everyday people to access and share the burgeon-
ing content of the Internet.

In the early days of the Internet, most content was created and stored statically. Each HTTP request
would be for a specifi c page or piece of stored content, and the response would simply provide that
content. Early application frameworks changed that model, enabling the dynamic generation of
content based on a certain set of criteria sent as part of that request. This enabled content to be
built from databases and other sources, exponentially increasing the usefulness of the Web. It was at
this point that the general public, rather than only scientists, really started to take advantage of the
Internet’s enhanced usability.

ASP.NET is one of those early web application frameworks, with the fi rst version of the .NET
Framework released in 2002. The ASP part of the name stands for “Active Server Pages,” which was
Microsoft’s initial web application framework that used server-side processing to create browser-
readable HTML pages. The original ASP, now called “Classic ASP,” allowed the developer to use
VBScript to add scripting code to HTML. However, the code and the HTML were all intermingled
together in a single fi le.

ASP.NET was considered a major enhancement at the time because it allowed for a much cleaner
separation of the code-behind, the code that handles the processing and markup, the code handling
the building of the display, than any of the other frameworks available at that time. There have been
improvements to this initial ASP.NET framework with every new release of the .NET Framework.

In 2008 Microsoft introduced a new framework that supported a different approach to content
creation and navigation: ASP.NET MVC. MVC stands for Model View Controller, and references
a software design pattern that provides a more complete separation between the user interface and
the processing code. The original framework became known as Web Forms. Even as the Internet
content-creation technologies evolve, the way that the Internet runs stays surprisingly unchanged.
The movement of the information from the server to the client follows a very simple protocol that
has barely changed since the beginning of the Internet.

Hypertext Transfer Protocol (HTTP)
Hypertext Transfer Protocol (HTTP) is the application protocol that acts as the foundation for com-
munications within the Internet. It defi nes the interaction between the client machine and the server
as following a request-response model whereby the client machine requests, or asks for, a specifi c
resource and the server responds with, or sends a reply about, the information as appropriate.

This request can be very simple, from “show me this picture,” to something very complex, such as
a transfer between your bank accounts. Figure 1-1 shows the outcome of that request—whether it is

An Introduction to ASP.NET vNext ❘ 3

c01.indd 12/15/2015 Page 3

displaying the picture for the fi rst, simple request or whether it is displaying the receipt for the bank
transfer from the second, more complex request.

Response

Request

User Server

FIGURE 1-1: Request response

The HTTP protocol also defi nes what the requests and responses should look like. It includes meth-
ods, also known as verbs, which describe what kind of action should be taken on the item being
requested. These verbs are not really used that much in ASP.NET Web Forms, but they are espe-
cially important in ASP.NET MVC because MVC uses these methods to identify the actions being
taken on the requested object. The major verbs are listed in Table 1-1.

TABLE 1-1: Most Frequently Used HTTP Verbs

NAME DESCRIPTION

GET A GET is a request for a resource. It should retrieve that resource without any other
effect resulting from taking that action. You should be able to GET a resource mul-
tiple times.

POST A POST indicates that there is information included in the request that should cre-
ate a new version of the resource. By defi nition, any item posted should create a
new version, so passing in the same information multiple times should result in mul-
tiple instances of that object being created.

PUT A PUT indicates that the information included in the request should change already
existing items. The defi nition also allows the server to create a new item if the item
that is expected to be changed has not already been created. This is different from
the POST verb because a new item is only created when the request includes new
information.

DELETE The DELETE verb indicates that the specifi ed resource should be deleted. This
means that upon deletion, a GET or PUT to that resource will fail.

An HTTP request includes the following:

 ➤ A request line. For example, GET/images/RockMyWroxLogo.png HTTP/1.1 requests a
resource called /images/RockMyWroxLogo.png from the server.

 ➤ Request header fi elds, such as Accept-Language: en

4 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 4

 ➤ An empty line

 ➤ An optional message body; when using either the POST or PUT verbs, the information
needed to create the object is generally put in this message body

An HTTP response includes these items:

 ➤ A status line, which includes the status code and reason message (e.g., HTTP/1.1 200 OK,
which says the request was successful)

 ➤ Response header fi elds, such as Content-Type: text/html

 ➤ An empty line

 ➤ An optional message body

The following example shows a typical response:

HTTP/1.1 200 OK
Date: Thur, 21 May 2015 22:38:34 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2015 23:11:55 GMT
ETag: "xxxxxxxxxxxxxxxxx"
Content-Type: text/html; charset=UTF-8
Content-Length: 131
Accept-Ranges: bytes
Connection: close

<!DOCTYPE html>
<html>
 <head>
 <title>I'm a useful title to this page</title>
 </head>
 <body>
 <p>I'm some interesting content that people can't wait to consume.</p>
 </body>
</html>

The status codes, such as 200 OK in the preceding example, provide details about the request. The
most common types of status codes are the 4XX and 5XX codes. The 4XX codes are for client
errors, with the most common being a 404, which denotes that the resource being requested does
not exist. The 5XX codes are for server codes, the most common of which is 500, or an Internal
Server error. Anyone who does much web development will quickly become accustomed to the
dreaded 500 errors.

These verbs are needed because, by defi nition, HTTP is a stateless protocol. That is why nothing
in the request identifi es any previous request; instead, each request-response is expected to act com-
pletely independently.

Much of this communication happens behind the scenes and is handled by the user’s browser and
the web server. However, the information being sent and received affects your web application.
As you continue developing your knowledge and skills about ASP.NET, you will fi nd cases where

An Introduction to ASP.NET vNext ❘ 5

c01.indd 12/15/2015 Page 5

digging in deeper to the different values in either the request or the response becomes important.
You may need to set request and/or response headers to ensure that some contextual information
(such as an authorization token or the client’s preferred language) are properly set.

Microsoft Internet Information Services
Microsoft Internet Information Services (IIS) is an application that comes with Microsoft Windows
that is designed to support HTTP (known as a web server). It is included with all current versions of
Windows, although it is not installed by default. When you develop an ASP.NET application, either
Web Forms or MVC, the work of processing and creating the content that is returned to the client is
done by IIS.

HTML 5
Whereas HTTP is the process of communicating between a client and a server, HTML is the
core markup language of the Internet. HTML (HyperText Markup Language) is used for struc-
turing and presenting content on the Web, and is a standard from the W3C (World Wide Web
Consortium). HTML 5, fi nalized in October 2014, is the newest version of this standard. The
previous version, HTML 4, was standardized in 1997.

As you can imagine, the Web went through some dramatic evolution during the 17 years between
HTML 4 and HTML 5. While this evolution provided some advantages, especially to users, it also
created some problems for website developers. One of the primary problems was that web browser
companies tried to differentiate their products by providing a set of browser-specifi c enhancements,
especially related to multimedia. This made developing an interactive website problematic because
each browser had different specifi c development requirements.

HTML 5 was designed to help solve the problems caused by this fragmentation. Improvements
include the following:

 ➤ Additional support for multimedia, including layout, video, and audio tags

 ➤ Support for additional graphics formats

 ➤ Added accessibility attributes that help differently abled users access the web page content

 ➤ Signifi cant improvements in the scripting APIs that allow the HTML elements to interact
with JavaScript (you will learn more about this in Chapter 14, “jQuery”)

HTML Markup
HTML documents are human-readable documents that use HTML elements to provide structure
to information. This structure is used to provide context to the information being displayed. A web
browser takes the context and content into account and displays the information accordingly. These
elements can be nested, meaning one element can be completely contained within another element,
making the whole page basically a set of nested elements, as shown here:

<!DOCTYPE html>
<html>
 <head>

6 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 6

 <title>I'm a useful title to this page</title>
 </head>
 <body>
 <p>I'm some interesting content that people can't wait to consume.</p>
 </body>
</html>

Each layer of elements acts to group related content. As each element is parsed by the browser, it
is evaluated as to where it belongs within the logical structure. This structure is what gives the
browser the capability to relate content based upon its proximity and relationship to other elements
within the structure. In the preceding example, the title element is a child of the head element.

Note also the expectation of both open and close tags. This fi ts in with the concept that an element
can be contained within other elements. Only those elements that cannot contain other elements do
not need to be closed. The open tag is a set of angled brackets <> around an element html, while the
close tag is a set of angled brackets </> around the same element name but prefaced with a slash
/html. This enables the browser to identify each section appropriately. Some browsers may support
some tags that are not properly closed, but this behavior is inconsistent, thus care should be taken to
close all elements. The only item that does not follow this standard is the <!DOCTYPE html> declara-
tion. Instead, this identifi es how the content that follows should be defi ned. In this case, the content
is defi ned as html, so the browser knows that the content should be parsed as HTML 5.

Some of the more useful elements available in HTML 5 are listed in Table 1-2. This is not a com-
plete list! Visit the W3C site for a complete list of HTML elements and a full description of their
usage at http://www.w3.org/TR/html5/index.html.

TABLE 1-2: Commonly Used HTML Elements

ELEMENT NAME DESCRIPTION

html Identifi es the content as HTML code.

head Defi nes the content as the head section of the page. This is a high-level sec-
tion containing information that the browser uses to control the display of the
content.

title An item within the head section, this element contains the content normally
displayed in the browser’s title bar.

body Defi nes the content as the body section of the page. This section contains the
content that is displayed within the browser window.

a Anchor tag that acts as a navigation link to other content. It can redirect the
user to another location on that same page or to a completely different page.

img This tag places an image onto the page. It is one of the few elements that
does not have a closing tag.

http://www.w3.org/TR/html5/index.html

An Introduction to ASP.NET vNext ❘ 7

c01.indd 12/15/2015 Page 7

ELEMENT NAME DESCRIPTION

form The form tag identifi es the contained content as a set of information that will
be submitted together as a block. It is generally used to transfer information
from the user to the server.

input This element plays a lot of roles within a form. Depending upon the type
(much more on this later!) it can be a text box, a radio button, or even a
button.

span A way to delimit content inline. This enables you to give a special format to
one or more words in a sentence without affecting the spacing of those words.

div Like the span tag, this tag acts as a container for content. However, it is a
block element, and different in that there is a line break before and after the
content.

audio An HTML 5 feature that allows you to embed an audio fi le into the page. The
types of audio fi les supported may differ according to browser.

video An HTML 5 feature to embed video fi les into the page so that the browser will
play the content inline.

section An HTML 5 addition that identifi es a set of content as belonging together.
Think of it as a chapter in a book, or areas of a single web page such as intro-
duction and news.

article Another HTML 5 addition that defi nes a more complete, self-contained set of
content than the section element.

p A paragraph element that breaks up content into related, manageable chunks.

header Provides introductory content for another element, generally the nearest ele-
ment. This may include the body, which means the content is the header for
the entire page.

h1, h2, h3 An element that enables content to be designated as header text. The smaller
the number, the higher it appears in the hierarchy. An h1 element would be
similar to a book title, h2 could be chapter title, h3 section title, and so on.

ul Enables the creation of an unordered, bulleted list.

ol Enables the creation of an ordered, generally numbered list.

li The list item element tells the browser that the content is one of the items that
should be included in a list.

Attributes in HTML
An attribute is additional information that is placed within the angle braces of the opening ele-
ment. This attribute provides detail so that the browser knows how to behave when rendering or

8 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 8

interacting with that element. An example is the anchor element, which provides a navigational link
to other content:

Awesome books here!

The href is an attribute that tells the browser where to send users after they click the “Awesome
books here!” link.

All elements support attributes of some sort, whether they are implied required items such as the
href attribute in an anchor tag, or optional tags such as name, style, or class, which can be used
to control the identifi cation and appearance of the attributed element.

HTML Example
The code in Listing 1-1 is a sample HTML page that contains almost all of the elements in
Table 1-2.

LISTING 1-1: An example HTML page

<!DOCTYPE html>
<html>
 <head>
 <title>Beginning ASP.NET Web Forms and MVC</title>
 </head>
 <body>
 <!-- This is an HTML comment. The video and audio elements are not
displayed.-->
 <article>
 <header>
 <h1>ASP.NET from Wrox</h1>
 <p>Creating awesome output</p>

 <img src='http://media.wiley.com/assets/253/59/wrox_logo.gif'
 width='338' height='79' border='0'>

 </header>
 <section>
 <h2>ASP.NET Web Forms</h2>
 <p>More than a decade of experience and reliability.</p>

 Lots of provided controls
 Thousands of examples available online

 </section>
 <section>
 <h2>ASP.NET MVC</h2>
 A new framework that emphasizes a <div>stateless</div> approach.

 Less page-centric
 More content centric

 </section>

http://www.wrox.com
http://www.wrox.com
http://media.wiley.com/assets/253/59/wrox_logo.gif

An Introduction to ASP.NET vNext ❘ 9

c01.indd 12/15/2015 Page 9

 </article>
 <form>
 <p>
 Enter your email to sign up:
 <input type='text' name='emailaddress'>
 </p>
 <input type='submit' value='Save Email'>
 </form>
 </body>
</html>

Microsoft’s Internet Explorer renders this HTML content as shown in Figure 1-2. All other HTML
5 browsers will also render this comment in a very similar way.

title

h1

h2

p

ol and li

div

ul and li

input type=’text’

input type=’submit’

span

img

FIGURE 1-2: HTML rendered in the browser

As you can see, HTML provides some simple layout to the content. However, when you look at vari-
ous sites on the Web, you will likely not see anything that looks like the preceding example. That’s
because HTML provides layout, but there is another technology that provides more control over the
user experience (UX) by enhancing design. This technology is Cascading Style Sheets (CSS).

10 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 10

REFERENCE CSS is explained in more detail in Chapter 3, “Designing Your
Web Pages.”

ASP.NET Web Forms
ASP.NET Web Forms have been part of the .NET infrastructure since its initial release. Web Forms
generally take a page-based approach whereby each web page that may be requested is its own
unique entity. During development there are two physical pages in the fi le system that make up each
viewable page: the .aspx code, which contains the viewable markup, and the .aspx.cs or aspx.vb,
which contains the code to do the actual processing, such as creating the initial content or respond-
ing to button clicks. These two pages together provide the code and markup necessary to create the
HTML that is sent to the browser for viewing.

The main benefi t of ASP.NET Web Forms is the level of abstraction that it provides compared to
the request/response approach and the creation of the HTML that is sent to the client. A detailed
knowledge of HTML is less critical than a detailed knowledge of C# or Visual Basic. The frame-
work itself hides a lot of the HTML generation by doing it for you.

The primary model for communications between the client and the server is an approach called the
postback, whereby a page is rendered in the browser, the user takes some action, and that page is
sent back to the server using the same resource name. This allows each page to be responsible for
both the creation of the page content and responding to changes in the page content as necessary.

ViewState
This response to change in the page content is enhanced through the use of ViewState. Because
HTTP is a stateless protocol, anything that needs state needs to be managed in a more custom-
ized approach. ViewState is how ASP.NET Web Forms take this customized approach and trans-
fer state information between the browser and the server. ViewState is a hidden fi eld <input
type="hidden" name="_VIEWSTATE" value="blah blah"> that is included within the page. The
entity’s value contains hashed information that is unreadable by humans. Fortunately, ASP.NET is
able to parse the information and get an understanding of the previous version of the various items
on the page.

It is important to understand view state because of the signifi cant role it plays in how ASP.NET Web
Forms do their work. Say you are working on a page that has several postbacks. Perhaps one of
the postbacks changes the value of a label. If the label had a default value from the fi rst rendering,
every initialization of that control on each new postback will reset that value to the default value.
However, the system then analyzes the view state and determines that this particular label has a dif-
ferent value that should be displayed. The system now recognizes that it is in a different state and
will override the default setting to set the label to the newer, changed version of the text.

This is a powerful way to persist changes between multiple postbacks. However, the more items
that change and need to be tracked, the larger the set of view state information, which can be

An Introduction to ASP.NET vNext ❘ 11

c01.indd 12/15/2015 Page 11

problematic. This information is passed both directions, from server to the client, and then back to
the server. In some cases the amount of information being transferred as part of the view state can
slow down the download/upload time, especially in those cases where network speed or bandwidth
is limited.

By default, the use of ViewState is enabled on every control. However, as the developer you can
override those settings as necessary, such as when you know that you won’t need to know the previ-
ous state of the control. You can also use the view state programmatically. Imagine a large list of
data that has both sorting capabilities and paging. If you are going to sort before paging, then the
sorting criteria needs to be stored somewhere so that it is available to the next postback. The view
state is one place to store this information.

ASP.NET Web Forms Events and Page Lifecycle
One of the strengths of Web Forms is the ability it gives developers to plug into the various events in
the page lifecycle. The ASP.NET lifecycle allows the developer to interact with information at vari-
ous points in the HTML creation phase. As part of the fl ow, the developer can also use event han-
dlers to respond to events that may happen on the client, including clicking a button or selecting an
item in a dropdown list. For developers who are coming from a traditional event-driven development
approach, such as Windows Forms, this approach will be very easy to pick up. While the lifecycle
process gives a lot of power to a developer, it also adds to the complexity of the application—the
same code can result in a different outcome depending on when it is called during the lifecycle.

The steps in the lifecycle are shown in Table 1-3. Some of these items may not make any sense to you
at this point, but as we move through the process of creating an interactive web site, you will start
to see how this all comes together.

TABLE 1-3: ASP.NET Page Lifecycle Stages

STAGE DESCRIPTION

Request This stage happens before the page-calling process starts. It is when the
system determines whether run-time compilation is necessary, whether
cached output can be returned, or whether a compiled page needs to
be run. There are no hooks into this stage from within the ASP.NET page
itself.

Start The page starts to do some processing on the HTTP request. Some base
variables are initialized, such as Request, Response, and the UICulture.
The page also determines if it is a postback.

Initialization During this phase, the controls on the page are initialized and assigned
their unique IDs. Master pages and themes are applied as applicable.
None of the postback data is available, and information in the view state
has not yet been applied.

Load If the request is a postback, control information is loaded with the infor-
mation recovered from view state.

continues

12 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 12

STAGE DESCRIPTION

Postback event handling If the request is a postback, all the various controls fi re their event han-
dlers as needed. Validation also happens at this time.

Rendering Before the rendering stage starts, ViewState is saved for the page and all
of the controls as confi gured. At this time, the page output is added to
the response so that information may start fl owing to the client.

Unload This happens after the content was created and sent to the client.
Objects are unloaded from memory and cleanup happens.

The steps in the lifecycle are exposed through a set of lifecycle events. A developer can interact with
a lifecycle event as necessary. You will learn more about this interaction as you develop the sample
application. These events are listed in Table 1-4.

TABLE 1-4: Lifecycle Events for ASP.NET Pages

EVENT DESCRIPTION AND TYPICAL USE

Preinit Raised after the start stage is complete and before the initialization stage
begins. Typically used to create or recreate dynamic controls, setting mas-
ter pages or themes dynamically (more on this later). Information in this
stage has not yet been replaced with the ViewState information, covered
earlier.

Init This event is raised after all the controls have been initialized. It is typically
used to initialize control properties. These initializations do not affect view
state.

InitComplete Only one thing happens between Init and InitComplete, and that is the
enabling of view state for the controls. Changes applied in this event and
after will impact view state, so are available upon postback.

PreLoad Raised after the page manages the view state information for itself and all
controls. Postback data is also processed.

Load The OnLoad method is called in a page, which then recursively calls that
same method on every control. This is typically where the majority of your
creation work happens, initializing database connections, setting control
values, etc.

Control Events These are specifi c control-based events, such as the Click of a button, or
TextChanged on a text box.

TABLE 1-3 (continued)

An Introduction to ASP.NET vNext ❘ 13

c01.indd 12/15/2015 Page 13

EVENT DESCRIPTION AND TYPICAL USE

LoadComplete This event is raised after all the event handling has occurred. Doing any-
thing here would generally require all of the controls to be loaded and
completed.

PreRender After all the controls have been loaded, the Page object starts its Pre-
render phase. This is the last point at which you can make any changes to
the content or the page.

PreRenderComplete Raised after every databound control has been bound. This happens at the
individual control level.

SaveStateComplete Raised after view state and control state have been saved for the page and
for all controls. Any changes to the page or controls at this point affect ren-
dering, but the changes will not be retrieved on the next postback.

Render This is not an event. Rather, at this point in the process, the Page object
calls this method on each control. All ASP.NET Web server controls have
a Render method that writes out the control’s markup to send to the
browser.

Unload This is used to perform special cleanup activities, such as closing fi le or
database connections, logging, etc.

The work that you will be doing in the sample application only takes advantage of a few of these
events. However, understanding that they may occur gives you an idea of how ASP.NET Web Forms
works under the covers. Web Forms enable you to tap into each of these events as needed, both at a
page level and a control level. While you will likely encounter entire application projects that don’t
require anything outside of the Load and Control Events sections, Web Forms provide you with the
power to do so as needed.

Some of the more powerful controls have their own sets of events, which you will learn about when
you start to work on the sample application.

Control Library
One of the benefi ts of ASP.NET Web Forms is a powerful set of built-in server controls that give
developers a boost in development speed and enhance rapid application development (RAD). Using
these controls turns the development process into one that’s more about confi guration than develop-
ment, providing an out-of-the-box experience that will likely satisfy many developers who need the
most common default behavior. In addition, because of the maturity of this approach, an extensive
set of third-party controls are available as well as rich and powerful support within Visual Studio.

These ASP.NET server controls are items that a developer places on an ASP.NET web page. They
run when the page is requested, and their main responsibility is to create and render markup to the

14 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 14

browser. Many of these server controls are similar to the familiar HTML elements, such as buttons
and text boxes. Other of these server controls allow for more complex behavior, such as a calendar
control that manages the display of data in a calendar format and other controls that you can use to
connect to data sources and display data:

There are four main types of controls:

 ➤ HTML server controls

 ➤ Web server controls

 ➤ Validation controls

 ➤ User controls

HTML Server Controls
HTML server controls are generally wrappers for traditional HTML elements. These wrappers
enable the developer to set values in code and to use events, such as a textbox control fi ring an event
when its text display value has been changed. You will be working with many different HTML
server controls as you work through the Web Forms part of the application.

Web Server Controls
A web server control acts as more than a wrapper around an HTML element. It tends to encompass
more functionality and be more abstract than an HTML server control, because it does more things.
A calendar control is a good example of a web server control; it enhances UI functionality by pro-
viding a button that enables users to access a grid-like calendar to select the appropriate date. The
calendar control also provides other functionality, such as limiting the range of selectable dates, for-
matting the date being displayed, and moving through the calendar by month or year.

Validation Controls
The third type of control is the validation control. This control ensures that the values entered into
other controls meet certain criteria, or are valid. A textbox that is expected to only capture money
amounts, for example, should only accept numbers and perhaps the comma (,) and period (.). It
should also ensure that if the value entered contains a period, then there are no more than two
numbers to the right of the period. The validator provides this support on the client side and on the
server. This ensures that the data is correct before being sent to the server and then ensures that the
data is correct when it gets to the server.

User Controls
The last type of control is a user control. This is a control that you build yourself. If a set of func-
tionality needs to be available on multiple pages, then it is most likely that you should create this
functionality as a user control. This enables the same control to be reused in multiple places, rather
than copying the code itself into multiple pages.

These controls can do a lot of very useful things for you, but they come at a cost. By using these
controls, you may lose some control over the fi nished HTML, which may lead to bloated output or
HTML that does not quite fi t what the designer may desire.

An Introduction to ASP.NET vNext ❘ 15

c01.indd 12/15/2015 Page 15

ASP.NET MVC
Earlier, you learned that ASP.NET Web Forms is a page-based approach to designing a web applica-
tion. ASP.NET MVC is a different architectural approach that emphasizes the separation of con-
cerns. Whereas Web Forms are generally made up of two sections, markup and code-behind, MVC
breaks the concerns into three parts, model, view, and controller. The model is the data that is being
displayed, the view is how the data is being displayed to the user, and the controller is the interme-
diary that does the work of ensuring that the appropriate model is presented to the correct view.
Figure 1-3 illustrates the interaction between the different parts.

Client

Controller

View

Model

FIGURE 1-3: Model-View-Controller (MVC) design

A key difference between ASP.NET Web Forms and MVC is that MVC presents views, not pages, to
the client. This is more than simple semantics, it indicates a difference in approach. Web Forms take
a fi le system approach to presenting content; MVC takes an approach whereby content is based on
the “type of action” that you are trying to perform on a particular thing, as shown in Figure 1-4.

C:\www\site\default.aspx

Request to http:\www.site.com\

ASP.NET
Web Forms ASP.NET MVC

Web Server translates
HTTP request to file

location

Calls Controller.Action

Request to http:\www.site.com\

Web Server translates
HTTP request to file

method call

MVC application

FIGURE 1-4: Different Approaches Between MVC and Web Forms

http://www.site.com\
http://www.site.com\

16 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 16

NOTE This kind of approach may be less intuitive for developers who are
coming from a more event-driven background. However, developers who have
experience with other MVC approaches, such as Ruby on Rails, will fi nd the
MVC pattern to be comfortable and a good fi t with their previous experience.

The key reason for the MVC pattern’s success is the degree to which it helps developers create appli-
cations whose different aspects can be separated (input logic, business logic, and UI logic), while
still providing a relatively loose coupling between these elements. A loosely coupled system is one in
which each component has very little to no knowledge of the other components. This enables you to
make changes in one of the components without disturbing the others.

In an MVC application, the view only displays information; the controller handles and responds to
user input and interaction. For example, the controller handles query-string values, and passes these
values to the model, which in turn might use these values to query the database. Because of this sep-
aration, you can completely redesign the UI without affecting the controller or model at all. Because
of the loose coupling, the interdependency is much less rigorous. It also enables different people to
assume different roles in the development of the application, by disassociating the HTML creation
from the server that creates the data to be displayed.

The MVC pattern specifi es where each type of logic should be located within your application. The
UI-specifi c logic belongs in the view. Input logic, or the logic that handles the request from the cli-
ent, belongs in the controller. Business logic belongs in the model layer. This separation helps you
manage complexity when you build an application because it enables you to focus on one aspect of
the implementation at a time.

Testability
An important consideration when using an MVC approach is the valuable increase in testability
it offers. Unit tests are re-runnable items that validate a particular subset of functionality. This is
important in modern development because these unit tests enable the developer to refactor, or make
changes to, existing code. The unit tests enable developers to determine whether any negative side
effects result from the change by running the already created unit tests. An ASP.NET Web Forms
application is diffi cult to unit test for precisely the same reasons that it works so well as a RAD
approach: the power of the built-in controls and the page lifecycle. They are very specifi c to the page
of which they are a part, so trying to test discrete pieces of functionality becomes much more com-
plicated because of the dependencies with other items on the page.

ASP.NET MVC’s approach and separation means that controllers and models can be fully tested.
This ensures that the behavior of the application can be better evaluated, understood, and verifi ed.
When building a very simple application this may not be important, but in a larger, enterprise-level
application it becomes critical. The functionality it provides to the business might be essential, and it
will likely be managed, maintained, tweaked, and changed over a long lifetime; and the more com-
plex the code, the more risk that a change in one area may impact other areas. Running unit tests
after a set of changes provides assurance that previously created functionality continues to work as
expected. Building unit tests on new functionality verifi es that the code is working as expected and
provides insurance against future changes.

An Introduction to ASP.NET vNext ❘ 17

c01.indd 12/15/2015 Page 17

You won’t be specifi cally building unit tests as part of the process in building the sample web appli-
cation. However, the available source code does have a unit test project and some tests will be cre-
ated as you work through the development process, especially for those areas that are using ASP
.NET MVC.

Full Control over Output
ASP.NET MVC does not have the same dependence upon controls that ASP.NET Web Forms do,
thus it does not have the same risk of becoming bloated HTML output. Instead, developers create
the specifi c HTML that they want sent to the client. This allows full access to all attributes within
an HTML element rather than just those allowed by the ASP.NET Web Form server control. It also
allows for much more predictable and clearly understood output. Another advantage in having full
control over the rendered HTML is that it makes the inclusion of JavaScript much easier. There is
no potential for clashes between control-created JavaScript and developer-created JavaScript; and
because the developer controls everything that is rendered on the page, using element names and
other attributes that may have been commandeered by the generated HTML becomes easier.

Of course, this additional fl exibility comes at some cost: Developers are required to spend more
time building the HTML than otherwise may have been necessary with the Web Form controls. It
also requires that developers be more knowledgeable about HTML and client-side coding, such as
JavaScript, than was necessary with Web Forms.

Web Forms and MVC Similarities
It is important to understand that Web Forms and MVC are not opposing approaches but
rather different approaches that have inherently different strengths and weaknesses. They each
address different concerns and are not mutually exclusive. A developer can create unit tests in
Web Forms; it just takes more work and requires the developer to add abstraction where the
framework does not provide any by default. Just as with virtually any other development prob-
lem, there are multiple potential solutions and approaches. A well-designed application will be
successful, regardless of the approach taken.

Fundamentally, as both Web Forms and MVC are designed to solve the same base requirement—
creating HTML content that will be provided to the client user—there are a lot of similarities
between the two. Properly architected applications will be much the same, especially in terms of
backend processing. Accessing databases, web services, or fi le system objects will all be the same
regardless of approach. This is why many developers can become profi cient in both.

Choosing the Best Approach
As described earlier, each of these frameworks has its own set of advantages and disadvantages. You
need to evaluate your requirements against these concerns and determine which is the most impor-
tant to your project. This means that there is no right answer; some projects would be best imple-
mented via Web Forms, whereas others might be better served by taking an MVC approach.

There are additional concerns when determining the appropriate development approach, including
the background and experience of the developers who will be doing the work and how much infor-
mation is being shown the same way on multiple pages.

18 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 18

Fortunately, with the advent of Visual Studio 2015 and ASP.NET 5.0 you no longer have to make an
either/or choice. With a little bit of maneuvering, you can create a project that uses both approaches
as necessary, enabling you to determine on a case-by-case basis which approach to use, instead of
using a site-by-site determination.

This case-by-case approach is used in the sample application, which uses both ASP.NET Web Forms
and ASP.NET MVC to solve various business problems presented.

USING VISUAL STUDIO 2015

Microsoft’s Visual Studio is the primary integrated development environment (IDE) used to cre-
ate ASP.NET sites and applications. The most recent version is Microsoft Visual Studio 2015,
which includes quite a few enhancements. There are also new versions of both C#, version 6.0, and
VB.NET, version 14. ASP.NET 5 is also an important release because it can now run on OS X and
Linux with Mono installed.

Mono is a software platform designed to enable developers to easily create cross-platform appli-
cations. It is an open-source implementation of Microsoft’s .NET Framework that runs on non-
Windows operating systems. This is a tremendous game changer; because until now, every ASP.NET
application, either Web Form or MVC, needed to be deployed to and run on a Microsoft Windows
server.

Versions
Several different versions of Visual Studio are available for web developers:

 ➤ Visual Studio Community Edition: A free version of Visual Studio that is designed to help
hobbyists, students, and other non-professional software developers build Microsoft-based
applications

 ➤ Visual Studio Web Developer Express: Another free version of Visual Studio, supporting only
the development of ASP.NET applications

 ➤ Visual Studio Professional Edition: A full IDE for use in creating solutions for the Web, desk-
top, server, cloud, and phone

 ➤ Visual Studio Test Professional Edition: Contains all the features of the Professional Edition,
with the capability to manage test plans and create virtual testing labs

 ➤ Visual Studio Premium Edition: Contains all the features of the Professional Editions with the
addition of architect-level functionality related to analyzing code and reporting on unit test-
ing and other advanced features

 ➤ Visual Studio Ultimate Edition: The most complete version of Visual Studio, including every-
thing needed for development, analysis, and software testing

Using Visual Studio 2015 ❘ 19

c01.indd 12/15/2015 Page 19

The sample application will use the Community Edition because it provides a complete Visual
Studio experience.

Downloading and Installing
Downloading and installing Visual Studio is straightforward. The following Try It Out takes you
through the various steps involved, from downloading the correct edition, to selecting appropriate
options, and completing the install.

TRY IT OUT Installing Visual Studio

 1. Go to http://www.visualstudio.com/products/visual-studio-community-vs. You will see
a site similar to what is shown in Figure 1-5.

FIGURE 1-5: Visual Studio site to download Community Edition

 2. Select the green Download button to run the installation program. Running the download will give
you the screen shown in Figure 1-6.

http://www.visualstudio.com/products/visual-studio-community-vs

20 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 20

FIGURE 1-6: Installation screen for Community Edition

 3. You can select the Custom radio button and see the screen as shown in Figure 1-7, or you can
choose Typical and start the installation process.

 4. Leave the default settings and click the Install button. You will likely get a User Account Control
acceptance box to which you must agree before continuing, after which the download and installa-
tion process begins. This may take a while. When the installation is completed you will see a win-
dow like the one shown in Figure 1-8. Once completed you may need to restart your computer.

 5. To launch the application, click the Launch button. This will bring you to the login screen shown
in Figure 1-9.

 6. For now, skip the login. This will bring up the Development Settings and Color Theme selection
screen shown in Figure 1-10.

Using Visual Studio 2015 ❘ 21

c01.indd 12/15/2015 Page 21

FIGURE 1-7: Select items to install

FIGURE 1-8: Setup Completed window

22 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 22

FIGURE 1-9: Login screen in Visual Studio

FIGURE 1-10: Initial confi guration of Visual Studio

The Sample Application ❘ 23

c01.indd 12/15/2015 Page 23

 7. Select the Web Development option, and whichever set of colors you prefer. After confi guring these
preferences, the application will open, as shown in Figure 1-11.

FIGURE 1-11: Start Page for Visual Studio

How It Works

You have completed installing Visual Studio. It is a relatively straightforward installation process, with
the only unusual aspect being that Visual Studio now gives you the opportunity to link your installa-
tion to an online profi le. This enables you to share source code repository information and some system
settings between different installations of Visual Studio

If you have not used Visual Studio before don’t worry; you will be spending a lot of time going through
it as you build the sample application.

THE SAMPLE APPLICATION

The best way to learn how to do something, such as build an Internet application, is simply to do it.
With this in mind, you will be building a real application as we go through each functional area of
ASP.NET. We will be developing an application called RentMyWrox that acts as a loaning library.

24 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 24

Because this app supports both ASP.NET Web Forms and ASP.NET MVC, there will be some dupli-
cation of code and/or effort to show critical features in both frameworks. For some functionality
you will be able to do this in two different pages; with other functionality you will have to replicate
the same functionality both ways, basically replacing one version with the other version.

 The requirements for this application are as follows:

 ➤ The site owner (administrator) can create a list of items that are available for rent or
borrowing.

 ➤ The items contain pictures and text.

 ➤ Users can create and register an account online that will give them secure access to the
application.

 ➤ Users can log in and select one to many items that they want to check out.

 ➤ The listing of items can be fi ltered.

 ➤ Users can complete their reservation through a type of checkout process.

These requirements will give you the opportunity to go over the design of the look and feel of the
website, getting and saving information in a database, and handling user account creation and
authentication using both ASP.NET Web Forms and MVC approaches.

SUMMARY

Microsoft has provided many different web application frameworks over the years. Before the
.NET Framework was introduced, there was an approach that provided the capability to incorpo-
rate HTML5 markup with business processing. This approach, now known as “Classic ASP,” was
innovative at the time and enabled developers to quickly and relatively easily build complex business
applications.

ASP.NET follows in those footsteps by providing developers with a framework on which to bal-
ance all development work. When ASP.NET was introduced, only a single development framework
was supported: ASP.NET Web Forms. This framework took a page-bound approach, tying together
a specifi c page and a resource name that would be called. There were two physical pages to each
resource page: one page containing the HTML markup that would be returned to the client, and
another page that provided all the processing. This allowed for a separation of concerns that Classic
ASP did not address.

However, after several years Microsoft released another framework: ASP.NET MVC. This approach
allows even more separation of concerns, and greatly enhances the capability to test the business
processing in an automated fashion. This is important because it dramatically increases confi dence
in the correctness of the code.

All of these frameworks are designed to do one single thing: provide HTML from the server to
a client. HTML is the language of the Internet—it incorporates the layout and markup of every-
thing that you would see on a web site. The creation of this HTML is primary. Obviously, other

Summary ❘ 25

c01.indd 12/15/2015 Page 25

processing is going on in the background, but every representation of this work back to the request-
ing client will be HTML.

EXERCISES

 1. What is the difference between HTML and HTTP?

 2. Why is ViewState important when you are working with ASP.NET Web Forms?

 3. What are the three different architectural components of ASP.NET MVC?

 4. What is Microsoft Visual Studio and what are we using it for in this book?

26 ❘ CHAPTER 1 GETTING STARTED WITH ASP.NET 6.0

c01.indd 12/15/2015 Page 26

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Attributes Extra information you can put in an HTML element that may change how
that element interacts with the browser or with the user.

Elements A section of HTML that defi nes a set of content. The elements defi ne
the content because there is an opening tag <p> and a closing tag </p>
around the content.

HTML Hypertext Markup Language, how content is identifi ed on the Internet so
that browsers know how to handle and display the information.

HTTP Hypertext Transfer Protocol, the defi nition that handles the request/
response behavior which delivers information from the client to the server
and back.

IDE Integrated development environment, a collection of tools and aids that
help developers build programs and applications.

MVC An architectural pattern that separates the responsibilities of a website
into three different components: models, views, and controllers. Each of
the sections takes responsibility for part of the process of building a user
interface.

Web Forms An approach to building web applications that is based on a page
approach, so each set of functionality is its own page, responsible for both
its rendering and business logic.

c02.indd 12/21/2015 Page 27

Building an Initial ASP.NET
Application

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The differences between web site projects and web application
projects in Visual Studio

 ➤ The project types available in Visual Studio and what they mean to
our sample application

 ➤ How to create a new ASP.NET site in Visual Studio

 ➤ File types and directory structures in both ASP.NET Web Forms
and MVC

 ➤ The differences between ASP.NET Web Forms and MVC

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the
chapter 02 download and individually named according to the names throughout the chapter.

Now that you have installed Visual Studio and have an understanding of the requirements
for the sample application, it’s time to get started building it. Visual Studio makes the creation
of the application shell (the initial directory structure and commonly used fi les) very straight-
forward if you are using either ASP.NET Web Forms or ASP.NET MVC. Creating a project
that enables you to do both, as we will do here, is not quite as easy because it is not a tradi-
tional approach. However, there is no better way to see the two different approaches than by
doing them side by side.

2

http://www.wrox.com/go/beginningaspnetforvisualstudio

28 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 28

This chapter covers the different aspects of each approach, ASP.NET Web Forms and MVC, includ-
ing fi le type and directory structure, as well as the differences that you will see as you work through
the two different frameworks. Finally, the chapter explains in detail how to make a project that sup-
ports both ASP.NET Web Forms and ASP.NET MVC.

CREATING WEBSITES WITH VISUAL STUDIO 2015

Visual Studio 2015 is a very powerful integrated development environment (IDE). You can develop
web applications, web services, mobile applications, and desktop applications with the same tool,
using the same designer interfaces and many of the same development approaches. Because of this
power, it is easy to make a misstep as you determine the approach that you want to take for design-
ing and building your application. Luckily, however, starting over again is as simple as deleting your
problem project and its directories.

Available Project Types
A project is Visual Studio’s way of identifying a different approach to building an application. A
project acts as a container for organizing source code fi les and other resources. It enables you to
manage the organization, building, debugging, testing, analysis, and deployment of your applica-
tion. A project fi le is either a .csproj or a .vbproj fi le and contains all the information necessary to
manage all of the preceding relationships. When creating a site that will be accessed online, you can
use two types of projects: web site and web application.

In Visual Studio, a web site project is treated differently than a web application project. Figure 2-1
shows how they are created differently.

FIGURE 2-1: Creating a project or web site

There are a lot more differences between the two approaches than how they are created, however, as
you will see in the following sections.

Web Site Project–Based Approach
The web site project is a less enterprise-type approach toward managing and deploying a web site. The
markup (.aspx) fi les are copied to the server and called during the request. The code-behind fi les are
compiled on the server and saved as temporary .dll fi les during the fi rst call to the server. This pro-
cess, where compilation is done during the execution of a program, at run time, rather than needing to

Creating Websites with Visual Studio 2015 ❘ 29

c02.indd 12/21/2015 Page 29

be done before the program is run, is called just-in-time compilation. There is no project fi le as part of
the project. Instead, each of the fi les and directories are treated individually.

As you can imagine, this makes it easy to work with a website. There are no special installations that
have to be run on the server; all you need to do to get the site running is to copy the entire folder to a
machine running Microsoft Internet Information Services (IIS). Adding and removing fi les from the
web site is as simple as removing them from the directory, although once they are removed from the
server they will not be reachable so it is important that any links to the page be edited as well!

However, this very fl exibility in approach comes with some limitations. The limitation that impacts
us the most for this project is that you cannot create an ASP.NET MVC application, because MVC
applications require full compilation. You can only create ASP.NET Web Forms and other projects
that do not require full compilation. Figure 2-2 shows the New Web Site dialog that appears after
selecting New ➪ Web Site from the menu.

FIGURE 2-2: Options when creating a new web site

While there are many different options when creating a web site, note that they do not include an
MVC application.

Web Application Project
Web applications are a much different approach to creating an application than web sites. The web
application treats the project more as a true application than a simple grouping of fi les. This means
that everything you may want to do with the site, such as adding an image fi le or other supporting
item, should be done using the IDE. You also have to compile the application before deployment.
While this requires a bit more work during the deployment phase, it also enables you to avoid deploy-
ing source code to the server. In addition, it speeds up the response time for your application, as your
users do not have to wait for the just-in-time compilation to occur before their content can be created.

Because ASP.NET web sites do not allow for the creation of an ASP.NET MVC site, and that is one
of the main requirements, you need to use a web application project as the approach to build your
application.

30 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 30

Creating a New Site
The fi rst step in creating the sample application is to create an appropriate project in Visual Studio.
By selecting File ➪ New Project you will get the New Project dialog shown in Figure 2-3.

FIGURE 2-3: Creating a new project in Visual Studio

Select the ASP.NET Web Application project type, give it your desired name, and select your pre-
ferred location to store the project fi les. By default, Visual Studio is confi gured to save your fi les
into directories under “My Documents.” You can also select the .NET Framework version that you
want to use in your application. Your fi lled-out screen should look something like what is shown in
Figure 2-3. Once you select the ASP.NET Web Application projects and click the OK button, you
will get the dialog shown in Figure 2-4, which shows the available templates from which you can
choose. This tells the IDE what type of ASP.NET project you wish to create.

Selecting one of these templates will create the appropriate fi le structure and most commonly used
fi les for that particular template. Each of these available templates is covered in detail in the follow-
ing sections.

While Creating a Project
There are several other sections of the New ASP.NET Project window that you need to know
because they impact the way the project is created. The template section is in the upper-left area of
the window. The upper-right area of the window contains the selection for the type of authentica-
tion that your application will support “out of the box.” The lower-left section of the window con-
tains settings for “folders and core reference fi les” and unit tests, while the lower-right corner of the
window allows you to manage deployment of your project to Microsoft Azure if you so desire.

Creating Websites with Visual Studio 2015 ❘ 31

c02.indd 12/21/2015 Page 31

FIGURE 2-4: Selecting the appropriate ASP.NET template

Authentication Options
Authentication is an important consideration for every application that you will build, which is why
it appears in the project creation window. As you likely know, authentication is the process of evalu-
ating whether or not users of your application are who they say they are. If your application needs to
be able to identify the user as a specifi c person, then the use of authentication is required. The most
common way to verify that a person is who they say they are is through the use of a username and
password. The username identifi es the user while the password confi rms that the person is who they
say they are.

NOTE You should always understand your authentication needs from the
very beginning. “Plugging in” security partway through the development
process can be problematic because it can easily lead to security holes in
your application due to missed retrofi tting. It is always easier to remove
security if you determine that you do not need it as you go forward than to
add it after development is underway.

The project templates have built-in support for four different settings for authentication, as shown
in Figure 2-5:

 ➤ No authentication

 ➤ Organization Accounts

32 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 32

 ➤ Individual User Accounts

 ➤ Windows Authentication

FIGURE 2-5: Authentication options for a new project

No authentication is pretty straightforward; it means that the application does not do any authen-
tication out of the box. This could be used for sites for which the individual user doesn’t matter—
such as an informational website or a product site that does not support online ordering, or sites for
which authentication will be handled differently than one of the built-in default approaches.

The Organization Accounts authentication option implies that you are using a third-party system to
handle authentication. These third-party systems are generally on-premise Active Directory, Active
Directory in the cloud (such as Microsoft Azure Active Directory), or Offi ce 365. Other approaches
are also supported if they follow some authentication standards.

Windows Authentication is a special feature only supported by Microsoft Internet Explorer. In this
approach to authorization, the browser includes a special user token that the server can use to deter-
mine and identify the requesting user. This eliminates any username/password requests. However, it
requires that the user has already logged into an Active Directory domain and that this information
is available to the browser. This is different from the Organization Accounts approach mentioned
previously, because that approach requires the user to enter a username and password that is then
authenticated against the network, whereas this approach simply sends along an identifi er and an
acknowledgment that the user has already been authenticated.

Individual User Accounts is the default authentication setting, used for those cases where you
need to determine who the user is and you do not want to use an Active Directory or Windows
Authentication approach. When using this approach, you can use a SQL Server database to manage
users, as well as other approaches, such as letting other systems (Windows Live or Facebook, for
example) handle authentication of the user. You will be using this setting for your project.

REFERENCE There is much more than this selection that goes into the con-
fi guration of security and authentication for a web application. Chapter 15,
“Security in Your ASP.NET Website,” covers application confi guration, but
there is still more! The server that you will use to host your application also
needs to be confi gured to ensure that it supports the same authentica-
tion approach that your application will be using. This aspect is covered in
Chapter 19, “Deploying Your Website.”

Creating Websites with Visual Studio 2015 ❘ 33

c02.indd 12/21/2015 Page 33

Folders, Core Reference Files, and Unit Tests
The lower-left section of the New ASP.NET Project window provides two different confi gura-
tion settings. The fi rst is a selection of the folders and core references that you want added during
creation of the new project. The options are Web Forms, MVC, and Web API. The items that will
already be checked vary according to which template you select; thus, if you chose an ASP.NET
MVC template, the MVC checkbox will already be selected. This section is shown in Figure 2-6.

FIGURE 2-6: Adding directories and unit tests

Adding additional folders and core reference fi les does just that; it creates the folder structure and
any default fi les, but it will not change any of the application creation from the template. For exam-
ple, if you use a Web Forms project but select to add MVC folders, all the MVC folders are created
for you, but they will have no content.

The other selection in this quadrant specifi es whether you want to create a Unit Test project. A unit
test is generally a way to test the smallest possible unit of functionality in a replicable, automated
manner—a check to ensure that a particular method or function works as expected. Unit testing
is the process of creating re-runnable tests that validate a particular subset of functionality. A Unit
Test project is a Visual Studio project that manages the creation, maintenance, and running of unit
tests. It enables a developer to run previously created unit tests against the application to ensure that
changes have not negatively impacted other parts of the application.

If you were creating a true line-of-business application, then creating a unit test project is impera-
tive. Unit tests give you assurance that your code is performing as expected by enabling you to pro-
vide known sets of data to parts of the application and then comparing the actual results from the
application to the previously identifi ed and expected results. This enables you to recognize when a
change that may be needed in one part of an application can break another part of the application.

NOTE Because the proper design and implementation of unit tests is a topic
warranting a book of its own, creating unit tests is not covered during our
building of the sample application. However, the fi nished sample applica-
tion available online includes unit tests, so you can see what they look like in
order to get an understanding or to see how unit testing can help enhance
the stability and correctness of your application.

Hosting Your Project in Microsoft Azure
Microsoft Azure enables you to deploy web sites into the cloud rather than directly onto servers
that you control. In this instance, it’s a cloud computing platform used to build, deploy, and manage

34 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 34

applications through a global network of Microsoft-managed data centers. Azure enables applica-
tions to be built using many different programming languages, tools, and frameworks, after which
they can be deployed into the cloud.

As part of the project creation process, you can specify whether you will be deploying your applica-
tion in Azure and confi gure how the deployment will be managed. Because we will not be deploying
our example application into Azure, you can leave this checkbox empty and not worry about enter-
ing any confi guration information.

Empty Template
An empty template creates just that, basically an empty directory compared to the other templates
that create a sample application. There are some base-supporting fi les added, as well as those items
you selected from the lower-left quadrant in the “Add folders and core references for” section.
When you choose the Empty template, none of the “Add Folders” options are selected by default.

The outcome of not selecting any of these options becomes obvious pretty quickly. Figure 2-7 shows
how an empty template creates a project with no folder and only a single fi le, the confi guration fi le,
“Web.config.”

FIGURE 2-7: Creating a project using the Empty template

This is an empty template because no content is created. Attempting to view the output in a browser
will result in an error, as there is nothing to display to the user.

PROPERTIES AND REFERENCES

Two additional items appear to be part of the project created from an empty tem-
plate: Properties and References. These two items play special roles in a project.
The Properties item has a wrench icon and is used to maintain information about
the project, such as the version numbers for the .dll. This won’t be part of our
sample application.

The References section is different in that it contains all of the other libraries that
your application uses. Figure 2-8 shows an expanded version of this item.

Creating Websites with Visual Studio 2015 ❘ 35

c02.indd 12/21/2015 Page 35

FIGURE 2-8: References created for an empty template

Although there are no working fi les created in this template, there are already some
references. That’s because all of ASP.NET is based on different areas of the .NET
Framework. Each of the items shown in Figure 2-8 references a specifi c subset of
functionality that the project assumes you need to build even the simplest of web
applications. As you look through the various namespaces that are listed, these
assumptions begin to make sense, as items such as Microsoft.CSharp (for C# proj-
ects) or System.Web will play a role in successfully building your application.

Web Forms Template
The Web Forms template creates a web site project with a few sample fi les so that you can get an
initial start on your project. Some of the functionality that is added through this template includes
user registration and the capability to log in to the application. These are some of the more complex
parts of a web application, yet the template is created with this already working out of the box.
Shown in Figure 2-9, this working application contains information about using ASP.NET and con-
tains pages for Home, or default, About, and Contact.

The pages listed as menu items are all created as starter pages so that you can get an understanding
of how applications of this type are built, especially when using authentication, which involves com-
plex confi guration.

36 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 36

FIGURE 2-9: Running a newly created default Web Forms project

MVC Template
The MVC template takes the same approach as the Web Forms template by creating a small set of
functionality, including the capability for a user to create an account and then log into the applica-
tion. It contains the same Home page, About page, and a stubbed-in, empty Contact page as the
Web Forms template. The look of the application when running is even identical, but the directory
and fi le structures are completely different. We will cover more of the specifi c differences later in
this chapter. When running the output of this template, however, you will see an application that is
indistinguishable from that shown in Figure 2-9.

Web API Template
The Web API is an approach to developing RESTful web services that is based off of ASP.NET
MVC; it was initially called ASP.NET MVC Web API. The conventions that it follows and the way
that it is built will be very familiar to ASP.NET MVC developers. Once you complete the sample
application you will also understand how you would write a Web API application.

Web services have become much more important in the Internet, as they enable two machines to
communicate online. It follows the HTTP approach whereby one machine requests a resource from
another through a well-defi ned locator, or URL. Whereas a user’s browser would most likely ask
for, and get, an HTML fi le, a web service will instead return information. Asking a web site for
information about a product may return a nicely formatted HTML fi le with a picture, and perhaps
other ancillary information about that product such as ratings. However, the web services would
just return you any data about that product, formatted as either an XML or json fi le. These two for-
matting types are covered in more detail in Chapter 13, “ASP.NET AJAX.”

Creating Websites with Visual Studio 2015 ❘ 37

c02.indd 12/21/2015 Page 37

RESTful web services are those web services that follow the representational state transfer (REST)
architectural style to provide information over the Web. This style is highly representative of the
HTTP process as mentioned earlier—including the HTTP verbs. The use of services in the sample
application is covered in Chapter 13.

Although the concept of REST services means that there are no HTML fi les supporting them, this
template does create two pages: a home page and an API Help page. The API Help page is the start
of documentation for the types of information that your web service will understand and work with.
Figure 2-10 shows the default API Help page.

FIGURE 2-10: API Help page in a Web API project

While you will not be directly working with a Web API project as part of the sample application,
there are a lot of similarities between the project and some of what you will be doing with services
later as you build the sample application.

Single Page Application Template
Unlike the standard MVC and Web Forms approach, the Single Page Application template takes
a different approach to building a web application. Rather than have different views and/or web
pages, it is instead a single web page with the goal of providing a more fl uid user experience akin to
a desktop application. This means that there is one initial download of HTML and JavaScript fi les
and then the application runs in that single page, fetching information and re-displaying either data
or parts of the screen, sometimes even the entire visual screen as necessary.

The single-page approach means that most of the work is done either on the client, where the data
is fetched from the server and then parsed through a client-side template, or on the server, where
complete HTML-formatted snippets are returned to the client and replace various sections of the

38 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 38

loaded page as necessary. The key difference is that the entire page is never called from the server
again, only portions of the page are called. This eliminates several traditional problems: the fl icker
of a page in the web browser as it is completely replaced in memory by the newly downloaded page,
the obviousness of waiting for an entire page to travel both ways to and from the server, and the
necessity of moving all of the data both ways, thus requiring lower bandwidth and offering higher
performance.

This approach takes advantage of the AJAX (Asynchronous JavaScript And XML) approach to use
client code to call web services for information. Chapter 13 covers the use of AJAX in a web appli-
cation. Creating a single-page application is an extension of that approach. In most cases, a single-
page application will be working with RESTful services to get the data that needs to be displayed.

Azure Mobile Service Template
This project template is specifi cally for creating a Web API–based backend for Microsoft Azure
Mobile Services. There are many different aspects to Azure, with one of them being their Mobile
Services offering, which enables a developer to host a .NET or node.js (JavaScript on the server)
backend to provide data to mobile consumers. Although mobile development is a rapidly growing
development area, the sample app does not use this template.

WORKING WITH FILES IN YOUR APPLICATION

Just as in all other work on a Microsoft Windows computer, all of the work that you will do comes
down to the individual fi les and the roles they play in the overall construct that is your web appli-
cation. Because we are taking the web application approach rather than the web site approach to
building an ASP.NET application, each of the fi les that the sample project uses will be either com-
piled into a single .dll fi le or copied over as a separate fi le to the web site.

Anything having to do with the server-side work is compiled into the .dll fi le. Anything that is
going to be sent to the client, such as an image, JavaScript, or CSS fi les, is left intact and copied to
the output folder on the server. This enables changes in design and client-side functionality to occur
without having to do a complete web site deployment if so desired.

Because Web Forms and MVC each have a different implementation pattern there are different fi le
types for each, stored in somewhat different folder structures.

File Types of an ASP.NET MVC Application
An ASP.NET MVC application is an implementation of the MVC pattern, or model, view, con-
troller. This means that there will be three different types of fi les in the project to support this
approach—one that will support the view, one that will support the model, and one that will sup-
port the controller. It will also contain supporting fi les that will be used for various other purposes
such as confi guration and client-side support.

Working with Files in Your Application ❘ 39

c02.indd 12/21/2015 Page 39

The main fi le types for a basic MVC application are shown in Table 2-1.

TABLE 2-1: ASP.NET MVC File Types

FILE TYPE FILE EXTENSION(S) DESCRIPTION

View fi le .vbhtml

.cshtml
Used for creating the HTML output that makes up
the view portion of the MVC application

JavaScript fi le .js JavaScript fi le that the browser uses to manage
execution of code on the client side

Code fi le .vb

.cs
Anything that is compiled, executes and runs; both
models and controllers are stored as code fi les
within the project

Style sheet .css Gives the browser instructions on how to style the
appearance of the web page

Confi guration fi le .config Contains confi guration information that is used by
the application, such as a database confi guration
string, shown later

Application event fi le .asax Used by Microsoft IIS web server to handle appli-
cation and session-level events such as creating
routes

Web fi le .html A static web fi le that does not do any server-side
processing yet presents HTML to the browser for
rendering

Each of the fi les has a different kind of content. You can tell the type of fi le from both the extension
and the content. A view fi le, for example, will have content that looks like the code in Listing 2-1.

LISTING 2-1: Example of the content for the Account/Register.cshtml file

@model WebApplication3.Models.RegisterViewModel
@{
 ViewBag.Title = "Register";
}

<h2>@ViewBag.Title.</h2>

@using (Html.BeginForm("Register", "Account", FormMethod.Post,

continues

40 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 40

 new { @class = "form- horizontal", role = "form" }))
{
 @Html.AntiForgeryToken()
 <h4>Create a new account.</h4>
 <hr />
 @Html.ValidationSummary("", new { @class = "text-danger" })
 <div class="form-group">
 @Html.LabelFor(m => m.Email, new { @class = "col-md-2 control-label" })
 <div class="col-md-10">
 @Html.TextBoxFor(m => m.Email, new { @class = "form-control" })
 </div>
 </div>

The HTML elements covered in Chapter 1, such as <h4> and <div>, should be somewhat familiar.
Several different elements in there, however, are not HTML. Those are Razor commands, which
you will spend a lot of time learning about going forward.

Another type of fi le created in the ASP.NET MVC application is the code fi le. Listing 2-2 shows an
example of C# code from one of the controller fi les. None of the context in the fi le will be familiar
to you yet, but by the end of the sample application you will have created controllers very similar to
the example.

LISTING 2-2: Example of code from the Controller/AccountController

[HttpPost]
[AllowAnonymous]
[ValidateAntiForgeryToken]
public async Task<ActionResult> Register(RegisterViewModel model)
{
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser { UserName = model.Email,
 Email = model.Email };
 var result = await UserManager.CreateAsync(user, model.Password);
 if (result.Succeeded)
 {
 await SignInManager.SignInAsync(user, isPersistent:false,
 rememberBrowser:false);

 // For more information on how to enable account confirmation and password
 // reset please visit http://go.microsoft.com/fwlink/?LinkID=320771
 // Send an email with this link
 // string code = await UserManager.GenerateEmailConfirmationTokenAsync(user.Id);
 // var callbackUrl = Url.Action("ConfirmEmail", "Account",
 // new { userId = user.Id, code = code }, protocol: Request.Url.Scheme);
 // await UserManager.SendEmailAsync(user.Id, "Confirm your account",
 // "Please confirm your account by clicking <a href=\"" + callbackUrl +
 // "\">here");

LISTING 2-1 (continued)

Working with Files in Your Application ❘ 41

c02.indd 12/21/2015 Page 41

 return RedirectToAction("Index", "Home");
 }
 AddErrors(result);
 }

 // If we got this far, something failed, redisplay form
 return View(model);
}

The rest of the fi les have their own specifi c internal design because they play very specifi c roles in
the building and running of a web application. This specifi city means that most of them are copied
to the server as individual fi les so that they can be directly downloaded to the user’s browser as
required.

File System Structure of an ASP.NET MVC Application
When creating an ASP.NET application, some folders are created for both MVC and ASP.NET
applications. These folders are listed in Table 2-2.

TABLE 2-2: ASP.NET General Folders

FOLDER DESCRIPTION

App_
Data

A folder used for data storage. It generally holds any SQL Server .mdf fi le that may be
used in the web application. This is covered in more detail in Chapter 10, “Working
with Data—Advanced Topics.”

App_
Start

The App_Start folder contains many of the confi guration fi les used by the application.
You will learn more about the different fi les throughout the book, as they are related
with behaviors such as bundling JavaScript fi les, authentication, and URL construction
or routing.

Content The content directory is designed to hold items that will be sent to the client. By
default, the Cascading Style Sheets (CSS) created as part of the initial application
templates are stored there.

Fonts This directory holds some of the glyph-fonts used in the default application. Normally
you probably won’t be using fonts like this, but you do have the capability.

Models The Models folder is used to hold the models that were created as part of the tem-
plate process. The models that are added as part of the project creation process are
all related to authentication.

Scripts This folder is used to store the JavaScript fi les that are sent to the client’s browser to
perform client-side processing.

When you create an ASP.NET MVC from the template, the folders shown in Figure 2-11 are also
created as part of the process.

42 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 42

FIGURE 2-11: Installed folders with ASP.NET MVC

The extra folders added as part of the MVC template are for the views and controllers. You have
already taken a brief look at how views and controllers fi t into the framework, so now you’ll take
your fi rst look at how these all come together in the template application.

Figure 2-12 shows the expanded folders for Controllers and Views. You should be able to see some
similarities between the two, mainly in terms of how the different controller fi les have a correspond-
ing view sub-folder that is named the same as the Controller fi le, without the text “controller” at the
end. There’s a views folder rather than a single fi le, as with the Controller, because each views folder
generally contains multiple fi les.

FIGURE 2-12: Details under the Controllers and Views folders

If you look at the names of the fi les in the Account sub-folder, you will be able to identify a pattern
whereby each fi le represents an aspect of user account management, from registration, as shown by
Register.cshtml, to logging in, as shown by Login.cshtml, to handling a forgotten password,
ForgotPassword.cshtml, to resetting a password and getting a confi rmation that your password
was reset, ResetPassword.cshtml and ResetPasswordConfirmation.cshtml.

Working with Files in Your Application ❘ 43

c02.indd 12/21/2015 Page 43

All of the folders covered so far are folders created by default when adding a project from the ASP
.NET MVC template. When you look at an ASP.NET Web Forms structure, you will see that it
matches the directories listed in Table 2-2. This initially may seem surprising, but the approach
when building a web application with Web Forms is different because the template and processing
fi les go together, not like in an MVC application where they are separated into different directories.

File Types of an ASP.NET Web Forms Application
There are some shared fi le types between ASP.NET MVC and Web Form projects. Table 2-3 pro-
vides a list of the common fi le types in an ASP.NET Web Forms project.

TABLE 2-3: File Types of an ASP.NET Web Forms Application

FILE TYPE FILE EXTENSION(S) DESCRIPTION

Web Form page .aspx The individual pages that are viewed by your users

Web User Control .ascx A set of fi les that act as a single part of the UI; a
user control is a set of reusable application parts

Code-behind .aspx.cs/.vb or
 ascx.cd/.vb

The page that contains the processing code; the
.aspx and .ascx fi les contain the markup, and its
corresponding .cs or .vb fi les contain the code
that manages the processing

Master page .master Enables you to create a template that is used for
multiple pages, such as the navigation structure

Style sheet .css Gives you the capability to style and design your
application

HTML fi le .html HTML page within the application

Confi guration fi le .config Contains information that the application uses to
perform other work

SiteMap .sitemap Contains an XML listing of the fi les in your
application

JavaScript fi le .js Contains JavaScript that can be run on the client’s
computer; this is identical to the JavaScript fi les in
the MVC application

Skin fi le .skin Holds design information for some of the ASP.NET
controls that you may use in your application

The only fi le types that are the same are the confi guration fi les, .config, and the fi les that are sent
to the client side, the .html, .js, and .css fi les. The confi guration fi les, as you saw when you were
looking at the structure created when creating a project using the “empty template,” are a default,

44 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 44

and included with every ASP.NET application. This is because Microsoft IIS, the web server, uses
the confi guration fi les to determine how it needs to manage the web application.

The fi les that are sent to the client side are the same because that is how the client is expecting
them. Your HTML page tells the browser which fi le it needs to fetch based on different aspects,
such as styling or scripting, so you are not required to use a .js extension for your JavaScript fi les.
However, using the appropriate extension is the standard approach and will make the content of
the fi le more obvious to other developers. An extension of .js clearly identifi es the content as being
JavaScript.

Just as you can tell the type of MVC fi le both by the extension and by the content, you can
do the same with the ASP.NET Web Form fi les. As you look at the following code listings, think
about the similarities and differences between the samples shown previously and these, starting
with Listing 2-3.

LISTING 2-3: Register.aspx code snippet

<%@ Page Title="Register" Language="C#" MasterPageFile="~/Site.Master"
 AutoEventWireup="true" CodeBehind="Register.aspx.cs"
 Inherits="WebFormsTemplate.Account.Register" %>

 <asp:Content runat="server" ID="BodyContent"
 ContentPlaceHolderID="MainContent">
 <h2><%: Title %>.</h2>
 <p class="text-danger">
 <asp:Literal runat="server" ID="ErrorMessage" />
 </p>

 <div class="form-horizontal">
 <h4>Create a new account</h4>
 <hr />
 <asp:ValidationSummary runat="server" CssClass="text-danger" />
 <div class="form-group">
 <asp:Label runat="server" AssociatedControlID="Email"
 CssClass="col-md-2 control-label">Email</asp:Label>
 <div class="col-md-10">
 <asp:TextBox runat="server" ID="Email" CssClass="form-control"
 TextMode="Email" />
 <asp:RequiredFieldValidator runat="server"
 ControlToValidate="Email" CssClass="text-danger"
 ErrorMessage="The email field is required."/>
 </div>
 </div>
 <div class="form-group">
 <asp:Label runat="server" AssociatedControlID="Password"
 CssClass="col-md-2 control-label">
 Password
 </asp:Label>
 <div class="col-md-10">
 <asp:TextBox runat="server" ID="Password" TextMode="Password"
 CssClass="form-control" />
 <asp:RequiredFieldValidator runat="server"
 ControlToValidate="Password" CssClass="text-danger"

Working with Files in Your Application ❘ 45

c02.indd 12/21/2015 Page 45

 ErrorMessage="The password field is required." />
 </div>
 </div>
…

Again, you can see HTML elements in this fi le so you know that it contains the markup, the begin-
ning of the information that will be sent to the user’s browser. Listing 2-4 shows a snippet of the
code-behind fi le.

LISTING 2-4: Snippet from the Registration.aspx.cs code-behind fi le

using System;
using System.Linq;
using System.Web;
using System.Web.UI;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Owin;
using WebFormsTemplate.Models;

namespace WebFormsTemplate.Account
{
 public partial class Register : Page
 {
 protected void CreateUser_Click(object sender, EventArgs e)
 {
 var manager = Context.GetOwinContext()
 .GetUserManager<ApplicationUserManager>();
 var signInManager = Context.GetOwinContext()
 .Get<ApplicationSignInManager>();
 var user = new ApplicationUser()
 {
 UserName = Email.Text,
 Email = Email.Text
 };
 IdentityResult result = manager.Create(user, Password.Text);
 if (result.Succeeded)
 {

 // For more information on how to enable account confirmation and
 // password reset please visit
 // http://go.microsoft.com/fwlink/?LinkID=320771
 //string code = manager.GenerateEmailConfirmationToken(user.Id);
 //string callbackUrl = IdentityHelper
 // .GetUserConfirmationRedirectUrl(code, user.Id, Request);
 // manager.SendEmail(user.Id, "Confirm your account",
 // "Please confirm your account by clicking
 // here.");
 }
 }
}

46 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 46

Listing 2-4 is pure C# code. There is no HTML in it, so it is obvious that it is the processing portion
of the fi le. While these are different fi les, playing completely different roles, they work together to
create a single HTML fi le that is returned from the server to the user.

MVC AND WEB FORM FILE DIFFERENCES

When you look at the prior code listings, you may be struck more by their similarities than their
differences. Yes, the contents of each fi le look somewhat different, but in the end you have two
examples for each approach: one containing markup and the other containing the processing code.
Therefore, conceptually, the approaches are very similar. The primary difference between the two
approaches is not how the fi les are built, but how they are assembled.

ASP.NET Web Forms makes a very fi rm linkage between the markup fi le and the applicable pro-
cessing fi le. You can tell by looking at them that they are related; Visual Studio even shows them
together in the Solution Explorer. ASP.NET MVC is different. There is no automatic one-to-one
relationship between the fi les. Instead, as shown by Figure 2-13, there are multiple View fi les to a
single Controller fi le approach. In this case, there are 12 separate View fi les that all relate to a single
fi le, the AccountController.

FIGURE 2-13: Relationship between View fi les and Controller fi les in an ASP.NET MVC application

The one thing that we haven’t yet covered is the model, the “M” part of the MVC architectural
pattern. That’s because it is not a new concept. While the MVC pattern calls out the model as a
separate entity, a well-architected Web Forms application embodies the same concept. This is dem-
onstrated by how the Model directory was created for both the ASP.NET MVC template application
and the ASP.NET Web Forms template application.

Looking back at the multiple View fi les for a single Controller fi le shows the primary difference
between the two approaches. Whereas Figure 2-13 shows that 13 fi les are part of the account

Creating the Sample Application ❘ 47

c02.indd 12/21/2015 Page 47

management process in ASP.NET MVC, 12 View fi les and one Controller fi le, when you look at
the same set of functionality in ASP.NET Web Forms, you see something different, as shown in
Figure 2-14.

FIGURE 2-14: Account management functionality in Web Forms

In this case, you see at least 15 fi les listed in Solution Explorer. Also, because each of the fi les is
actually the combination of .aspx and .aspx.cs fi les, there are 30 fi les in the directory that man-
age the same processes supported by the 13 fi les in the MVC system. That demonstrates the main
difference between the two—the complete separation between processing and view. Yes, ASP.NET
Web Forms provide some separation, but there is always the expectation of a linked processing fi le.
MVC takes a much more fl exible and better separated approach.

CREATING THE SAMPLE APPLICATION

So far, you have learned about various templates that are available when you create a new applica-
tion, but not how you’re going to start the application. What you do know:

 ➤ You want to support both ASP.NET MVC and ASP.NET Web Forms in the same
application.

 ➤ The ASP.NET Web Forms list of directories is a subset of the directories created by the ASP
.NET MVC template.

 ➤ ASP.NET Web Forms does not have a convention whereby separate folders are created.

Looking at these various points, it would seem to make the most sense to create the sample applica-
tion using the ASP.NET MVC template, because that provides everything that you need. Go ahead
and create the initial shell of the application by using the MVC template. You should also select the

48 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 48

Web Forms additional directory checkbox. Making this change doesn’t add any additional folders or
fi les, but it does add the necessary references for both ASP.NET MVC and Web Forms. The follow-
ing Try It Out walks you through the steps of creating the project.

TRY IT OUT Creating the Initial Project

 1. Open Visual Studio and select the File ➪ New ➪ Project menu item.

 2. In the template section on the left-hand side of the screen, select the language that you want to
work in (Visual Basic or C#). Then, in the Web listing, select the ASP.NET Web Application proj-
ect template. Your window should look something like Figure 2-15. Be sure you give it the appro-
priate name at the bottom of the window.

FIGURE 2-15: Creating your initial project

 3. Select the MVC template, also ensuring that you check the box labeled Web Forms under the “Add
folders and core references for:” section. Click the OK button to create the project.

 4. Clicking the green arrow in the Visual Studio toolbar will compile this initial template and run it in
the browser listed next to the arrow. The page that is displayed should look like Figure 2-9, shown
earlier.

How It Works

The preceding process uses a Visual Studio feature called ASP.NET scaffolding. Visual Studio uses a
set of templates to generate code fi les and build new content. You will see that the project name and the
layout of the folder structure is based on information that you entered during the simple setup process.

Summary ❘ 49

c02.indd 12/21/2015 Page 49

If you look closer at the folders that are created, you will see that they include a set of views and con-
trollers, as well as a model. Many of these views and controllers are there to support the user and
account management process, some of which will be used out of the box for the application.

Some of the other views simply provide example information. Many of these will be replaced by your
own content as you build your application. These initially built fi les will remain; you just change them
to better suit your needs.

You were easily able to open the site in the browser by clicking the green arrow. However, you didn’t
do anything to “install” the application on a web server. This worked because Visual Studio installs a
local version of Microsoft Internet Information Services Express (IIS Express). IIS Express is a small,
lightweight web server that is suitable for running your application so that you can interact with it at
runtime. Because IIS Express is running locally, you can do some very useful things such as debugging
and tracing. If your web project is still running, you should be able to see an icon for IIS Express in the
notifi cation area of your Windows taskbar.

SUMMARY

Visual Studio and ASP.NET provide two different approaches to building ASP.NET applications. The
fi rst is through the use of a web site. A web site approach enables you to create an application that’s
easy to manage and deploy. It is handled differently during the deployment of the site because the
fi les only need to be copied to the server, which then compiles the code-behind fi les as required. This
makes the deployment process very straightforward. Unfortunately, this approach is only available
for ASP.NET Web Form applications. You cannot create an MVC application as a web site.

The web application takes a more traditional application-based approach in that it requires that the
application be compiled before being copied to the server. The large number of templates that are
available in Visual Studio when you want to create an ASP.NET web application project indicates
how popular web development is within the Microsoft development community.

The two templates that matter for the sample application are the ASP.NET MVC and the ASP.NET
Web Forms templates. Both create an initial application that looks and works identically although
they are built completely differently. Web Form fi les come in sets, with a markup fi le and a process-
ing fi le, whereas MVC fi les come with Views and Controllers fi les.

EXERCISES

 1. There are two approaches in Visual Studio to creating a web-based application. What are
they, and what are their main differences?

 2. What is a project template?

 3. Compared to an ASP.NET Web Forms project, several extra folders are created in an ASP.NET
MVC project. What are these extra folders and what purpose do they serve?

50 ❘ CHAPTER 2 BUILDING AN INITIAL ASP.NET APPLICATION

c02.indd 12/21/2015 Page 50

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Code File Types Files that are created during the ASP.NET MVC project creation process
with .vb or .cs fi le extensions are code fi les. These fi les are either the
Controller or the Model fi les; you can tell which is which by the fi le fi lters
that the code fi les are in.

MVC Template The MVC Project template is used to create an ASP.NET MVC project.
Depending upon choices made during the creation process, the template
may create some base pages as well as integrate authentication into the
project.

Project Types Project types are how Visual Studio defi nes the type of output that will be
created when a project is created. This output then determines what the
project will look like when it is compiled, such as a web application, a desk-
top application, web services, or many other different types.

View File Types The fi le extensions for views in an ASP.NET MVC application are .vbhtml
and .cshtml. These contain the HTML that will eventually be sent to the
client.

Web Application A web application project is one that is accessible over the Internet. Code
fi les are compiled and deployed to the server where Microsoft Internet
Information Services (IIS) takes server requests calls and creates HTML con-
tent to respond to the user.

Web Form
Template

A project template that is used to create an ASP.NET Web Forms applica-
tion. Depending upon choices made during the creation process, the tem-
plate may create some base pages as well as integrate authentication into
the project.

Web Site A web site project is an approach to creating a set of fi les that can be cop-
ied to a web server to provide Internet content. The source fi les are copied
to the server, where IIS compiles them just before making the method call.

c03.indd 12/15/2015 Page 51

Designing Your Web Pages
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How HTML and CSS work together

 ➤ Using CSS to add a design

 ➤ Adding and referencing CSS in your pages

 ➤ How to best manage styles

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the
chapter 03 download and individually named according to the names throughout the chapter.

In many ways, modern websites are quite similar, regardless of their purpose. They tend to
be functional, responsive, and attractive. Having a website that looks good is as important to
getting and retaining visitors as the site’s functionality. Very few sites can minimize the design
elements and remain effective. However, all sites—regardless of content, design approach,
and business needs—provide the same type of information to the user, who downloads one
or more HTML documents, some styling information, and perhaps some imagery and even
videos.

This chapter covers how all these aspects of a site come together, especially HTML and
 styling information, otherwise known as CSS. You won’t become a design expert, but you will
become familiar with CSS and learn how you can take advantage of Visual Studio tools to
make working with CSS easier. You also work out the overall design of the sample application
and review the strategies available to build a style dictionary.

3

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

52 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 52

HTML AND CSS

Chapter 1 talked about HTML and explains how it is the default language of the Internet, designed
to provide context to content—especially with HTML5, the newest version. Earlier versions of
HTML supported some styling-specifi c elements that allowed for some control over presentation on
the screen. For example, there was an element for controlling the size, color, and font face of text
contained within the element called font:

 I am large purple text

While these kinds of tags give you some ability to control the look and feel of your page, they have
one major limiting feature: They are all embedded in the HTML and are not fl exible. For example,
suppose you wanted to change all the “large purple text” to “medium-size orange text.” You would
have to manually edit every page that used it, changing each instance. This means that even a
relatively minor change in design can be both time-consuming and risky, because every page may
require some changes. This is why CSS was born; it provides a more robust and powerful way of
managing design.

Why Use Both HTML and CSS?
HTML is the language of the markup, and that is what it does best. HTML does a great job of
helping you identify, delineate, and markup content, but it does little about controlling the appear-
ance of the content. You can confi rm this yourself with Figure 3-1, which shows the browser’s
rendition of the traditional HTML shown in Listing 3-1.

LISTING 3-1: HTML for a simple web page

<!DOCTYPE html>
<html>
 <head>
 <title>Beginning ASP.NET Web Forms and MVC</title>
 </head>
 <body>
 <article>
 <header>
 <h1>ASP.NET from Wrox</h1>
 </header>
 <section>
 <h2>ASP.NET Web Forms</h2>
 <p>More than a decade of experience and reliability.</p>

 Lots of provided controls
 Thousands of examples available online

 </section>
 </article>
 <form>
 <p>
 Enter your email to sign up:

HTML and CSS ❘ 53

c03.indd 12/15/2015 Page 53

 <input type='text' name='emailaddress'>
 </p>
 <input type='submit' value='Save Email' class='button'>
 </form>
 </body>
</html>

As you can see in the fi gure, virtually no styling is applied to the content. Some default fonts are
selected, and different levels of headings provide different font sizes, but everything is shown as a
plain black font on a plain white background.

FIGURE 3-1: HTML without any CSS styling

CSS enables you to exert much better control over the presentation of your content. Simply adding
21 lines of CSS code (including whitespace) results in something considerably different, although
you won't see the full effect in Figure 3-2, because it doesn't show the color you added. The CSS
code to achieve this, shown in Listing 3-2, is added right below the opening <body> tag.

LISTING 3-2: Styles added to the HTML fi le

<style type="text/css">
 header {
 background:gold;
 }
 body {
 background:#F5EAA6;
 margin-top:0px;
 font:1.2em Futura, sans-serif;
 }
 ul {
 color: red;
 }
 ol {
 color: green;
 }
 .button {
 border: 1px solid #006;
 background: Green;
 color: white;
 }
</style>

54 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 54

Granted, this page may not be attractive yet, but it effectively demonstrate how a small amount of
CSS can alter the appearance of a page, and how this styling differs from the old HTML approach
to styling.

FIGURE 3-2: HTML with some simple styles added

You will go over this in much greater detail later in this chapter, but the styling code in Listing 3-2 does
two things. First, it sets the default look for every body, header, , and element on the page.
Second, it sets the look for a particular style called “button.” Consider the level of control this gives
you over the element mentioned earlier. Instead of having to fi nd and change every one of the
affected elements, you can instead change one instance and have it affect, or cascade to, every applicable
element. CSS provides an elegant way to abstract out the control of the look and feel of your website.

ABSTRACTION

Abstraction is a technique that allows you to control more complex systems. It
enables you to create a version of that system that is usually simpler and easier to
control and maintain. Just as everything in VB.NET or C# is an abstraction of the
work being done deeper in the system (you do not have to worry about copying the
contents of one section of memory to another), CSS is an abstraction that gives you
control of each page element, enabling you to make one change, in one place, and
have it affect the entire site without additional risk.

Combining HTML and CSS allows you to separate the content from its display. Just as Web
Forms and ASP.NET MVC both offer some separation of concerns in terms of displaying the
information and creating the information, CSS and HTML enable you to separate the defi nition
and display of the content on the page; it basically provides an additional separation of concern
within the UI itself. In other words, whereas HTML tells the browser what it should display, CSS
defi nes how it should be displayed.

An Introduction to CSS
If you look at CSS as a separate language, you will fi nd that it is relatively easy to learn; each of the
concepts by itself is pretty straightforward and clear. However, what becomes more complex is how
the language elements may interact with each other and how to best use a particular approach to
solve a specifi c problem.

HTML and CSS ❘ 55

c03.indd 12/15/2015 Page 55

We’ll start by having you add some styling to the website. In the following Try It Out, you add a
new page to the site and then add some content and styling to that page. You will learn about the
different aspects of what you are doing as you go through the process.

TRY IT OUT Styling Your First Web Page

In this example you create a new page and then enter some CSS code by hand so that you can see how
it affects the appearance of your content. The CSS tools included in Visual Studio are introduced later
in the chapter.

 1. Open the web application project that you created in the last chapter. Select the project within the
Solution Explorer window. Add a new Web Form page from the top menu by selecting Project ➪
Add New Item. Select Web Form and name the fi le IntroToCss.aspx. This exercise uses a Web
Form page because it is a lot easier to see immediate results. The overall process of styling content
is identical for both MVC views and Web Form pages. Creating this page creates code that looks
like what is shown in Figure 3-3.

FIGURE 3-3: New ASP.NET Web Form fi le

 2. Locate the closing head element </head> and press the Enter key right before it to add a blank line.
If you begin by typing in the <st for the style element, the Visual Studio IntelliSense feature will
automatically provide some help by popping up a dropdown menu of available elements. By the
time you complete the “t” you should only have “style” available. Clicking the Tab key will cause
IntelliSense to fi nish the text for the initial tag. Entering the closing bracket > will cause IntelliSense
to close the element for you.

INTELLISENSE IS YOUR FRIEND!

IntelliSense is a Visual Studio feature designed to improve your productivity. Its pri-
mary feature is AutoComplete, whereby IntelliSense examines the context of what
you have entered and is able to “guess” what you are trying to type, whether it is
Visual Basic, C#, or HTML code. While this may negatively impact your ability
to remember the names of classes, methods, or parameters outside of IntelliSense,
it gives you rapid access to all the code support information you need right in the
development environment, as you are writing the code.

56 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 56

 3. Type the following code in between the style elements that you just added:

body {
 color: orange;
 font-size: 20px;
 font-weight: 800;
}

 4. Ensure that you are in Split mode, where you can see both
Design and Source modes in Visual Studio. Most likely you are
currently in Source mode. Click the Split button on the bottom
of the page in the right-hand side of the window to switch the
window to the multiple mode window as shown in Figure 3-4.

IDE VIEWS OF WEB FORMS IN VISUAL STUDIO

Two different views are available when working within an .ASPX page: Design
mode and Source mode. In Source mode, you can see and edit the code on the
page—in this case, the HTML and CSS style you are working on. Design mode
shows how the code is going to be rendered and displayed by the user’s browser.
Split mode enables you to see both Design mode and Source mode at once. As you
change information or content in one area, you may be prompted to refresh to see
it in the other. Running in Split mode enables you to see how the output changes as
you make your changes in Source mode.

 5. Once you are in Split mode, enter some text directly below the
<body> tag and then refresh the Design mode. You will be able
to see both your code and the rendered version of the text you
entered. It should look something like Figure 3-5.

 6. In Step 2 you added some default settings for all text that is
entered into the HTML body. Now you will expand the style
for the body section by including a colored background. In the
styles area you created, add the following line:

background-color: lightblue;

Refreshing your Design mode view will show that the back-
ground color has changed. Also, note how IntelliSense helped
you select the appropriate value!

 7. Create another style by adding the following code right below
the closing bracket of the body style:

h1 {
 color: red;

FIGURE 3-4: Selecting Split mode
displays both design and source
code information.

FIGURE 3-5: Code window with
display of text

HTML and CSS ❘ 57

c03.indd 12/15/2015 Page 57

 font-size: 26px;
}
.special {
 color: black;
 font-size: 16px;
}

 8. Alter your body text to the following:

<body>
 <h1>Introduction to CSS</h1>
 I am test text
 <div class="special">
 And I am special text!
 </div>
</body>

This will give you output that looks like Figure 3-6.

 7. Perform a Ctrl+F5 (Run without Debugging) to view the output in the browser. You will see that
the output in your browser is identical to the view in your Design mode screen.

How It Works

The work that you performed seems relatively simple, but the changes that you made completely
changed the appearance of your page. The fi rst thing that you did was add the <style/> tags. This
informed the browser that everything contained within those elements should be considered as it ren-
ders the content of the page. This is also why these were put into the <head/> section of the HTML
page; the browser goes through this section fi rst before it starts to analyze the content of the body page.
Note that putting the styles in the header like this is not the best way to build a fl exible site. You are
taking this approach to be able to easily see how the styles and the elements work together.

There are two different approaches to how the styles were identifi ed. The fi rst used an element name, so
did not start with any special characters. Any time you create a style in that fashion you are setting the
default style for all items contained within that kind of element. With the second style that is defi ned
here the defi ning name starts with a period. This means that only items marked with a particular class
will pick up this styling.

Keep in mind how styles “code” is put together. One of the more confusing aspects of CSS is the lack
of the “equals” sign; instead, items are defi ned by name: value, where the name/value delimiter is a
colon (:). It is also important to remember that each internal line needs to have a semicolon (;) at the
end, indicating the end of that property setting. As the browser builds the page, it links the styles that
are defi ned in the styles tags with the HTML that is in the page, and renders that content using this
relationship between element and style. When you consider the processing that has to go on in the
background as the browser makes this analysis, it will be apparent why you want to keep your styling
approach simple and consistent. The next section covers in more detail how the various styles interact
with each other as elements with multiple applicable styles are rendered by the browser.

FIGURE 3-6: Design mode view
of style and HTML content

58 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 58

MORE CSS

You just saw how styling can affect the look and feel of HTML code. In this section you will exam-
ine the sections of the style and learn what each part means, including how it defi nes what kind of
content it should be applied against, and what kind of styling should be applied. A selector defi nes
the relationship between the element to be styled and the style to be applied.

Selectors
First consider one of the styles that you added earlier:

 h1 {
 color: red;
 font-size: 26px;
}

The entire preceding snippet is known as a rule. The h1 is the selector of the rule, as it defi nes to
what the rule should be applied. It is how the browser can determine which elements should have
this style assigned to that element’s content. You can have multiple selectors in a rule. There is no
effective limit to the number of selectors that can be part of your rule. Changing the rule as shown
in the following snippet creates a group of items to which this rule will be applied:

h1, h2 {
 color: red;
 font-size: 26px;
}

Thus, adding a comma between multiple selectors means that the browser will interpret the selector
group as an OR. In the preceding case, the browser will apply this rule if the element it is creating is
an “h1” element OR an “h2” element.

You can also separate selectors with a space, as shown here:

h1 .special {
 color: black;
 font-size: 16px;
}

As you can probably guess, this implies a different relationship between these two selectors than
using a comma. Whereas the comma implies an “OR” relationship between the selectors, the space
indicates an “AND” relationship. That means these rules are applied only to those elements that ful-
fi ll all the selectors in the list. Also, using a space indicates that these selectors are inheriting—thus,
“h1 .special” means that the style will be applied to content within an element of class “.special”
where that element is also contained within an h1 element. This can be a confusing concept, but
more details are provided later in the chapter. There is no limit to the number of selectors that you
can link together using a space to indicate the AND relationship.

You can also use both approaches at once, as shown here:

h1, h2 .special {
 color: black;
 font-size: 16px;
}

More CSS ❘ 59

c03.indd 12/15/2015 Page 59

The preceding snippet will cause the browser to apply the rule to those elements that match the “h1”
selector OR those elements that fulfi ll both the “h2” and “.special” selectors.

Type Selector
As shown previously, the rule used in the last example is applied to all of the “h1” HTML elements
on the page, and it will be applied to every element of this type on the page. This type of selector
is known as a type selector because it applies specifi cally to HTML elements. In addition, because
HTML elements are not case sensitive, type selectors are not case sensitive either.

If you group a type selector with another selector, the browser will apply that style to all elements of
that type that also match the other selector(s).

Class Selector
In the preceding example you had a selector that was prefaced with a period—.special. This type
of selector is a class selector and it differs from the type selector in that it is applied to every element
that is labeled with that class, regardless of the type of element.

The following ruleset will make every element that is selected red:

.special {
 color: red;
}

The browser is able to determine the appropriate style(s) because the HTML style has the class
attribute set to the same value as the ruleset’s selector. The fi rst line of the following example turns a
section of a sentence red:

I am not red text but I am.

<h1>I am not a red header</h1>
<h1 class='special'>But I am a red header</h1>

The second section of the preceding code snippet shows how the class selector is independent of
the type of element, because both the span in the fi rst section and the header in the second section
match the rule, so the content will be displayed in the browser as red text.

The class selector is also different from the type selector in that it is case sensitive: The text you
enter as the selector in the rule has to perfectly match the element’s class value.

Id Selector
Whereas the type selector references the HTML element and the class selector is linked to the class
attribute in an HTML element, the id selector references the id attribute of an HTML element. An
Id selector is created using the hash symbol (#):

#mainArticle {
 color: red;
}

60 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 60

WARNING A page should only have one element with the same Id value. This
rule of not reusing an id on a page is an HTML and a jQuery/JavaScript expec-
tation. All the major browsers will still display all page elements regardless of
whether they are reusing the id value and will apply the style to all elements
that match that id. The following is an example of the HTML that includes a
link to the style.

I am not red text but I am.

Just as with the class selector, the id selector is case sensitive; you must have identical values in the
ruleset and in the id attribute of the element in order for the browser to apply the style.

Universal Selector
All the selectors described so far are applied to a particular aspect of an HTML element. A type
selector refers to the HTML element name; the class selector is a reference to a value in the class
attribute; and the id selector is a reference to the value in the id attribute of the element. The univer-
sal selector, demonstrated in the following example, applies to every element in the page, regardless
of type, class, or id:

* {
 color: red;
}

The universal selector is a simple asterisk: *. There is no required text for a universal selector
because it applies to every element in the page.

OTHER SELECTORS

Many other selectors are available to use in your styling, including the attribute
selector, which enables you to use other attributes in an HTML element as part of
your selector. This approach also enables you to drill into the content of the attri-
bute and create a selector that matches part of the value within the attribute. This
topic is beyond the scope of this book, but be aware that a lot of other selectors are
available as your need for additional control over the appearance of your content
increases.

More on Grouping Selectors
This chapter previously discussed how you can group selectors for a ruleset using either a space or a
comma. Using the comma acts as an OR, so any elements that match any of the selectors will have
the style applied. Using the space means that the element has to match all of the selectors that are
included. This section takes a closer look at how this works, and how it can affect selection.

More CSS ❘ 61

c03.indd 12/15/2015 Page 61

Examine the following rule:

p .special {
 color: blue;
 font-size: 50px;
}

Here, the lack of a comma separating the two selectors means that an element would have to both
be within a <p> element and be contained within an element that has a class attribute set to spe-
cial. However, this approach is managed through inheritance, rather than through an element of
type <p> that also has a class of special. Because the space implies inheritance, the following code
will not be interpreted the same:

<p class="special">Hey, I am not styled.</p>
<p>But, I am because I am inherited.</p>

Instead, when the p .special rule is applied, it looks
like Figure 3-7.

As you can see, the presence of the space indicates inheritance.
At this point you may be wondering if you can create a
selector that will fi nd the fi rst case in that last code snippet:
<p class="special">, such that the selector will understand that the appropriate element to be
styled is an element of type <p> that also has a class of "special". It will probably not surprise you
to know that there is a way to do that.

What happens when you omit the space? If multiple selectors are displayed together without a space,
the browsers will look for elements that match both of the conditions within the same element with-
out inheritance being considered. Thus, to style the .special <p> element, you would need to use a
rule with a selector as follows:

p.special {
 color: purple;
 font-size: 45px;
}

This rule would be applied to every element of type <p> that also has a class of "special". You
can link multiple selectors together as needed, as long as you have no more than one of each
type of selector. That means a selector such as p.special.extraspecial should not be used,
as it implies that the element will have multiple classes assigned to it. A rule with a selector of
p.special#extraspecial makes more sense because it fi nds all HTML elements that are of type
<p>, have a class of "special" and have the id attribute set to extraspecial.

Properties
You have already seen how the ruleset is able to select the elements to which it should be applied, so
this section describes in more detail what you can do with the styling information itself. Table 3-1
describes the CSS properties.

FIGURE 3-7: Inheritance in CSS

62 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 62

TABLE 3-1: CSS Properties

PROPERTY DESCRIPTION

background This property sets the background information for the element. Because
this is a parent property, you can put all the different values for the back-
ground in the same line. For example:

background: black url("smiley.gif") no-repeat fixed center;

background-color This sets only the background color. Other parts of the background can
be set individually, including image, position, repeating pattern, origin,
and size. For example:

background-color: rgb(255,0,255);

border Creates a border around the element. Like background, border is a parent
property that enables you to set many different subproperties in a single
command. For example:

Border: 5px solid red;

border-bottom The “-bottom” indicates this is a subproperty that sets the bottom part
of the border. Other options include left, right, and top; you can even set
different colors for each side with bottom-color. An example of setting the
border-bottom: border-bottom: thick dotted #ff0000;

display Defi nes the type of box used for an HTML element. Multiple values are
available for display, the most common of which are as follows:

Block: Displays the element as a block element, like the <p> element

Inline: Default value, displays the element as an inline element; like the
default behavior for

Inline-block: The inside of the block is formatted as a block-level box,
while the entire element itself is formatted as an inline-level box

None: The element will not be displayed at all. There is no effect on lay-
out; and no space is reserved.

font Sets the font that will be applied to the element content. For example:

font: italic bold 12px/30px Georgia, serif;

height Defi nes the height that is given to the element’s content. It sets the height
of the area inside the padding, border, and margin of the element. For
example:

height: 100px;

left When an element is absolutely positioned (more on this later), the left
property sets the left edge of an element to the right side of the left edge
of the containing element. Otherwise, the left property sets the left
edge of an element to the left of its normal position. For example:

left: 5px;

More CSS ❘ 63

c03.indd 12/15/2015 Page 63

PROPERTY DESCRIPTION

margin Sets the margin around the element. More on this below.

padding Sets the padding around the element. More on this below.

position Specifi es the type of positioning method used for an element:

static: Default value; elements render in order, as they appear in the docu-
ment fl ow

absolute: Element is positioned relative to its fi rst positioned (not static)
ancestor element

fi xed: Element is positioned relative to the browser window

relative: Element is positioned relative to its normal position. For example,
left: 25px would move the element 25 pixels to the left of its normal
position.

text-align Specifi es the horizontal alignment of text in an element. For example:

text-align: center;

text-decoration none: Defi nes that the element is normal text. This is the default.

underline: Defi nes text that has a line below the text

overline: Defi nes a line above the text

line-through: Defi nes text with the line through it

visibility Determines whether an element can be seen; if invisible, the browser
reserves space for it

Several items in the preceding table need to be examined together. These are the padding, border,
and margin properties, which all interact together to manage the placement of content within the
element.

Figure 3-8 shows how all the pieces work together. The dark section is the element, while each layer
around it demonstrates the other items. Padding is the area immediately surrounding the element. If
an item has both padding and a border, the padding defi nes the distance between the outer edge of
the element and the border. If you add a margin, you are defi ning the distance between the border
and the surrounding elements. In other words, padding extends the outer limit of the element, while
margin defi nes the space between the outer limit of the element and the adjacent element.

Margin

Padding

Element

Border

FIGURE 3-8: Padding, border, and margin

64 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 64

To understand how this plays out in HTML, consider the following snippet that has some style code
and HTML:

<style type="text/css">
 .innerelement {
 border: 5px solid black;
 background-color: yellow;
 width: 200px;
 padding: 50px;
 margin: 100px;
 }
 .outerelement {
 border: 5px solid red;
 background-color: green;
 width: 200px;
 }
</style>
<div class="outerelement">
 <div class="innerelement">
 content
 </div>
</div>

This snippet will display in the browser as shown in Figure 3-9, but keep in mind the black and
white images don't truly demonstrate what you should see on screen, which will appear in color.

outerelement width

innerelement width

innerelement padding
content

innerelement margin

FIGURE 3-9: Rendered HTML with padding, margin, and width

Figure 3-9 illustrates some interesting points about styling. The space immediately between “con-
tent” and the fi rst line is the padding. The space between that fi rst line and the left, top, and bottom
sections, as shown by the darker box on the left, is the margin. Note how the margin and padding
affect the width of the element.

More CSS ❘ 65

c03.indd 12/15/2015 Page 65

Both elements, innerelement and outerelement, have the same width. However, the inner element
is obviously wider. That’s because of the padding property. The use of padding extends the width
of the element past the content. Margin, conversely, extends outside the element. This is why the
leftmost box is spread outside the inner box—the margin pushes it out from the element.

Figure 3-9 also shows another interesting aspect of styling — the absolute nature of some of the
properties. Even though the inner element is contained within the outer element, the outer element’s
width is still rendered at 200px, regardless of the overall width of the containing element. The
overall width of the inner element is 510 pixels wide, and is calculated by combining the 200px of
width, the left padding of 50px, the right padding of 50px, the left border of 5px, the right border of
5px, the left margin of 100px, and the right margin of 100px.

Precedence in Styles
You have seen some examples illustrating how styles can affect each other. This is an important con-
cept, because the styles of nested and adjacent elements all interact with each other and may affect
the display of other elements. This means that when an element does not look as expected, it may be
due to the styling of an adjacent, containing, or contained element. Therefore, a base understanding
of precedence may prevent some styling frustration.

The typical precedence takes multiple things into account. One of the things that it takes into
account is something that you haven’t really talked about, the origin of the style. Styles have three
primary origins:

 ➤ Author: A style provided by the site’s author, such as the styles that you have been creating

 ➤ User: A style created by the user, whereas the default style is the one built into the browser

 ➤ Default: A style that is built into the browser and acts as the style when no others have been
added. This may be different depending upon the browser.

CREATING USER STYLE SHEETS

You may not realize it, but as a user you have control over the styles that are dis-
played in your browser. Microsoft’s Internet Explorer, for example, allows you to
create and apply your own style sheet to every page that you visit. You can do this
by selecting Internet Options and then choosing the Accessibility button. This will
bring up the dialog shown in Figure 3-10, from which you can change font settings
and even add a custom-made user style sheet.

continues

66 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 66

FIGURE 3-10: Adding a user style sheet to your browser

Each of the other major browsers have their own way to add user style sheets. You
will learn more about what makes up a style sheet later in this chapter.

When the browser is determining how to render content, the initial specifi city is calculated with the
following rules:

 1. Find all of the style assignments that apply to both the element and the property being parsed
for display.

 2. Sort by origin and weight. Origin was discussed previously, and weight refers to the impor-
tance of the declaration. Weight is calculated in the same order (author, then user, and then
default) but it takes into account some special tags that can be added to the style.

 3. The browser then calculates the specifi city.

 4. If any two rules are equal for all of the above, the one that declared last takes precedence.
This means that CSS embedded in HTML always follows any page declared styles (as shown
so far with styles contained in the <head> element), which comes after external style sheets
(what you will be doing later in this chapter).

continued

The Style Sheet ❘ 67

c03.indd 12/15/2015 Page 67

Step 3, calculating specifi city, is more complex than it may seem. At the simplest level, an id is more
specifi c than a class, which in turn is more specifi c than an element. However, it is not as clear as
that. Examine the following code snippets:

div p.special {color: red;}
#superspecial p {color: purple}

<div id="superspecial">
 <p class="special">Content</p>
</div>

What color do you think the content will be? When you look at the fi rst style, you see that it is
for paragraph elements with a class of "special" that are contained within a <div> element.
This pretty well describes the HTML code, doesn’t it? The second style also seems to match the
HTML code, as it selects paragraph elements that are contained within an element that has an id of
"superspecial". Will the content be red or purple? You may be surprised by the answer: The con-
tent will be purple.

That may seem counterintuitive because the fi rst styles just combine element matching and class
matching, and the nesting within the element of the proper type seems very straightforward.
However, because the second style is matched based on the parent element’s id, it trumps the fi rst
style.

If you remove the “p” from the second line, what do you think happens? Does the specifi city of the
id in the containing element still override the fi rst style? In this case, you will fi nd that the content
will display in red. This happens because the identifi cation of the exact element in the fi rst style
offers more specifi city than the second style after the paragraph reference has been removed. If
the fi rst style were completely removed, however, the content would again be displayed in purple
because of the inheritance from the hosting element.

Understanding precedence will come with practice. The easiest way to understand the precedence
calculation is by looking at the output. Visual Studio enables you to look at both the design and the
output at the same time; don’t hesitate to take advantage of this to see the full interaction of your
styles with your HTML.

THE STYLE SHEET

You have done your fi rst work with styles, but this is not the way that you will be styling the appli-
cation as you move forward. While this approach is much more effi cient than using HTML styling,
in that you can put all the styles in one place on the page and enable them to be used everywhere on
that page, it also means that if you want different pages to be styled the same, then you have to copy
the styles to each of those pages. Thus, if you want to change these styles, you have to go through
each page and update them. While this is defi nitely better than having to retouch every element on
the page, it still is error prone.

68 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 68

This is where the “sheet” part of Cascading Style Sheets comes into play. You can put all your styles
into a single page and then link that style-containing page to each page that will be using it. That
means all pages in your site (if they have been set up correctly) will be able to use the same set of
styles. With this capability, changing styles throughout your site becomes very easy, as you have
only one fi le to work with, rather than one area on each page.

Adding CSS to Your Pages
You have learned about adding CSS styles to your page using the <style> element, and how that
element defi nes the content within the element as being a style defi nition. The next thing to learn is
how to add a separate fi le containing styles and then get your content pages to use those styles for
display.

Linking your page to the CSS style sheet is simple. Assuming that you have a style sheet named
"styles.css" you would add the following line to the <head> section of your HTML page:

<link href="styles.css" rel="Stylesheet" type="text/css" media="screen" />

The <link> element tells the browser that the information identifi ed in the attributes should be
linked to the page. The href attribute tells the browser what external fi le should be linked in,
which is critical because the use of the <link> element implies attaching an external reference.
The rel attribute gives the fi le context by defi ning its relationship. In this case, the external fi le is
a style sheet. Other values for this attribute include help, icon, author, license, and many more
relationships.

The type attribute is used to defi ne the type of content that the fi le contains. The last attribute that
you need is media. This attribute defi nes the type of media on which the document will be viewed.
Other media types include mobile and print.

CONTENT TYPE

The content type enables you to provide additional information about the content
of the fi le. It used to be known as a MIME type, but has evolved to include infor-
mation about any kind of other content. This information is necessary because
there is really no other way for the browser to understand what the external fi le is
and how the page it is rendering and that external fi le need to interact. Other con-
tent types that you may work with as you build the sample application include the
following:

 ➤ text/html: Tells the receiver that the content will be HTML

 ➤ text/plain: Tells the receiver that the content will be plain text

 ➤ audio/mpeg: Identifi es the content as an audio fi le, such as an MP3

The Style Sheet ❘ 69

c03.indd 12/15/2015 Page 69

 ➤ video/mpeg: Used to label content as video

 ➤ image/png: Used to label image fi les. This is built into the element.

The next Try It Out demonstrates how the link element is used and how to cre-
ate an external style sheet.

TRY IT OUT Converting In-Page Styling to Using an External Style Sheet

In this activity you’ll convert the page and styles that you created earlier in this chapter to use the exter-
nal style sheet.

 1. Create the style sheet that you will use to hold the styles. Do this by right-clicking the Content
directory in your Solution Explorer and selecting Add ➪ Item ➪ New Item. This brings up a dialog
similar to the one shown in Figure 3-11.

FIGURE 3-11: Adding a new style sheet

 2. Select Style Sheet, name it IntroToCss.css, and click Add. This will add the fi le to the solution and
open it in your Visual Studio working area.

70 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 70

 3. Copy all the styles from the IntroToCss.aspx page and paste them into the style sheet that you
just created. You do not have to bring the <style> elements over, just the style defi nitions. This is
possible because you will be defi ning the content when you create the link tag. Once you have the
styles in your style sheet, remove them from your .aspx page.

 4. Ensure that you are in Split mode and refresh your Design mode to see what it looks like. It should
look something like Figure 3-12, only styled with the default styles.

FIGURE 3-12: Page after removing style

 5. Add the following text between the <head> elements:
<link href="Content/IntroToCss.css" type="text/css" rel="stylesheet" />

 6. Refresh your Design mode and you will see your styling return, but this time from the linked
style sheet.

How It Works

In this activity, you created a style sheet and then linked it to your page. When the styles were removed
from the page, the styling disappeared; but after adding the link element, the styling returned. When
the styles were put into the <head> element, they needed to be contained in the <style> element.
However, after you put them into their own fi le and linked it in, you defi ned the relationship as part of
the link element so that the browser knew that the content of the linked fi le is styled.

You can add this same link line to all the pages in the site, ensuring that they all use the same style
sheets. You can also create multiple style sheets and link them all in using the same code; there is no
limit to the number of sheets that can be linked in.

In this example, all the styles were moved into a single sheet. Would you ever want to have separate
style sheets? This approach would make sense when you have multiple websites for a company, and
each site looks much like the others. The rules that are common to the sites could be put into one
style sheet that is available to all of the sites, while the site-specifi c styles are put into another style sheet
that is available only to the pages within that site.

The Style Sheet ❘ 71

c03.indd 12/15/2015 Page 71

When you were working with your Content directory you likely noticed that there were several fi les
that were already in the directory. These were provided by the project scaffolding that created the
default application. Each of these fi les is responsible for doing different work within the application.
There is one group of fi les in particular that are interesting to consider; those that include the term
“bootstrap.”

Bootstrap is a set of JavaScript and CSS tools that manage the display of content in the web browser.
These are special because they are part of a design approach known as “responsive,” which is an
approach to design that tries to build sites in such a way that they can support different sized view
screens, from a user on a desktop machine with a large monitor, to a laptop user, to a tablet user, to a
phone user.

The default site that is created by the Visual Studio project scaffolder uses Bootstrap by default. You
can see Bootstrap in operation by running the application with the default page and then resizing the
browser window. As the browser window shrinks you will see the UI change as well. For more informa-
tion about Bootstrap you can visit their site at http://www.bootstrap.org.

Creating Embedded and Inline Style Sheets
There are three types of style sheets:

 ➤ External

 ➤ Embedded

 ➤ Inline

The fi rst two you are already familiar with. You just fi nished converting an embedded style sheet (in
which the styles were put into the <head> section of the page) into an external style sheet. The last
type, not yet covered, is the inline style. An inline style is the closest style to the element being dis-
played, because it is actually part of the element itself.

All HTML elements that support content have a style attribute that enables you to add styles.
Using this attribute you can add any of the CSS properties directly to the element. Here is an
example:

<div style="color:blue;margin:30px;">This is an inline style.</div>

The assignation rules are the same as those for external or embedded styles; each has a property
name and value separated by a colon, and a semicolon indicates the end of that property declara-
tion. You can add as many CSS properties as you need to that single style attribute.

This approach is as diffi cult to maintain as the original HTML styling elements, but you might
encounter scenarios in which a fi nal override of an element and this will be the only way you can
achieve that.

If you recall the precedence rules you learned earlier, the closer the style is to the element being
rendered, the higher the precedence. That means anything in the element’s style attribute will be

http://www.bootstrap.org

72 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 72

automatically applied, overriding any of the properties set higher up the inheritance chain. The next
precedence would be the embedded styles, those in the head of the HTML page. Last to be applied
would be the styles defi ned in the external style sheet.

APPLYING STYLES

So far, you have created and applied styles by hand in order to gain an understanding of how they
all work. However, Visual Studio was designed to help speed development, so several built-in tools
are available to help you style your application. All of the work that you have done so far has been
in the source window, after which you viewed the rendered output in the design window. You will
now start to do more work in the design window as you learn how you can build styles by taking
advantage of Visual Studio’s support for working with CSS style sheets.

TRY IT OUT Creating and Applying Styles in Visual Studio

In this Try It Out you will create some styles for text in the CSS test page using Visual Studio’s built-in
tools.

 1. In Visual Studio, open the CSS test fi le, IntroToCss.aspx.

 2. View the fi le in full Design mode, rather than Source or Split mode. This should give you a view
like the one shown in Figure 3-13.

FIGURE 3-13: Viewing the fi le in Design mode

Applying Styles ❘ 73

c03.indd 12/15/2015 Page 73

 3. Now that you are in Design mode, a new toolbar is available
in the Visual Studio toolbar area, the Formatting toolbar,
shown in Figure 3-14.

 4. Click on various elements in your page and notice how the values change in the dropdown boxes
of the Formatting toolbar. For example, select an item that is already styled (i.e., an element whose
style appears in the dropdown), and note how the dropdown changes to the type of element that
you selected.

 5. Double-click anywhere on the word “Introduction.” The entire word will be highlighted. In the
Target Rule dropdown, select Apply New Style. This will bring up the New Style dialog shown in
Figure 3-15.

FIGURE 3-15: New Style dialog

 6. In the top part of the dialog you can identify the selector to use, including naming a class selector.
You can also choose where to save a new style, whether it is inline, embedded, or in a style sheet.
Enter a new name into the selector: .introduction.

 7. Select Defi ne in Existing Style Sheet and click the Browse button to select the already existing
IntroToCss.css fi le.

 8. Select a font-family of “Arial, Helvetica, sans-serif,” a font-size of “larger,” and a color of
#800000, and click OK.

FIGURE 3-14: Formatting toolbar

74 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 74

 9. Look at the IntroToCss.aspx source fi le to see how the page has changed. It should have a sec-
tion that looks like the following: Introduction

 10. Examining the style sheet will show you that a new style was added. It should look something like
the following (your choices may be different):

.introduction {
 font-family: Arial, Helvetica, sans-serif;
 font-size: large;
 color: #800000;
}

 11. Now that you have gone over the creation and/or assignment of styles, the rest of this activity looks
at the other help that Visual Studio offers when working in Design mode. Click the View menu
item in the main menu.

 12. There are three options at the top that are available only when you are in Design mode: Ruler and
Grid, Visual Aids, and Formatting Marks. These menu options, shown in Figure 3-16, are designed
to help you visualize and control the design of the page.

FIGURE 3-16: Menu options available in Design mode

 13. Select the Ruler and Grid option. You will get a submenu with two additional options: Show Grid
and Show Ruler. Select them both (both can be checked). You will see your design screen change as
shown in Figure 3-17.

FIGURE 3-17: Screen changes after selecting both ruler and grid

Applying Styles ❘ 75

c03.indd 12/15/2015 Page 75

 14. The design view has changed to display a ruler and a grid in the background. The default unit
for the grid is pixels, but you change both displays by selecting the View ➪ Ruler and Grid ➪
Confi gure option.

 15. Figure 3-18 shows the result of enabling all of the options. When you click in the “And I am spe-
cial text!” tab, you see the full selector that is responsible for the styling of this content. Note the
small tab with the text.

FIGURE 3-18: Design mode with all visual aids enabled

 16. Click on the tab. You will see the Windows Move icon displayed. This enables you to drag the con-
tent around the page to position the element differently.

 17. Ensure that the View ➪ Visual Aids ➪ Margins and Padding visual aids are enabled. You can set
the margins and padding of the selected elements. This also helps you visualize how margin and
padding manage interaction between various elements.

 18. Ensure that the View ➪ Formatting Marks ➪ Show selection is checked. Also ensure that the Tag
Marks item is selected. Once Tag Marks is selected, you should see tag information in Design
mode, as shown in Figure 3-19.

FIGURE 3-19: Displaying Tag Marks in Design mode

 19. Go to the View menu item and select CSS Properties. A new window will open in your working
area.

 20. Highlight “And I am special text!” The CSS Properties window that you just opened should change
to a display similar to that shown in Figure 3-20.

76 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 76

FIGURE 3-20: CSS Properties window

 21. Examine the CSS Properties window. The top section, titled Applied Rules, provides information
about all of the style properties that are being set. In this case, it indicates that a "body" style as
well as a class style ".special" is applied to the selected text. Change the color to purple and the
font-size to xx-large. The visual display will change as you make the changes in the window.

 22. Open the IntroToCss.css fi le to see the changes that are happening in the styles as you make
your changes. Also notice that the CSS Properties window changes as you leave the Design mode
window, because the content of the CSS Properties window is tied directly to the content selected
in Design mode.

How It Works

Different people tend to have different preferences on how they do their work, especially when perform-
ing a creative endeavor such as styling and design work. This means that one person’s favorite styling
tool may be despised by the next person. This is why Microsoft took the approach of allowing you to
toggle each different item on and off. This helps you set up the visual environment with which you are
the most comfortable.

As you are considering your personal approach, you may also get an added benefi t by having both the
ruler and the grid enabled, as they give you a better idea of the effects that various settings have on the
visual placement of the content. Another useful support tool is the Visual Aids menu options as they
also help you get a visual understanding of the content in the design window. Available Visual Aid
menu options are shown in Table 3-2.

Applying Styles ❘ 77

c03.indd 12/15/2015 Page 77

TABLE 3-2: Visual Aids

MENU OPTION DEFINITION

Block Selection Block selection is displayed in two different ways. When you put
your cursor in a block, a dotted rectangle will appear around the
tag, and a tab displaying the name of the tag will appear. You can
click the tab to select the tag. When you select a block, the mar-
gins and padding will be displayed and you can use the handles to
resize the margins and padding.

Visible Borders When this option is selected the IDE will show dotted borders
around elements that have hidden borders. This enables you to
visualize how properties such as margin and padding may affect
the display of your content.

Empty Containers This option ensures that all empty elements are surrounded by a
dotted rectangle. An empty element is an HTML element, such as
<p></p>, that does not have any content. Browsers, and the IDE,
will generally completely collapse empty containers, so enabling
this will affect the display, changing it. However, you will also get a
visualization of those elements that can be safely removed.

Margins and Padding Shows the margins and padding around all elements. When
selected, margins will appear in red and padding will appear in
blue. You cannot use this visual aid to change margins and pad-
ding; instead, enable the Block Selection visual aid and use the
handles that appear as part of that aid.

CSS Display:none Elements Shows those elements that are not displayed because they have a
style that includes the CSS property display:none

CSS Visibility:hidden Elements Shows those elements that would be selected by a style that
includes visibility:hidden, and thus are hidden in the design
window

ASP.NET Non-visual Controls Shows a rectangle for ASP.NET controls that don’t display any-
thing. You will see more examples of these kinds of controls as
you continue.

ASP.NET Control Errors Shows an error message when an ASP.NET control encounters an
error, such as not connecting to a data source

Template Region Labels Shows a border around editable template regions, including a tab
with the name of the region

Visual Studio provides a lot of different ways to manage the design of your pages. You can always build
your HTML by hand as you did earlier in the chapter, but various tools are to help you visualize your
design and manage your styles through different means. The Formatting toolbar enables you to apply
existing styles to content, and helps you create new styles as necessary. Once you have the styles, the

78 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 78

CSS Properties window gives you access to the CSS properties that are being applied to the content, in
addition to giving you the capability to change them through dropdowns.

Managing your styling through the CSS Properties window is especially powerful because when you
have the design window and the CSS Properties window open side-by-side, you can make the style
changes and watch how they affect the displayed selected content. This immediate feedback enables you
to effi ciently manage your design to meet your expectations.

MANAGING STYLES

You have gained a lot of information about creating and maintaining styles, but only a little about
strategies for building styles that are reusable and take advantage of CSS capabilities such as inheri-
tance. You shall learn about that now.

Before you start worrying about something as granular as a style, you need to consider the overall
design of your website. First, determine the overall look and feel of the sample application. This
gives you an understanding of how to build out your styles as you start to add your content.

The sample application is a lending library and it has a relatively simple set of requirements, which
were discussed in Chapter 1. The following page views are required:

 ➤ A default view of all available items for checkout. You will make this your default home
page, the fi rst page that anyone sees when they come to the website.

 ➤ A special view for the administrator to add new items. This will need to include a list of items
from which users can select an item to edit as well as add a new item.

 ➤ A registration page.

 ➤ A checkout page that displays the items that users have determined that they want to check
out from the library.

Other requirements include implementation details that you need to
manage as you build out the site and design. The fi rst area of focus
will be the home page. You know that there needs to be a list of
items that are available for checkout. When you consider the needs
of a home page as well as the requirements to support login and reg-
istration, you know that you have to include more than just a list of
items on this page. These considerations could result in a simplifi ed
view of the home page that would look something like Figure 3-21.

You will build fi ve different areas of this page.

 ➤ The logo area, where you will be doing your branding for
the website

 ➤ The menu area, which enables visitors to go to different areas of the site.

FIGURE 3-21: Simple design for
sample application home page

Managing Styles ❘ 79

c03.indd 12/15/2015 Page 79

 ➤ The login area, which is special because it contains the fi elds necessary to allow users to log
in to the application—in this case, an e-mail address and a password.

 ➤ The informative text area. Because this page will be the default page for all site visitors, you
need to give new users information about the services as well as instructions about how to
proceed, whether it is through registration or through logging into the site.

 ➤ The product area, which is the only area that is directly part of the requirements: the listing
of products that are available for lending. This listing will be made up of multiple pictures
and text, so it warrants a bit more discussion. Figure 3-22 shows the simple design that you
will use to display the items.

FIGURE 3-22: Simple design for the list of product items

Each item in the product area includes the following elements:

 ➤ Title

 ➤ Descriptive text

 ➤ One or more pictures of the item, and the capability for users to view each picture

You will now put these together and see what the potential impact would be when you create the
style sheet. Figure 3-23 illustrates how these areas interact as you form your styling approach.

FIGURE 3-23: Initial styling approach to the home page

80 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 80

Each of the high-level items is now broken down a little bit more, with each initial style identifi ed.
The next thing to consider is whether there will be any reuse. For example, will you want to use the
same visual text display for the informative text that you use for the product text? Will you want
the input labels (where the user interface will have labels such as “e-mail address” and “password”)
to be the same as the product text, but different from the informative text? These are the consider-
ations that you need to make as you work out your design.

For this design, the following typographical assumptions will be made:

 1. The same font-face will be used for all titles, whether it is an informational title or a product
title. The sizes will be different between the type of title, however.

 2. The same font-face will be used for regular text, whether it is information or product text,
but this font-face will differ from the title font-face. Both of these items will also have the
same size of font.

 3. The input label font-face will be different from the regular text, though the size remains the
same.

With these rules in mind, you will create the initial shell for the application’s home page in the fol-
lowing Try It Out.

TRY IT OUT Creating the Initial Styles for Your Home Page

In addition to creating the initial styles for the home page, you will also start removing some of the
content that was added to the site through the project creation templates.

 1. Within Visual Studio, ensure that you are not running the application, and delete the site.css
fi le in the Content directory. To do so, highlight it and press the Delete key, or right-click the fi le
in Solution Explorer and select the Delete menu item. This removes all of the previously created
styles.

 2. Do the same with the current Default.aspx fi le. This will be easier than trying to edit the content
that was added during project creation.

 3. Add a new CSS fi le. Right-click the Content directory in the Solution Explorer and select Add ➪
Style Sheet. Name the fi le “main” and select OK.

 4. Add a new Default.aspx page by right-clicking the project in the Solution Explorer window and
selecting Add ➪ Web Form. When the naming box appears enter “Default” and click OK. You
can also add the fi le by going to the Project menu item, selecting Add New Item, and adding a Web
Form from that dialog. It is quickest to do it from the Solution Explorer window, however. This
new page should open in your working window. If not, open the fi le you just added. From the
source window, the code should look like the following:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="RentMyWrox.Default" %>

<!DOCTYPE html>

Managing Styles ❘ 81

c03.indd 12/15/2015 Page 81

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>

 5. Add some text to match the main items from Figure 3-23. This should give you something like the
following:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
 Inherits="RentMyWrox.Default" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 I am Informative Text Title I am input text

 I am Informative Text

 I am Product Title

 I am Product Text

</body>
</html>

 6. Now that you have the various items you need to style, you need to start defi ning their relation-
ships in terms of HTML and styles. The fi rst thing you should look at is the Informative Text Title.
You know that is a title, so give it a header element, <h1>. Enclose that body of text with the <h1>
elements.

 7. You know that the Product Title area is also special, so you will make it an <h2> element, as it is a
header, but at a lower level than the main header. Use “I am Product Title” as text content for the
<h2> element.

 8. At this point you have added some special elements, but the default look and feel is the same. Now
you will add the fi rst offi cial style. From the previously outlined design approach, you know that
the informational text and the product text will be the same font-face and the same size. You want
to make this the default style. Go into Design mode. Your screen should look like what is shown in
Figure 3-24.

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

82 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 82

FIGURE 3-24: Content in Design mode

 9. In the Formatting toolbar, select Apply New Style from the Target Rule dropdown. This will bring
up the New Style dialog.

 10. Set the options as follows: Selector to “body,” Defi ne in to “Existing Style Sheet,” URL to Content/
main.css, font-family to “Arial,” and font-size to “medium.” Your settings should match those in
Figure 3-25.

FIGURE 3-25: Setting body style

 11. The item should update with this new style, but it hasn’t because you haven’t linked the new style
sheet you created to the new page. To do that, return to Source mode and add the following code
between the head opening and closing tags. Note how IntelliSense helps walk you through the
process:

<link href="Content/main.css" type="text/css" rel="stylesheet" />

Managing Styles ❘ 83

c03.indd 12/15/2015 Page 83

 12. When you return to Design mode you will see that all the font faces have changed to Arial. That
fulfi lls the second requirement, but you still need to add more styling because the title and regular
text font-faces have to be different. To fi x that, highlight the Informative Text Title, and use the
Format toolbar to select Apply New Style. Set the options as follows: Selector to “.title,” Defi ne it
to “Existing Style Sheet,” URL to “Content/main.css,” and Font-face to the “Cambria” list.

Click OK. Note that the highlighted text has changed to a different font-face from the rest.

 13. The way that the wizard does this is not perfect. If you go into source view you will see that the
wizard created a span element around your content. This is not ideal. Copy the class="title"
from the span and put it into the <h1> element. Remove the span elements. While you are there,
add this same class into the <h2> element for the Product Title. This should leave your source code
looking something like this:

<body>
 <h1 class="title">I am Informative Text Title</h1> I am input text
 I am Informative Text
 <h2 class="title">I am Product Title</h2>
 I am Product Text
</body>

 14. Go back into Design mode and refresh if necessary. You will see that the titles have the same font-
face, though they are different sizes, indicating that both the fi rst and second requirements are met.

 15. The last change to make is to style the input label text. Open the main.css fi le and add the follow-
ing lines:

.label {
 font-family: Cambria, Cochin, Georgia, Times, "Times New Roman", serif;
}

 16. Go back to the Default.aspx page and put the Input Text into a <div> tag with a class of
“label.” When you view it in Design mode, refreshing if necessary, you will see that the text font-
face now differs from the regular text.

How It Works

This activity created the initial styles for the sample application. After determining the minimal criteria
needed for the styles, you then created them in Visual Studio. You may have noticed one thing when
you created the last style, label. The properties in that style are identical to those for the title style.
However, the items being styled are very contextually different, as indicated by the names that you gave
them. Sometimes you may have the same identical properties and values in styles, especially as you start
the design. This is OK right now.

When you are done, there will be one more pass through the styles to see whether it would make sense
to eliminate these redundantly valued styles. However, in this case you would likely keep these two as
is, without renaming them, perhaps moving them to an approach such as the following:

.title, .label {
 font-family: Cambria, Cochin, Georgia, Times, "Times New Roman", serif;
}

84 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 84

That way, if there is ever a need in the future to select a different font-family for one of those styles it
will be easy to separate them.

This brings up a critical point when designing your styles. You are aiming for abstraction, so always
think of your styles contextually, as you did with “label” and “title.” This enables you to understand
the style’s purpose, why it is different. This in turn helps you understand where this style will be used
as you move forward.

SUMMARY

When HTML came upon the scene, managing the look and feel of a website was complicated
because styling was provided by another HTML element. One of the main problems with this sys-
tem was that any changes to the design needed to be propagated to each element. This made updates
and changes diffi cult to manage. As more and more people accessed the Internet and started visiting
websites, the user experience became more important. This led to the development of Cascading
Style Sheets (CSS), a technique that enables separating design information from the content, thereby
enabling the two to be maintained separately. It includes the concept of a selector, a way of desig-
nating a single ruleset that can be applied to multiple pieces of content based on well-understood
relationships.

The key to CSS is a style, or a set of visual and interactive rules that are applied to an HTML ele-
ment. Each HTML element in your page may have one or more styles applied to it; and the browser
knows how to link a style to an HTML element based on the selector of the style, which defi nes to
what elements it should be applied.

One of the more powerful features of CSS is the concept of cascading, which enables the styles of
parent elements to fi lter down to contained elements, a feature referred to as inheritance. In addi-
tion, this inheritance happens at the property level. That means that setting a font-family at the
body level will cascade down to every other element within the body unless an element has a style
that specifi cally overrides it. Thus, when you build your styles, you want to put the most common
items as “low down” in the stack as possible so that you only have to set them once and they will
just work at every other level.

Visual Studio provides multiple different ways to help you build, apply, and manage styles, espe-
cially when you are working in Design mode, which gives you immediate feedback about changes in
style and provides multiple options for visualizing the content. Each of these options gives the design
additional context in terms of how it is displayed; and gives you, as the designer, different ways to
manage and change styles that will be applied to your content.

EXERCISES

 1. What are the differences between .intro p, p.intro, and p, .intro ?

 2. Margins and padding have different effects on an element. If you were going to stretch the
“box” of an element, which would you use?

Summary ❘ 85

c03.indd 12/15/2015 Page 85

 3. How do you provide your HTML elements on a page with access to styles from an external
style sheet?

 4. What are some of the various tools in Visual Studio that help developers manage styles for
web pages?

86 ❘ CHAPTER 3 DESIGNING YOUR WEB PAGES

c03.indd 12/15/2015 Page 86

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

CSS Cascading Style Sheets (CSS) is an approach to enhancing the look
and feel of websites. It enables a designer to use selectors to identify
a set of HTML elements that will have various properties applied to
them as the browser parses the content.

Selectors A section of a CSS ruleset that identifi es the type of HTML element
that will be styled. A selector can select HTML elements based on the
type of element, the value of the class attribute, and the value of the
id attribute.

Properties Various items that can be managed using CSS. Examples of properties
include background, font-style, font-size, and color.

Precedence in Styles The approach that the web browser takes in determining which
styles should be applied to an HTML element. The more specifi c the
identifi cation, the more precedence given that style. Precedence is
applied at the property level, so different properties may end up with
different precedents.

Embedded Styles Styles that are defi ned within the HTML page header rather than
through a linked-in style sheet

Inline Styles Styles that are put directly onto the HTML element. No selector is
needed with these styles, as they apply only to the type of element
that matches the name in the selector.

Design Mode A window in Visual Studio that displays the working page as if it
were in a browser. It enables users to perform various design tasks,
including creating and assigning styles and moving content.

Source Mode A window in Visual Studio that shows the HTML code that makes up
the page. It does not show any of the design, but rather enables the
designer to work directly with the base code.

Split Mode A mode in Visual Studio whereby both Design mode and Source
mode are open at the same time. Changes made in one window are
refl ected in the other window.

c04.indd 12/15/2015 Page 87

Programming in C# and VB.NET
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding data types and variables

 ➤ How to use collections and arrays to process lists of information

 ➤ Code fl ow, branching, and looping

 ➤ How to separate code so it is easy to understand and maintain

 ➤ An introduction to object-oriented programming

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the
chapter 04 download and individually named according to the names throughout the chapter.

Now that you have spent some time on the designing part of your website, it’s time to consider
how to handle the programming part, making your web application actually do something
other than change colors. There are many different aspects to programming a web applica-
tion. This chapter gives you the foundation you need for when you start going deeper into
the different parts of ASP.NET as you build out the sample application. The constructs and
approaches covered in this chapter will be useful for every C# or VB application on which you
may ever work.

INTRODUCTION TO PROGRAMMING

Every application can be defi ned as a way to do things. Your application might play music,
handle customer registration for your company, help users pick a color to paint their house, or
anything else. When you consider all the potential things that an application can do, it might

4

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

88 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 88

seem a little overwhelming, but breaking the application down into its component parts helps you
realize that all applications have things in common, regardless of the different purposes for which
they will eventually be used.

Some of these commonalities are related to how the system interprets information and makes deci-
sions. Because every application follows some kind of process, one or more of these decisions have to
be made. Before your system can make a decision, however, it needs something on which to base it,
something that holds information that can be used as criteria for your application’s decision making.
These things upon which you make decisions are called data types and variables.

Data Types and Variables
Data types provide a way to identify and group various kinds of information, or data, that your
application needs to understand. .NET designers went through the exercise of defi ning these avail-
able base types because they determine the rules governing how the different types of data can be
defi ned, how they interact, how they are stored in memory, and what can be done with them in an
application. They are considered base types because they cannot be broken down further; they are
the lowest denominator. A variable is a container for a value. Consider a value, such as a circle with
a radius. You can consider the radius as a variable that you know will have a numeric value, or data
type.

Defi ning a Variable
The importance of types in both C# and VB cannot be overstated; both are considered type-safe
languages, which means the type of object has to be known at compile time (with a few exceptions)
or the application won’t compile, much less run. You tell the compiler the type of data it will be
working with by declaring or defi ning your variable. Think of a variable as a container for your
data. You want to give your variable a name that is meaningful in the context of your program, and
use that name consistently throughout the program. In the following example, you declare a vari-
able to hold a byte, a data type that defi nes the value as being a whole number between 0 and 255,
and a string, a data type that holds text:

C#

// declare our variable that represents the in-stock quantity for a particular item
byte quantityInStock;

// declare our string that represents the name of the item
string itemName;

VB

' declare our variable that represents the in-stock quantity for a particular item
Dim quantityInStock As Byte

' declare our string that represents the name of the item
Dim itemName As String

This example shows the different approaches between the two languages for creating a variable and
assigning its type. In C#, you declare a variable by stating its type and its name. In VB, you must

Introduction to Programming ❘ 89

c04.indd 12/15/2015 Page 89

start the declaration with the keyword Dim, followed by the variable name, then As, then the data
type. Note that C# code requires you to indicate the end of the command by using the semicolon (;).
VB does not have this requirement.

In addition, the names of the variables in the example give you an idea of what kind of informa-
tion they contain in relationship to your application. You could just as easily give those variables
nonsensical names such as “a” or “zz,” but that would rob them of context; being able to glance
at a variable and understand what it contains is important to keep your code maintainable and
understandable.

The other lines in the example are comments. These lines in your code are not part of your applica-
tion; instead, they enable developers to insert notes or other useful information. You will be going
over comments in more detail later in the chapter.

You can take the preceding approach one step further, and actually assign a value to the variable.
Thus, not only will you create a variable with a specifi c type, you will also give it a value, as shown
in the following example:

C#

// declare our variable with the initial value
byte quantityInStock = 5;

// declare our string with the initial value
string itemName = "Electric Nail Gun";

VB

' declare our variable that represents the in-stock quantity for a particular item
Dim quantityInStock As Byte = 5

' declare our string that represents the name of the item
Dim itemName As String = "Electric Nail Gun"

While this example shows the declaration and assignment in the same line, it is not a requirement.
They could be split into separate lines, as shown here:

C#

// declare our variable with the initial value
byte quantityInStock;

// declare our string with the initial value
string itemName;

// lots of work going on here as we figure out all the information

quantityInStock = 5;
itemName = "Electric Nail Gun";

VB

' declare our variable that represents the in-stock quantity for a particular item
Dim quantityInStock As Byte

90 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 90

' declare our string that represents the name of the item
Dim itemName As String

// lots of work going on here as we figure out all the information

quantityInStock = 5
itemName = "Electric Nail Gun"

Note how the name of the variable helps you understand what information it contains; this enables
you to declare your variables apart from the actual assignment as needed. As you progress with the
sample application, you will see how common this is.

Table 4-1 contains a brief list of the most common data types in .NET. This is only a tiny subset;
there are literally thousands of data types available in the .NET Framework alone, without counting
any custom types that you create.

TABLE 4-1: Common Data Types Available in C# and VB.NET

C# DATA TYPE VB DATA TYPE DESCRIPTION

byte Byte A byte is used to store small, positive whole numbers from 0
to 255. Defaults to 0 when no value is set.

short Short 16-bit storage, holds whole numbers between

–32,768 and 32,767. Defaults to 0.

int Integer 32-bit storage, holds whole numbers between

–2,147,483,648 and 2,147,483,647. Defaults to 0.

long Long 64-bit storage, holds whole numbers between

–9,223,372,036,854,808 and 9, 223,372,036,854,807.
Defaults to 0.

fl oat Single Stores large numbers between –3.4028235E+38 and
3.4028235E+38. These numbers may contain decimals, and
fl oat defaults to 0.0. When setting a fl oat, you should use the
indicator fl oat x = 2.3f; otherwise the compiler will inter-
pret the number as a double.

double Double A type that stores 64-bit fl oating-point values, it has an
approximate range between ±5.0 × 10^324 and ±1.7 ×
10^308, with a precision of 15–16 digits. Defaults to 0.

Introduction to Programming ❘ 91

c04.indd 12/15/2015 Page 91

C# DATA TYPE VB DATA TYPE DESCRIPTION

decimal Decimal A decimal is a 128-bit data type. Compared to fl oating-
point types, the decimal type has more precision (28–29
digits) and a smaller range, which makes it appropriate for
fi nancial and monetary calculations.

bool Boolean Used to hold a simple Boolean value; true or false (True or
False in VB)

Datetime Date Holds date and time values. Defaults to 1/1/0001 12:00 a.m.

char Char Holds a single character, or a 16-bit Unicode representation.
Unicode characters are used to represent most of the written
languages throughout the world. Defaults to null (Nothing
in VB).

string String Represents a sequence of zero or more Unicode characters.
Strings are immutable—the contents of a string object can-
not be changed after the object is created. Defaults to null
(Nothing in VB).

object Object All types, predefi ned and user-defi ned, reference types and
value types, inherit directly or indirectly from object (Object
in VB). You can assign values of any type to variables of type
object. Defaults to null (Nothing in VB).

The types in Table 4-1 represent some of the system types or types that are part of the .NET
Framework. However, it’s unlikely that everything that you need in your application can be put into
the available types. You may need to create your own custom types. Custom types are covered later
in this chapter, but for now you need to know that they provide the fl exibility to create any kind of
data container that may be needed to help solve the business problem.

Operators
Operators provide the capability to take action on an item—generally a variable. There are four
main types of operators:

 ➤ Arithmetic

 ➤ Concatenation

 ➤ Comparison

 ➤ Logical

This section covers arithmetic and concatenation operators. You will learn about comparison and
logical operators later in the chapter during the discussion of decision-making approaches.

92 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 92

Arithmetic Operators
Arithmetic operators are those operators that perform operations, or computations, on number
types, such as addition, subtraction, multiplication and division. Table 4-2 describes these operators.

TABLE 4-2: Arithmetic Operators

C# VB DEFINITION

+ + Adds one value to another

– – Subtracts one value from another

* * Multiplies two values

/ / Divides one value into another

n/a \ Divides one value into another, always returning a rounded integer

Math.Pow(x,y) ^ Raises one value to the power of another

% Mod Divides one value into another, returning the remainder

An example using these operators is shown here:

C#

int currentCount = 5;
int availableStock = currentCount + 1; // availableStock = 6
int availableStock = currentCount - 2; // availableStock = 4
double actualCost = availableStock * 3.5; // actualCost = 14
double perItemCost = actualCost / 2; // perItemCost = 7
double squaredValue = Math.Pow(perItemCost, 2);// squaredValue = 49
double remainder = actualCost % 2.5; // remainder = 1.5

VB

Dim availableStock As Integer = currentCount + 1 ' availableStock = 6
Dim availableStock As Integer = currentCount - 2 ' availableStock = 4
Dim actualCost As Double = availableStock * 3.5 ' actualCost = 14
Dim perItemCost As Double = actualCost / 2 ' perItemCost = 7
Dim roundedDivision As Integer = actualCost \ 3 ' roundedDivision = 4
Dim squaredValue As Double = perItemCost ^ 2 ' squaredValue = 49
Dim remainder As Double = actualCost Mod 2.5 ' remainder = 1.5

Concatenation Operators
Whereas arithmetic operators are used for combining and working with numerical data, concatena-
tion operators combine strings. These operators are different from arithmetic operators in that there
is no concept of multiplication, division, or any other purely numeric operations. Instead, there is
simply the combining of strings.

Introduction to Programming ❘ 93

c04.indd 12/15/2015 Page 93

The two concatenation operators are + for C# and & for VB. They are used as shown in the follow-
ing example:

C#

string itemName = "Electric Nail Gun";
string itemColor = "blue";

string sentence = "We have a " + itemColor + " " + itemName;

VB

Dim itemName As String = "Electric Nail Gun"
Dim itemColor as String = "blue"

Dim sentence as String = "We have a " & itemColor & " " & itemName

You create a more complete sentence by concatenating several variables together. Note that it is
absolute—if you want a space between two values, you have to include that yourself; otherwise, the
system directly appends the second string to the fi rst string. In VB, the concatenation operator is dif-
ferent from the arithmetic operator, but in C# they are the same. However, if you use the concatena-
tion operator with a non-string type, it automatically converts that non-string type to a string and
uses that converted string during the concatenation operation.

Converting and Casting Data Types
There will be times when you need to convert one data type to another. One of the most common
scenarios is converting a value to a string. This has to be done for display, as generally the only type
that is ever displayed in a web page is a string. When you see a page that says “There are 5 Electric
Nail Guns available” you know that the byte-typed variable you created in the preceding example
was converted to a string for display.

Converting Data Types
Converting any type to a string is very simple—so simple, in fact, that if you append a .ToString()
to all of your variables, you would see that it works, as it is a built-in capability of every type. That
means the following will work:

C#

// declare our variable with the initial value
byte quantityInStock = 5;

// declare our string with the initial value
string itemName = "Electric Nail Gun";

// lots of work going on here as we figure out all the information

string sentence = "There are " + quantityInStock.ToString() + itemName;

94 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 94

VB

' declare our variable that represents the in-stock quantity for a particular item
Dim quantityInStock As Byte = 5

' declare our string that represents the name of the item
Dim itemName As String = "Electric Nail Gun"

// lots of work going on here as we figure out all the information

Dim sentence as String = "There are " & quantityInStock.ToString() & itemName

As mentioned earlier, there are also some built-in, automatic conversions. Both the “+” and “&”
operators (in their respective language) act to combine, or add, different strings into a single string,
so you can make your combined sentence. However, if you used the following approach, your effort
would still be successful, because using these operators with mixed types is the same as converting
all of the non-string types to string and combining them:

C#

...

string sentence = "There are " + quantityInStock + itemName;

VB

...

Dim sentence as String = "There are " & quantityInStock & itemName

Of course, because the concatenation is absolute, the string-converted version of quantityInStock
and the itemName will be directly next to each other without a space separating them.

Doing a different type of conversion requires a different approach. This is where the Convert class
becomes useful; it converts data in one type to data in another. It supports many different conver-
sions and is simple to invoke, as shown here:

C#

DateTime orderDate = Convert.ToDateTime("01/14/2015");

VB

Dim orderDate as DateTime = Convert.ToDateTime("01/14/2015")

Many different conversions are supported by the Convert class. The preceding example shows a
conversion from a string value to a DateTime, but there are many more. Table 4-3 describes all the
options available when converting a type of double (Double in VB).

Introduction to Programming ❘ 95

c04.indd 12/15/2015 Page 95

TABLE 4-3: Convert.ToDouble() Examples

CALL DEFINITION

ToDouble(Boolean) Converts the specifi ed Boolean value to the equivalent double-precision
fl oating-point number

ToDouble(Byte) Converts the value of the specifi ed 8-bit unsigned integer to the equiva-
lent double-precision fl oating-point number

ToDouble(Char) Calling this method always throws an InvalidCastException, which
means the conversion will fail. You will learn more about exceptions in
Chapter 17.

ToDouble(DateTime) Calling this method always throws InvalidCastException.

ToDouble(Decimal) Converts the value of the specifi ed decimal number to an equivalent
double-precision fl oating-point number

ToDouble(Double) Returns the specifi ed double-precision fl oating-point number; no actual
conversion is performed

ToDouble(Int16) Converts the value of the specifi ed 16-bit signed integer to an equiva-
lent double-precision fl oating-point number

ToDouble(Int32) Converts the value of the specifi ed 32-bit signed integer to an equiva-
lent double-precision fl oating-point number

ToDouble(Int64) Converts the value of the specifi ed 64-bit signed integer to an equiva-
lent double-precision fl oating-point number

ToDouble(Object) Converts the value of the specifi ed object to a double-precision fl oat-
ing-point number

ToDouble(SByte) Converts the value of the specifi ed 8-bit signed integer to the equiva-
lent double-precision fl oating-point number

ToDouble(Single) Converts the value of the specifi ed single-precision fl oating-point num-
ber to an equivalent double-precision fl oating-point number

ToDouble(String) Converts the specifi ed string representation of a number to an equiva-
lent double-precision fl oating-point number

ToDouble(UInt16) Converts the value of the specifi ed 16-bit unsigned integer to the equiv-
alent double-precision fl oating-point number

ToDouble(UInt32) Converts the value of the specifi ed 32-bit unsigned integer to an equiv-
alent double-precision fl oating-point number

ToDouble(UInt64) Converts the value of the specifi ed 64-bit signed integer to an equiva-
lent double-precision fl oating-point number

96 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 96

As you can see, there are a lot of different types from which you can convert to a double; and only
two of them will fail automatically. Some of the others may as well, such as from string or object,
depending on the actual content of the data. Converting a string such as “165.32” converts success-
fully, while “I am not a number-like string” does not convert successfully.

The fi rst approach to conversion discussed was ToString(), which converts any kind of type to a
string. You can also try to convert a string to any other type with the Parse method. The following
example shows how to use the Parse method.

C#

DateTime orderDate = DateTime.Parse("01/14/2015");

VB

Dim orderDate as DateTime = DateTime.Parse("01/14/2015")

The same rules for using the Convert method on a string apply when using the Parse method; the
string value has to be a representative of the type to which the string is being parsed. Each type in
.NET has a default Parse method that can be used to try to convert a string to the data type on
which the Parse method is being called. An exception is thrown if the string value is not something
that can be successfully parsed.

Casting Data Types
The last way to change one type to another is known as casting. Whereas the three methods just
discussed involve converting one type to another, casting takes a different approach. It forces one
type to become another. As you can imagine, this only happens for those types that are compatible
with each other; you can cast an int to a double, for example, but you cannot cast a DateTime to a
double. VB and C# both have different ways to cast items, as shown here:

C#

int baseCost = 100;

double pricePaid = (double)baseCost;
//OR
double pricePaid = baseCost as double;

VB

Dim baseCost As Int = 100

Dim pricePaid As Double = DirectCast(baseCost, Double)
'OR
Dim pricePaid As Double = CType(baseCost, Double)

When using C#, you have two approaches to casting. The fi rst is to put the target type in parenthe-
ses before the variable to be cast. If the types are of incompatible types this could cause a runtime

Introduction to Programming ❘ 97

c04.indd 12/15/2015 Page 97

error. The second type of casting uses the as keyword, which is a little friendlier, in that if the types
are incompatible no exception is thrown; instead, the variable being converted to is set to null.

There are also two different ways to cast in VB, CType and DirectCast. CType is more fl exible than
DirectCast because it allows you to cast between types that look similar, while DirectCast only
allows you to cast between compatible types. As with the cast in C#, either of these approaches in
VB causes an exception to be thrown when the types are not compatible.

Using Arrays and Collections
So far in this chapter you have learned that a type is a single unit, such as an integer or a string.
However, groups of units are commonly used as you work through an application. There are two
main approaches to grouping items: arrays and collections. An array is basically a stack of items
with the same type. There is not much support to an array; items are identifi ed by their index, or the
number that shows their stack rank. A collection is a type that contains multiple objects, generally
of the same type, with additional support built in to make them easier to use.

Using Arrays
All types can be easily converted into an array of types. You do this in C# by appending square
brackets, [], after the type. In VB, parentheses, (), indicate an arrays after the type declaration.
When you are building arrays you need to know how many items will be stored, because that infor-
mation is part of the declaration. The following examples show how this is done:

C#

byte[] quantitiesInStock = new byte[2];

string[] itemNames = new string[2];

VB

Dim quantitiesInStock(1) As Byte

Dim itemNames(1) As String

These two approaches each create a list that can hold two items. As you can see, this means differ-
ent things to C# than it does to VB. In C#, you set the array with the quantity of items that you are
going to be storing in the array; in this case, two. VB is different in that you defi ne the highest index
that will be reached. Because arrays are zero-indexed lists, you use a “1” in your defi nition to indi-
cate that the last value you use is 1, while the list actually contains two items, indexed at 0 and 1.

NOTE An array is a zero-indexed list of units. When you hear zero-indexed,
that means that the fi rst item in the list is at space 0. Thus, the second item in
the list is at space 1. This can lead to confusion, because getting the count of
items in the list results in a value that is higher than your highest index.

98 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 98

When you work with arrays, you access the individual items in the list by their index, as shown here:

C#

string[] itemNames = new string[2];
itemNames[0] = "Electric Nail Gun";
itemNames[1] = "20 lb Sledge Hammer";
string secondName = itemNames[1];

VB

Dim itemNames(1) As String
itemNames(0) = "Electric Nail Gun"
itemNames(1) = "20 lb Sledge Hammer"
Dim secondName As String = itemNames(1)

Note you have to instantiate the array with a count or upper limit; so if you try to access the array
outside of that count, an error is thrown. The following example throws an exception indicating
that you are accessing the array outside of the index range:

C#

string[] itemNames = new string[2];
itemNames[0] = "Electric Nail Gun";
itemNames[1] = "20 lb Sledge Hammer";
itemNames[2] = "Does not matter what my name is, I am going to cause an exception";

VB

Dim itemNames(1) As String
itemNames(0) = "Electric Nail Gun"
itemNames(1) = "20 lb Sledge Hammer"
itemNames(2) = "Does not matter what my name is, I am going to cause an exception"

You have the opportunity to resize an array to prevent the throwing of the exception. C# has an
Array.Resize method, whereas VB has the ReDim and Preserve keywords. ReDim tells the system
to resize the array, while the Preserve keyword ensures that the original values are retained during
the resizing process. Following are examples:

C#

string[] itemNames = new string[2];
itemNames[0] = "Electric Nail Gun";
itemNames[1] = "20 lb Sledge Hammer";
Array.Resize(ref itemNames, 3);
itemNames[2] = "I no longer cause an exception";

VB

Dim itemNames(1) As String

Introduction to Programming ❘ 99

c04.indd 12/15/2015 Page 99

itemNames(0) = "Electric Nail Gun"
itemNames(1) = "20 lb Sledge Hammer"
ReDim Preserve itemNames(2)
itemNames(2) = "I no longer cause an exception"

Arrays are good to work with if all you want to do is load a known set of data and work with those
items by index, because it’s a fast way to manage a set of data as long as you know how large that
data set will be. While both languages provide the capability to resize the array, it is an expensive
process. The need to dimension the array limits their fl exibility. Another side effect that enforces
this limitation is that when an array is instantiated with an upper limit, the system automatically
uses the allocated amount of storage for that array. This means, for example, that declaring an array
with an upper bound of 1,000 would be counterproductive and impair performance if there will be
considerably less than 1,000 members in the list.

Using Collections
Collections can be considered super-arrays. They enable you to better manage the information
within the list than would an array. You can work with them as if they were arrays by accessing
items by their index; but rather than having to limit your collection to a particular size, you instead
just instantiate your collection and then add items to it, from one item to one billion items. As with
arrays, collections are zero indexed; the fi rst item in the collection will be in position 0.

Collections are a bit more complex than arrays in that they introduce the concept of a generic. A
generic is a .NET construct that enables the creation of a special type that works with other types. It
is generic because this special type works with any other type. Here is an example:

C#

List<string> itemNames = new List<string>();

List<byte> quantitiesInStock = new List<byte>();

VB

Dim itemNames As New List(Of String)

Dim quantitiesInStock As New List(Of Byte)

Here a new type is introduced, the List. It is a generic list in that the same type can be used to hold
any other type. The preceding example sets itemNames equal to a List that contains strings, and
quantitiesInStock to a List that contains bytes. This provides fl exibility because the list accepts
any type while still providing type-safety, in that when you instantiate the type, you defi ne the type
that is contained in the list.

Defi ning the type is important when using generic methods in order to ensure type-safety. That’s
why the type to be stored is part of the defi nition—List<string> in C# and List(of String) in
VB, so that the compiler understands the type that needs to be enforced.

100 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 100

GENERICS

This discussion has barely scratched the surface of the power that generics
brings to .NET. Microsoft has a good MSDN article on generics if you are inter-
ested in learning more about how they work and how you can incorporate them
into your application. See https://msdn.microsoft.com/en-us/library/
ms172192(v=vs.110).aspx.

Once you have the List defi ned, working with it is standard, regardless of the type that it contains.
Table 4-4 shows some of the standard ways of working with items in a list.

TABLE 4-4: Using a List

METHOD NAME DESCRIPTION

Add Adds an item of the correct type to the list:

C# - itemNames.Add("Electric Nail Gun")

VB - itemNames.Add("Electric Nail Gun")

AddRange Adds a list of items to another list of items; both lists have to contain items of
the same type:

C# - itemNames.AddRange(anotherListOfStrings)

VB - itemNames.AddRange(anotherListOfStrings)

Clear Removes all items from the list, basically emptying the list:

C# - itemNames.Clear()

VB - itemNames.Clear()

Contains Determines if the list already contains the same value. The method returns a
Boolean indicating whether the value is in the list:

C# - bool isItemInList = itemNames.Contains("Electric Nail

 Gun")

VB - Dim isItemInList As Boolean =

 itemNames.Contains("Electric Nail Gun")

Insert Adds an item to a list at a particular place in the list. The value that is passed
into the method is the zero-based index:

C# - itemNames.Insert(2, "Electric Nail Gun")

VB - itemNames.Insert(2, "Electric Nail Gun")

https://msdn.microsoft.com/en-us/library
https://msdn.microsoft.com/en-us/library/ms172192(v=vs.110).aspx

Introduction to Programming ❘ 101

c04.indd 12/15/2015 Page 101

METHOD NAME DESCRIPTION

InsertRange Allows you to add another list of items at a specifi c location in the list:

C# - itemNames.InsertRange(3, anotherListOfStrings)

VB - itemNames.InsertRange(3, anotherListOfStrings)

Remove Removes a particular value in the list:

C# - itemNames.Remove("Electric Nail Gun")

VB - itemNames.Remove("Electric Nail Gun")

RemoveAt Removes the value at a particular index:

C# - itemNames.Remove(3)

VB - itemNames.Remove(3)

RemoveRange Removes a range of values. It is like a RemoveAt except that you also pass in an
integer defi ning how many items to remove. The following examples remove
two items from the list, starting at index = 3:

C# - itemNames.Remove(3, 2)

VB - itemNames.Remove(3, 2)

There are many other functions that you can perform with lists that you cannot do with arrays, but
they are out of the scope of this chapter. Others are introduced as you work through the sample
application. As you move forward in your development career, you will fi nd generic lists to be one
of the most functional components of .NET. Working with collections is one of the most common
tasks that developers do, and the .NET Framework includes in a lot of support for it.

Decision-Making Operations
A typical application is a series of actions and decisions: The system does some work and then
looks at something to determine what step to next take. These determinations, or decisions, are
critical in a modern system because virtually every step your application makes is based on the out-
come of some previous action. This section walks through a scenario that is included in the sample
application.

Our application holds a list of items, one or more of which may be available for lending. You know
how many are available because there is a count of AvailableItems; thus, if the value in that prop-
erty is greater than 0, you know that at least one item is available for lending. This determination of
availability, based on whether the count is greater than 0, is a decision.

There are two primary decision-making statements, if, then, else and switch\select case. Both
evaluate whether a certain condition exists. Typically, you would check whether a value has a rela-
tionship to another value and then return a Boolean (true/false) value that indicates whether that
relationship exists. Creating and properly evaluating this relationship requires one of the operators
that mentioned earlier in the chapter, the comparison operator.

102 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 102

Comparison Operators
Comparison operators are designed to evaluate the relationship between two different items and
determine whether the relationship between those two items is what is expected. If the relationship
between the two items matches the operator’s expectation, then the operator returns True, else it
returns False. The standard comparison operators are described in Table 4-5.

TABLE 4-5: Comparison Operators

C# VB DESCRIPTION

== = Evaluates whether two values are equal to each other. Note how C# has
the double equals sign; this ensures that the compiler understands the
difference between assigning a value and determining whether they are
equal.

!= <> Evaluates whether two values are not equal to each other

> > Evaluates whether the fi rst value is greater than the second value

< < Evaluates whether the fi rst value is less than the second value

>= >= Evaluates whether the fi rst value is greater than or equal to the second
value

<= <= Evaluates whether the fi rst value is less than or equal to the second value

is Is C#: Determines whether an object is a specifi c type

VB: Determines whether two objects are the same

Comparison operators are the key to making decisions. The following examples show what they
can do:

C#

int smallNumber = 3;
int largeNumber = 4;

smallNumber == largeNumber // returns false - 3 is not equal to 4
smallNumber != largeNumber // returns true - 3 is not equal to 4
smallNumber > largeNumber // returns false - 3 is not greater than 4
smallNumber < largeNumber // returns true - 3 is less that 4
smallNumber >= largeNumber // returns false - 3 is not greater than or equal to 4
smallNumber <= largeNumber // returns true - 3 is less than 4
smallNumber is double // returns false - smallNumber is an int, not a double

VB

Dim smallNumber As Integer = 3
Dim largeNumber As Integer = 4

Introduction to Programming ❘ 103

c04.indd 12/15/2015 Page 103

smallNumber = largeNumber ' returns false - 3 is not equal to 4
smallNumber <> largeNumber ' returns true - 3 is not equal to 4
smallNumber > largeNumber ' returns false - 3 is not greater than 4
smallNumber < largeNumber ' returns true - 3 is less that 4
smallNumber >= largeNumber ' returns false - 3 is not greater than or equal to 4
smallNumber <= largeNumber ' returns true - 3 is less than 4
TypeOf smallNumber is Double ' returns false - item is an Integer, not a Double

Because the result of each of these operators is a Boolean value, you can use this result to evaluate
whether the information fi ts a defi ned criterion.

Logical Operators
Comparison operators are important in helping your code make decisions. Generally, however, it is
not as simple as a single condition check. Sometimes you may need to make multiple checks at the
same time. This is where logical operators come in—they enable you to link multiple comparisons
together using words such as AND as well as OR. This greatly expands your ability to analyze the
condition of your data so that your code makes the appropriate the decisions. The logical operators
are described in Table 4-6.

TABLE 4-6: Logical Operators

C# VB DESCRIPTION

And & Returns true only when all comparisons return true

Or | Returns true when at least one of the comparisons returns true

Not ! Reverses the outcome, turning a true into false or vice versa

AndAlso && Checks each condition from left to right (subject to precedence) and
returns false as soon as one of the comparisons fails

OrElse || Checks each condition from left to right, and returns true as soon as
one of the conditions returns true

These operators are demonstrated in the following examples:

C#

int smallNumber = 3;
int largeNumber = 4;

smallNumber == largeNumber || smallNumber != largeNumber
 // returns true - the 2nd condition is true
smallNumber != largeNumber && smallNumber > largeNumber
 // returns false - the 2nd condition is false
smallNumber == largeNumber | smallNumber != largeNumber
 // returns true - the 2nd condition is true
smallNumber != largeNumber & smallNumber > largeNumber
 // returns false - the 2nd condition is false

104 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 104

VB

Dim smallNumber As Integer = 3
Dim largeNumber As Integer = 4

smallNumber == largeNumber OrAlso smallNumber != largeNumber
 ' returns true - the 2nd condition is true
smallNumber != largeNumber AndAlso smallNumber > largeNumber
 ' returns false - the 2nd condition is false
smallNumber == largeNumber Or smallNumber != largeNumber
 ' returns true - the 2nd condition is true
smallNumber != largeNumber And smallNumber > largeNumber
 ' returns false - the 2nd condition is false

The differences between the || and |, Or and OrElse in VB is important. These differences, also
seen with the && operator, cause the processor to move from the left to the right, evaluating the
comparisons in order. If the system fi nds something that determines the answer to the question, the
solution returns immediately, rather than proceeding through the entire list of conditions. Consider
the following snippet:

C#

string name;
name != null & name.Length > 10

VB

Dim name As String = Nothing
name <> Nothing And name.Length > 10

The way that it is coded now, if the string is set to null (Nothing in VB), then the framework will
react poorly as you try to fi nd out about some information on the null object, as this causes a
NullReferenceException. Replacing the & with a && and the And with AndElse prevents this from
happening; the comparison will fail as soon as it evaluates the null.

If Statement
The fi rst decision-making approach that uses the comparison and logical operators is the if, then,
else statement, which evaluates a condition and then takes a particular action based on that deci-
sion. The following code snippet shows what this looks like:

C#

int availableItems = 1;

if (availableItems > 0) // evaluates whether there are available items
{
 // do some work here
}
else
{

Introduction to Programming ❘ 105

c04.indd 12/15/2015 Page 105

 // display a message that there are no available items to lend
}

VB

Dim availableItems As Integer = 1

If availableItems > 0 Then 'evaluates whether there are available items
 ' do some work here
Else
 ' display a message that there are no available items to lend
End If

As you can see, the structure of this statement is different for each language. C# uses the curly
braces, {}, to defi ne the code block that will run based on the results of the evaluation. In VB, the
code block that is run is based on the code between the If - Else - and End If keywords. Another
difference between the two languages is that C# expects the comparison to be contained within
parentheses, whereas VB evaluates the statements between the If and Then keywords. All of the
comparison operators listed in Table 4-5 are used when evaluating these conditions.

The example makes only one evaluation; you basically have two choices for the fl ow. However, you
can add additional branches to the process:

C#

int availableItems = 1;

if (availableItems > 1) // evaluates whether there are available items
{
 // do some work here
}
else if (availableItems == 1)
{
 // do some special work when there is only one item left
}
else
{
 // display a message that there are no available items to lend
}

VB

Dim availableItems As Integer = 1

If availableItems > 1 Then 'evaluates whether there are available items
 ' do some work here
ElseIf availableItems = 1 Then
 ' do some special work when there is only one item left
Else
 ' display a message that there are no available items to lend
End If

Using the additional condition adds fl exibility to the if statement. However, there is another state-
ment that is designed to handle multiple evaluations. In C#, this is the switch statement; in VB it is
called the Select Case.

106 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 106

Switch/Select Case Statement
The switch / Select Case statement is used to evaluate a value against a set of known values. It
is different from the If statement in that there is no set of operators that are used; all the various
options are assumed to be “equals.” Here is an example:

C#

switch (availableItems)
{
 case 1:
 // do some special work when there is only one item left
 break;
 case 0:
 // display a message that there are no available items to lend
 break;
 default:
 // do some work here
 break;
}

VB

Select Case availableItems
 Case 1
 ' do some special work when there is only one item left
 Case 0
 ' display a message that there are no available items to lend
 Case Else
 ' do some work here
End Select

As mentioned previously, it is expected that one of the cases will match the item being evaluated. If
no item matches the case, the statement selects the default case if there is one. This default case is
identifi ed with the keyword default in C# or by the phrase Case Else in VB. If the statement does
not have this choice, then processing continues on the next statement after the closing curly brace
(C#) or the End Select (VB).

Loops
One of the most common things that a developer does with a list of information is to go through the
list and take the same action on each item. The process of repeating a set of code multiple times in
a row is called looping, because the code fl ow loops from the beginning through the end of a code
block and back to the beginning of the code block as many times as needed.

There are three main types of loops: for, for each, and do. Each represents a different way to
satisfy the same need of enabling a set of code to be run multiple times.

For Loop
A for loop requires that you understand exactly how many times you are going to be running
through the loop before you start the processing. This approach to looping looks like the following:

Introduction to Programming ❘ 107

c04.indd 12/15/2015 Page 107

C#

for(int loopCounter = 0; loopCounter < 5; loopCounter++)
{
 // do some work here 5 times
}

VB

For loopCounter As Integer = 1 To 5
 ' do some work here 5 times
Next

These constructs are quite different in terms of how they work with the information. In C#, the con-
struction of the for has three sections separated by a semicolon. This semicolon is C#’s indication
that the code has reached the end of processing for that section. The three sections in order are as
follows:

 ➤ int LoopCounter = 0 : This is the start condition. It sets the variable that will be used to
trace the amount of times that the loop executes.

 ➤ loopCounter < 5 : As long as this condition is true, the looping continues, so in this case
the loop will continue until loopCounter >= 5.

 ➤ loopCounter++ : This defi nes the step that will be taken at the end of each loop. In this case,
the variable loopCounter is incremented by one each time the code block is processed.

INCREMENT AND DECREMENT OPERATORS AND ASSIGNMENT
SHORTCUTS

Two common operators that you have yet to work with are the increment (++) and
decrement (--) operators. These operators are only available in C# but you will fi nd
them very useful in loops and other processes that require a running count. These
operators can go before the variable being incremented, such as “++variable”, or
after the variable, like “variable++”. However, they have different results, as the
order of precedence goes from left to right. Thus, in the preceding example with
the for loop, the loopCounter is evaluated and then incremented. If the code were
written with a ++loopCounter, then the item would be incremented before evalu-
ation; thus, the code would only be processed four times rather than the expected
fi ve times.

This does not mean that there is no easy way to do this short-cut approach of incre-
menting or decrementing a variable in VB, however. Both languages offer the capa-
bility to shortcut the assignment operator and an arithmetic operator. This allows
loopCounter += 1 to be equivalent to the ++ operators; the += is interpreted the
same as loopCounter = loopCounter + 1.

Creating the For statement in VB is more obvious. The For keyword defi nes the starting point,
and the assignment specifi es the range for the loop: in the preceding example, 1 To 5. The code
within the For and Next keywords is the code block to be processed.

108 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 108

This is a simple application of the For loop. You can also use this construct to access every item in a
collection. As you can imagine, this is an extremely useful implementation. Creating a For loop that
iterates through each item in a collection is shown here:

C#

List<string> collection = new List<string>();

// do some work to put a lot of items into the list

for(int loopCounter = 0; loopCounter < collection.Count; loopCounter++)
{
 collection[loopCounter] += " processed";
 // do some work here as many times as there is items in the list
}

VB

Dim collection As New List(Of String)

' do some work to put a lot of items into the list

For loopCounter As Integer = 0 To collection.Count - 1
 Collection(loopCounter) += " processed"
 ' do some work here as many times as there is items in the list
Next

When you review the code, keep in mind that collections, like arrays, are zero-indexed. This is why
the loop initialization starts with a 0. Also, because the count of the number of items in the collec-
tion is not zero-indexed, you have to ensure that you don’t try to get an item at an index that is the
same as the count of the collection. Doing so would result in being one item past the end and thus
result in a runtime exception.

The For loop has some complexity in setup, and when working with collections it allows for the
possibility that you might call an item outside the allowed range. Fortunately, another loop structure
was created purely to work with collections, and it is very easy to set up: the foreach or For Each.

Foreach/For Each Loops
This approach to looping is designed specifi cally to work with collections, as it easily identifi es each
item in the list. The following example shows how these work:

C#

List<string> collection = new List<string>();

// do some work to put a lot of items into the list

foreach(string item in collection)
{
 item += " processed";
 // do some work here as many times as there is items in the list
}

Introduction to Programming ❘ 109

c04.indd 12/15/2015 Page 109

VB

Dim collection As New List(Of String)

' do some work to put a lot of items into the list

For Each item As String In collection.Count
 item += " processed"
 ' do some work here as many times as there is items in the list
Next

The primary thing to notice here is that the foreach/For Each structure takes each one of the items
in the collection, names it (item in the example), and then works with that named variable while
within the loop. These variables are not available outside the loop, but any changes that are made to
each item in the loop will persist with the item in the list after the loop is completed.

Both the for and for each loops have a safety factor; they have a built-in end. The for ends when
the condition is completed, while the foreach ends when the list is completed. The last type of
loop, the while loop, does not have the same protection built into it.

While Loop
The while loop processes until a condition is met. An example of code creating a while loop is
shown here:

C#

bool isDone = false;
int total = 0;

while (!isDone)
{
 if (total > 100)
 {
 isDone = true;
 }
}

VB

Dim isDone As Boolean = False
Dim total as Integer = 0

While Not isDone
 If total > 100 Then
 isDone = True
 End If
End While

You have to be careful with While loops because they lack a built-in terminator.

110 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 110

Exiting Loops
There are a few keywords that you can use to exit the loop from within it. These keywords, break
for C# and Exit For in VB, immediately stop the code fl ow within the loop.

C#

List<string> collection = new List<string>();

// do some work to put a lot of items into the list

for(int loopCounter = 0; loopCounter < collection.Count; loopCounter++)
{
 if (loopCounter > 100)
 {
 break;
 }
}

VB

Dim collection As New List(Of String)

' do some work to put a lot of items into the list

For loopCounter As Integer = 0 To collection.Count - 1
 If loopCounter > 100 Then
 Exit For
 End If
Next

ORGANIZING CODE

One of the most useful features in ASP.NET is the capability to extract code used in different places
and put it in a central place from which all the other pieces of code that may need to run it can call
it. This eliminates the need to copy and paste code all over your application, and it’s quite useful
when a defect needs to be resolved: Fixing it in one area of your code fi xes any other pages that use
that code.

Suppose, for example, your application will display recent news headlines in every page of your site.
Rather than copy the code multiple times to achieve that, you can put the necessary code in a com-
mon place from which every page that needs it can call it. Write it once, call it often.

This is where code organization becomes important. Now that you know that this code should be
located where numerous pages can call it, the next challenge is determining how to organize the
code such that it makes sense and is easy to fi nd and call from the rest of your application.

Methods: Functions and Subroutines
Functions and subroutines are ways to create blocks of code that can be called from other code. As
covered later in this chapter in the discussion of object-oriented design, both of these approaches
are also known as methods. There are two types of methods—one returns a type to the caller and

Organizing Code ❘ 111

c04.indd 12/15/2015 Page 111

the other doesn’t return a type. In C# you use the same kind of approach when building either type
of method; however, it is different in VB. Functions and subroutines are VB keywords; a Function
returns a type, while a Sub does not. The following example shows how you call these two types of
methods:

C#

string thirdWord = GetThirdWord(); // call a method called GetThirdWord

DoSomeWork(); // call a method called DoSomeWork

VB

Dim thirdWord As String = GetThirdWord() 'call a method called GetThirdWord

DoSomeWork() 'call a method called DoSomeWork

As you may have noticed, there are two main differences between a method and a variable. First,
when calling a method you do not have to defi ne the type. Second, the method is called with paren-
theses. These parentheses are important, because you can pass information into a method as well as
get a type returned. This could look like the following:

C#

string completeSentence = "I am a much longer sentence";

// call a method called GetThirdWord, passing in another string
string thirdWord = GetThirdWord(completeSentence);

VB

Dim completeSentence As String= "I am a much longer sentence"

' call a method called GetThirdWord, passing in another string
Dim thirdWord As String = GetThirdWord(completeSentence)

Calling a method is straightforward. Defi ning and creating methods are more complicated. The
following snippet shows a simple method that takes a string, uses the Split method to break the
parameter into an array, and then returns the third value in the array (remember it is zero-indexed):

C#

public string GetThirdWord(string sentenceToParse)
{
 string[] words = sentenceToParse.Split(' ');
 return words[2];
}

VB

Public Function GetThirdWord(sentenceToParse As String) As String

112 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 112

 Dim words As String() = Split(sentenceToParse, " ")
 Return words(2)
End Function

It was mentioned earlier that there is a type of method that doesn’t return anything; instead, it does
a unit of work and then ends. The following code snippet shows how this type of method is created:

C#

public void DoSomeWork()
{
 // code doing some work here
}

VB

Public Sub DoSomeWork()
 ' code doing some work here
End Function

The key is the return type. In C# there is no return type; instead, the method is labeled as void to
indicate the lack of return. VB is different in that rather than a Function, which includes a return
type, it is instead a Sub (short for subroutine).

Writing Comments and Documentation
Most of the code snippets in this chapter include some text that explains what the code is doing.
This approach is useful not only for instructional books such as this, but also for any kind of cod-
ing. In an ideal world, you would write perfect code that would be perfectly suited to any future
purpose. Were that even possible, however, it will almost certainly be worked on by someone who
has never seen it before and who may have minimal contextual background. Or, because it was
written so long ago, you yourself may not remember what decisions you made or why you made
them. For these reasons, adding comments is useful, especially in areas of your code that may be
complex or implement specifi c business rules.

Inline comments are those within the body of your code. These are usually used to provide addi-
tional details about that section of your code as shown in the following snippets. They may also be
used to remove some lines of code when you are doing a refactoring; you don’t want the code to be
run but nor do you want to completely remove it until you are confi dent that the new code works as
expected.

C#

// comment on its own line
int Id = 3; // comment on the same line as code

/*
* C# has a special comment type for doing multiple lines

Organizing Code ❘ 113

c04.indd 12/15/2015 Page 113

* at the start you put the slash - asterisk and the end is asterisk and slash
* everything in between is commented out. There is no comparable
* facility in VB
*/

VB

' comment on its own line
Dim Id as Integer = 3 ' comment on same line as code

You can enter the comments manually, or you can highlight the lines you want to comment, such as
when commenting out existing code, and click the Add Comment button on the toolbar.

You can also add comments to methods. You may have noticed how IntelliSense provides informa-
tion about the items that you may be selecting. You can have your methods provide the same kind of
support through a different kind of comment, XML comments. XML comments enable you to add
extra details to your methods, basically adding comments that apply to the entire method. The fol-
lowing snippets show you how to do this:

C#

/// <summary>Does some work on the parameter</summary>
/// <param name="thingToDoWorkOn">The thing that will have work done on it.</param>
/// <returns>This method returns true if the work was done successfully.</returns>
public bool DoSomeWork(string thingToDoWorkOn)
{
 // code doing some work here
 return true;
}

VB

''' <summary>Does some work on the parameter</summary>
''' <param name="thingToDoWorkOn">The thing that will have work done on it.</param>
''' <returns>This method returns true if the work was done successfully.</returns>
Public Function DoSomeWork(thingToDoWorkOn As String) As Boolean
 ' code doing some work here
 Return True
End Function

Several tags are available, each of which plays a different part in the documentation. The content in
the summary element is displayed in IntelliSense, so it needs to give potential users enough informa-
tion about the method that they can determine whether it is the method they need. Because the code
is separated out to enable use in multiple areas, any additional support you provide based on the
XML comments will be useful. The param element contains a description of the parameter that is
being passed in, while the returns element provides a description of what is returned and what it
means in the context of the method. Figure 4-1 shows how the XML comments help provide infor-
mation in IntelliSense.

114 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 114

FIGURE 4-1: Demonstration of XML comments in IntelliSense

Comments become more important as methods and the work that they do gets further away from
the code that may be requesting the work. Recall that earlier it was noted that moving the code into
a shared area increases reuse. This software development approach, based on determining the best
way to understand and organize code, is known as object-oriented programming.

OBJECT-ORIENTED PROGRAMMING BASICS

Object-oriented programming (OOP) is an approach to programming whereby everything that is
part of your application can be defi ned as an object, or something that has properties and can take
actions. This is fundamental to .NET, as everything is, at the base, an object. You can see this dem-
onstrated with the following code snippets:

C#

int iAmAnInteger = 6;

object nowIAmAnObject = (object)iAmAnInteger;

VB

Dim iAmAnInteger as Integer = 6

Dim nowIAmAnObject as Object = DirectCast(iAmAnInteger, Object)

Everything in .NET can be successfully cast, or converted, into an object. Why should you care
about this? It’s important because it illustrates that an application can be viewed as a series of inter-
actions between different objects.

When you review the requirements for the sample application you can see different kinds of con-
structs that would be useful. The following list describes these constructs, or ways to defi ne parts of
the program:

 ➤ Item: The material that is loaned

 ➤ User: The person who checks out the item

 ➤ Order: Represents the list of items that were checked out by the person

Important OO Terminology ❘ 115

c04.indd 12/15/2015 Page 115

A preliminary review of the requirements resulted in three different objects that you need to defi ne
in the application. As you start getting into the implementation, you will discover more useful
objects, but this provides a good starting point for the discussion.

IMPORTANT OO TERMINOLOGY

The preliminary list of objects that were just defi ned for the sample application are your start-
ing blocks. In this section you’ll look at how you build these out to be useful within the ASP.NET
application.

Classes
An object is defi ned by the key word “class.” The following snippet demonstrates creating a class
that represents an Item—the thing that will be loaned out from the library:

C#

public class Item
{
}

VB

Public Class Item

End Class

The use of brackets (for C#) and the End keyword (for VB) indicate the expectation that a class con-
tains other items.

A class, or object, can be considered a container for other information. The fi rst type of informa-
tion that it contains is called a descriptor. When you consider the item that will be loaned, there is a
minimal set of information that can be used to describe that object. This minimal set of information
is as follows:

 ➤ Name

 ➤ Description

 ➤ Cost

 ➤ ItemNumber

 ➤ Picture

 ➤ Person who has it checked out

 ➤ Date it was checked out

 ➤ Date it is due back in

 ➤ Date it was acquired

 ➤ Whether it is currently available

116 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 116

There are two different approaches to including this information about the class, fi elds and
properties.

Fields
Fields are a way to store information within a class. Typically, a fi eld is used to store information
that isn’t accessed by anything outside of the class, but that is not a requirement.

ACCESS MODIFIERS

You have seen the keyword public in some of the examples. This is an access
modifi er; it determines what can access the item to which it is applied. Public,
the modifi er used until now, means that any block of code can access that item.
Another access modifi er is private. Using this keyword indicates that the item
being modifi ed is not accessible outside of its defi ning class.

Classes, methods, fi elds, and properties can all have access modifi ers as part of
their defi nitions. You cannot make an internal item more accessible than the con-
taining item; that is, a private class cannot have a public property.

A fi eld is defi ned within a class as follows:

C#

public class Item
{
 private double temporaryValue;
}

VB

Public Class Item

 Private temporaryValue as Double

End Class

Setting the fi eld is simple, and nothing happens when a fi eld is set, other than the value changing.
This is also familiar because it is how you were defi ning and setting variables up until now. The
other approach to creating information holders in a class is more powerful in that it allows work
to happen when a value is set or when its value is “gotten” or used. This other approach uses a
property.

Important OO Terminology ❘ 117

c04.indd 12/15/2015 Page 117

Properties
A property is different from a fi eld in that the property is intended to defi ne the characteristics of the
object, whereas the fi eld is intended to serve as a way to make types accessible within the class. The
list created earlier includes all properties of an Item. Properties are defi ned differently than fi elds as
well, as shown in the following code snippet, which shows the creation of properties:

C#

public class Item
{
 public string Name { get; set; }
}

VB

Public Class Item

 Public Property Name() as String

End Class

In C#, the difference between a fi eld and a property is the addition of the { get; set; },
whereas VB has a different keyword to demonstrate that the item being referred to is a property
rather than a fi eld. Also note that the property name has parentheses following it, just like the
methods covered earlier.

The preceding snippet shows the easiest way to create a simple property. However, if you look at a
more complete implementation, you start to see some of the power that is available. The following
snippets show a different approach to creating a property:

C#

public class Item
{
 public string Name { get; set; }

 public string ShortName
 {
 get
 {
 if (Name.Length > 10)
 {
 return Name.Substring(0, 10);
 }
 else
 {
 return Name;
 }
 }
 }
}

118 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 118

VB

Public Class Item

 Public Property Name() as String

 Public Property ShortName() as String
 Get
 If Name.Length > 10 Then
 Return Name
 Else
 Return Name.Substring(0, 10)
 End If
 End Get
 End Property

End Class

Note several differences in this code snippet. While the Name property remains the same, a
ShortName property has been added. Also added is some logic under the get keyword that deter-
mines whether the Name property is longer than 10 characters. If so, it returns the fi rst 10 characters;
when the Name is less than 10 characters, the value of the Name property is returned.

This shows you the power of properties as opposed to fi elds; they can perform business logic when
they are gotten or set. When a property is accessed with the intention of getting its value, it is got-
ten, so it runs through the get code group. If the property is accessed so that it can be given, or
assigned, a value, this access happens through the set code group.

Another aspect of a property displayed in the preceding code snippet is that the ShortName does not
have a set code section. That means that trying to set the value will fail; in this case it “sets itself”
by calculating its own value based on the value of another property.

The last aspect of a property to note is that you need to manage the actual value of the item if you
are going to be doing some logic. You saw the shortcut way to create a property in the preceding
example. It’s called a shortcut because the work it does behind the scenes is equivalent to the follow-
ing code snippet:

C#

private string _name;

public string Name
{
 get { return _name; }
 set { _name = value; }
}

VB

Private _firstName As String

Important OO Terminology ❘ 119

c04.indd 12/15/2015 Page 119

Public Property FirstName() As String
 Get
 Return _firstName
 End Get
 Set(value As String)
 _firstName = value
 End Set
End Property

This concept of a backing fi eld is important when working with properties because as soon as you
start to do business logic, you lose the capability to use that property as an actual container. The
preceding ShortName example didn’t need to actually hold a value; it just performed a calcula-
tion on another property and returned the results from that action. Consider a different example.
Suppose there is a business requirement that an item needs to have an AcquiredDate, the day
that the item was acquired by the library. When an item doesn’t have a date already assigned, the
AcquiredDate should be set to the fi rst day the library was in operation, January 5, 2014. The fol-
lowing code snippet shows how you can do that:

C#

private DateTime _acquiredDate;

public DateTime AcquiredDate
{
 get
 {
 if (_acquiredDate == DateTime.MinValue)
//you use MinValue because that is what DateTime is created with
 {
 _acquiredDate = new DateTime(2014, 1, 5);
 }
 return _acquiredDate;
 }
 set { _acquiredDate = value; }
}
VB
Private _ acquiredDate As DateTime

Public Property AcquiredDate () As DateTime
 Get
 If acquiredDate = DateTime.MinValue Then
 _acquiredDate = new DateTime(2014, 1, 5)
 End If
 Return acquiredDate
 End Get
 Set(value As DateTime)
 _ acquiredDate = value
 End Set
End Property

120 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 120

Here, the getter fi rst checks whether the private value has been set to the DateTime.MinValue, the
default value when a DateTime object is created. If it has that value, then it means that no “real”
date was set; therefore, the rule kicks in and sets the date to the appropriate value. In addition,
because not only is the value returned but the backing fi eld is set, so the next time the getter is called
the value is returned automatically without having to be reset. Also, if an outside action wants to set
the value, it is able to do so without any problem; and if the value is set before the get is requested,
then it will have the proper data. You will see how this works in more detail when you start working
with databases in Chapter 9.

Methods
You have already spent some time looking at methods and how they are created. However, these
become important when you consider objects, because objects can contain more than just properties
and fi elds; they can contain methods as well. When a method is part of an object, the expectation
is that the method performs an action on that object. This kind of approach provides abstraction,
meaning that consumers of the object do not have to know everything about the object to make it
work. The following code snippet shows a method on an Item that handles the process of a person
checking out that item:

C#

public void CheckoutItem(Person personWhoCheckedOutItem, DateTime dateDue)
{
 CheckedOutBy = personWhoCheckedOutItem;
 DateOut = DateTime.Now;
 DateExpectedIn = dateDue;
 // lots of other work happening here
}

VB

Public Sub CheckoutItem(personWhoCheckedOutItem As Person, dateDue as DateTime)
 CheckedOutBy = personWhoCheckedOutItem
 DateOut = DateTime.Now
 DateExpectedIn = dateDue
 ' lots of other work happening here
End Function

This enables the calling code to perform its work without understanding exactly what is happening
beneath the covers; the code just calls the method with the assumption that it is taking care of every-
thing that the Item may need to do to be checked out. Methods are not the only way that you can
perform actions on objects. Objects can also do work on themselves during their construction.

Constructors
Constructors are OO-based ways to manage the creation or instantiation of an item. In an earlier
example you had a getter check a value and change the value as needed. Another solution would be
to create the object with the default value being the desired value, rather than having the value check
it each time it is called. The following code snippet demonstrates how this could be done through
the use of a constructor:

Important OO Terminology ❘ 121

c04.indd 12/15/2015 Page 121

C#

public class Item
{
 public Item()
 {
 AcquiredDate = new DateTime(2014, 1, 5);
 }

 public DateTime AcquiredDate { get; set; }
}

VB

Public Class Item

 Public Sub New()
 AcquiredDate = New DateTime(2014, 1, 5)
 End Sub

 Public Property AcquiredDate As DateTime

End Class

The constructor in C# does not have a return type, and the name of the code block is identical to
the class name. VB does it differently in that the constructor is a subroutine (Sub), with the name
being the keyword New.

Because the constructor is really a special method that is called during instantiation of the object,
it can have parameters as well. You can see how that would work by looking at the work you are
doing in the constructor; the DateTime object is being instantiated using parameters for the con-
structor, the year, the month, and the day.

Inheritance
That anything in .NET can be cast as an object indicates one more key feature of object-oriented
programming: inheritance. Inheritance enables you to build a type based upon another type, so the
new type has all the properties and methods of the inherited type. Although inheritance is not part
of the example application’s requirements, this section takes a look at how the application could use
it if needed, as you will almost certainly make use of inheritance in subsequent development work
you do.

You have looked at the Item object and the role that it plays as the thing to be checked out. Imagine
that you need to store a lot more information that may be specifi c to the type of item. For example,
suppose you want to track the following properties in addition to all the properties that you defi ned
for an Item object:

 ➤ Gas-powered item

 ➤ Type of fuel

 ➤ Size of gas tank

 ➤ Duration of use with full tank

122 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 122

 ➤ Oil required

 ➤ Electric-powered item

 ➤ Volts required

 ➤ Length of cord

 ➤ Needs ground plug

You could take three approaches to this. One, you could put all of these properties onto the item
and just use those that you want, knowing that many properties may be unused. Two, you could
copy all the properties from the item onto the two new types, GasItem and ElectricItem. Three,
you could use inheritance such that both GasItem and ElectricItem inherit from Item so that all
the properties and methods of Item become available to GasItem and ElectricItem. The following
example shows how to do that, followed by an explanation:

C#

public class Item
{
 public DateTime AcquiredDate { get; set; }
 public string Name { get; set; }
}

public class ElectricItem : Item
{
 public double VoltsRequired { get; set; }
 public double LengthOfCord { get; set; }
}

VB

Public Class Item

 Public Property AcquiredDate As DateTime
 Public Property Name As String

End Class

Public Class ElectricItem Inherits Item

 Public Property VoltsRequired As Double
 Public Property LengthOfCord As Double

End Class

The preceding snippet has created two classes, Item and ElectricItem, and created ElectricItem
in such a way that it inherits from Item. In C# this is done by appending the colon (:) and the name
of the class to inherit after the inheriting class’s defi nition. In VB, the keyword Inherits is used to
defi ne the relationship. Because ElectricCar inherits from Item, the properties on the Item, such

Important OO Terminology ❘ 123

c04.indd 12/15/2015 Page 123

as AcquiredDate and Name, are also available on the ElectricItem. This means that IntelliSense
would display what is shown in Figure 4-2 when you look at the defi nition of an ElectricItem.

FIGURE 4-2: Inheritance displayed in IntelliSense

Note also in Figure 4-2 that there are methods for ToString, Equals, and GetHashCode. Although
you did not defi ne these methods, these indicate that all custom types, such as your classes, inherit
objects, and these methods are included in the object defi nition; thus, they are available through
inheritance to all other custom objects.

Inheritance will be used several times throughout the application, used in both Web Forms and
MVC to create functionality that is shared in multiple places, such as base classes for Web Form
pages and MVC controllers.

Events
This chapter has described how an OO approach enables you to take code and put it in a central
place where other code can use it. This enables you to create an object and then communicate with
that object by changing properties and running methods. So far, however, there has not been a way
for that object to communicate to the code that was using it outside of the value returned from the
method. The .NET Framework provides that capability through events.

Events have been covered in a different context, as part of the fl ow of a Web Form submitting itself
back to the server, during which the server breaks the processing into different stages, with each
stage calling events when it is starting and stopping. Web Forms can also provide events when
actions such as clicking a button or changing the value of a dropdown list are taken.

Any kind of action can fi re an event, regardless of whether the object fi ring the event is a .NET
object or a custom object. Because the purpose of an event is to communicate outside of the class,
one of the keys to using events is having a clear understanding of what information may need to be
communicated outside the class.

Another key to using events is that the code that is expecting the communication must have an
instantiated version of that class. Finally, the class expecting the communication (the class that
needs to know when an event has been triggered) must have an event handler, a special method that
both registers for and receives the event as it is fi red. This event handler must be assigned to the
event as well as have the same message signature defi ned by the event.

124 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 124

This book doesn’t cover creating events themselves. They are generally rare in web application devel-
opment aside from the ASP.NET Web Forms built-in page life-cycle events. You do, however, need
to learn about creating event handlers, because they are used frequently when developing within
Web Forms.

An event handler is a method that has a prescribed signature, or return type and parameter list. The
most common event handler, shown here, is created on a Web Form page by default:

C#

protected void Page_Load(object sender, EventArgs e)
{
}

VB

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
Handles Me.Load

End Sub

As you can see, there are two parameters for this method, the object that fi red the event and the
arguments passed by the event. These EventArgs, or event arguments, pass the information that is
needed by the method doing the listening.

The same approach is used when you are wiring event handlers to an event being fi red from an item
in a Web Form. The following snippet shows the ASP.NET control that was created in the page as
well as the event handler for that event:

C#

<asp:Button runat="server" OnClick="Button_Click" />

protected void Button_Click(object sender, EventArgs e)
{
}

VB

<asp:Button runat="server" OnClick="Button_Click" />

Protected Sub Button_Click(ByVal sender As Object,
 ByVal e As EventArgs) Handles Me.Load

End Sub

If you are working within this method, you can cast the object named sender as a Button. This
demonstrates that the sender is the object fi ring the event. The EventArgs holds information that
may be relevant to the event being thrown, and the object that fi res the event defi nes the type
of information within that class. As you continue to build the sample application, you will see
instances that use both of these parameters in the code.

Summary ❘ 125

c04.indd 12/15/2015 Page 125

SUMMARY

This short chapter covered the basics of programming used in almost all languages, especially
object-oriented programming languages. Operators, loops, and decision-making structures are used
everywhere, while most of the high-level programming languages, even other ones you may have
heard of such as C++, C, and Java, also contain defi ned data types and classes.

The fi rst part of this chapter provided background about the ways to defi ne variables, use data
types, and assign values to variables. It also described how to use collections of information, espe-
cially in arrays and lists. At this point, you should also have an understanding of looping, or how to
execute the same block of code multiple times, sometimes doing the same operation on every item in
a collection.

The chapter also covered making decisions—in particular, how using If or Switch statements
enables the application to evaluate an object in order to determine what step to take next. This
ability to make appropriate decisions is critical in any application.

The last half of the chapter provided a brief introduction to the complex topic of object-oriented
programming. Entire books have been written about this topic, so curious readers are encouraged
to explore those. This chapter touched on all of the pieces that you need going forward to build the
sample application, so when you get to them in subsequent chapters, you will understand the terms
and recognize the approaches.

This is also the last time that you will be seeing VB within the code samples. Going forward, you
will only see C# code samples. However, the downloads available for this book have both versions,
and the fi lenames and class names are the same to make it easy to fi nd the appropriate area for refer-
ence if you plan to work with VB.

EXERCISES

 1. What would the following code have as the fi nal value for resultsAsAString?

C#

int oneNumber = 1;
int twoNumber = 2;

string resultsAsAString = "What is my result? " + oneNumber + twoNumber;

VB

Dim oneNumber as Integer = 1
Dim twoNumber as Integer = 2

Dim resultsAsAString as String = "What is my result? " & oneNumber & twoNumber

 2. What is wrong with the following code?

126 ❘ CHAPTER 4 PROGRAMMING IN C# AND VB.NET

c04.indd 12/15/2015 Page 126

C#

List<string> collection = new List<string>();

// do some work to put a lot of items into the list

string valueToWrite;

for(int loopCounter = 0; loopCounter <= collection.Count; loopCounter++)
{
 valueToWrite += collection[loop];
 // do some more work
}

VB

Dim collection As New List(Of String)

' do some work to put a lot of items into the list

Dim valueToWrite as String

For loopCounter As Integer = 0 To collection.Count
 valueToWrite += collection(loop)
 ' do some more work
Next

 3. Which would be the better choice for iterating through an entire collection: For Each or Do?

Summary ❘ 127

c04.indd 12/15/2015 Page 127

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Array A simple collection of items that are accessed by their index number.
The array has to be dimensioned upon creation; that is, you must
know the number of items that will be stored in the array.

Class A class is how an object is defi ned; it is the base type of virtually
everything in an object-oriented language.

Collection A collection is a generic word describing any kind of type that is able
to contain multiple other items.

Constructor A special method that is called every time a class is instantiated

DataType A classifi cation that helps defi ne the type of an object. It is generally
used for base types such as integers, bools, doubles, etc.

Field A value that is part of a class. A fi eld is simply a container of data; it
cannot do any processing when you get or set the value.

Inheritance Describes a hierarchy whereby one class becomes a child of another;
all the properties and methods of the parent class are accessible to
the child class.

Instantiation The process of creating a new version of an object. The constructor is
called during instantiation of a class.

List An object that will hold a generic list of pre-defi ned types. It differs
from an array in that it provides a lot more functionality, including
adding, removing, and adding multiple items. You can also check
whether an item has already been added. You do not have to know
the size of the list before you instantiate it.

Method A method is a way to do work. It defi nes a code block, giving it a
name, a set of parameters, and a return type if desired.

Object Orientation A school of development that defi nes everything in the application
domain as being an object. Each object has a set of properties and
can take a set of actions (methods).

Properties Properties contain the values that describe a class. They can also per-
form logic when the property is being set or requested.

void A special return type for a method in C# that indicates there is no
return from this method. It is equivalent to a VB subroutine.

c05.indd 12/15/2015 Page 129

ASP.NET Web Form Server
Controls

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Fundamentals of ASP.NET Web Form Server controls and how you
can use them in an application

 ➤ The different kinds of available server controls

 ➤ How the server controls work

 ➤ How to confi gure the controls

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the
chapter 05 download and individually named according to the names throughout the chapter.

Earlier chapters listed the advantages of using the ASP.NET Web Form approach for building
a web application. One of these advantages is the number of built-in controls available out of
the box, as well as the large number of third-party controls that are available. These controls
are all server controls, and in this chapter you will see how advantageous it is to have these
kinds of server controls available to help support your development efforts. By the end of the
chapter, you will be able to compare this approach with the approach taken in ASP.NET MVC
in order to better understand which approach would best support your future projects.

INTRODUCTION TO SERVER CONTROLS

Server controls are add-ins to the markup section of your application, the area where you
add the HTML. The ASP.NET server control is an element that is added to an .aspx fi le
and exposes properties, methods and events that can be accessed by the code-behind fi le (the

5

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

130 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 130

aspx.cs or aspx.vb fi le). The simple goal of a server control is to provide access to elements of the
UI from code. However, many controls go far beyond that and provide built-in functionality that
developers can take advantage of, enabling portions of the application to basically write themselves
simply by wiring in the appropriate server controls. The controls themselves live and are run on the
server, which takes the control’s work and outputs HTML into the page sent back to the browser.
Their purpose is to automate the creation of HTML as well as to help handle the information when
it comes back to the server.

There are many different types of server controls that are either included with ASP.NET or are
available from third party vendors. Some server controls act as wrappers around traditional HTML
elements. Other controls provide access to and help manage the display of data. There is a third sub-
set of controls that performs validation on other controls, ensuring that they fi t a specifi c set of crite-
ria. A fourth category of server controls handles navigation, or the moving from one page to another
in your web application. The last major type of control that is covered is login controls, which were
created to provide registration and authentication support. One additional subset of server controls
is covered in this chapter, the HTML controls. These are not the same type of controls as your basic
server controls in that they are traditional HTML elements that are “reachable” from code.

DEFINING CONTROLS IN YOUR PAGES

Because server controls are designed to provide support for the user interface, they are generally
called in the HTML, or markup, section of the page—the same area where you were going over styl-
ing. There are two ways that you can add a server control to your page: through the combination of
manual entering and IntelliSense or through the Visual Studio Toolbox. If you are unable to view
the Toolbox window in Visual Studio, you can access it through the View menu option by selecting
Toolbox. The Toolbox is shown in Figure 5-1.

You can also enter controls manually, with IntelliSense support, as shown in Figure 5-2.

Figure 5-2 gives you some idea of how server controls are created within the markup section. One
important thing to realize is that regardless of the language being used in the code (C# or VB), the
creation of server controls in the UI is the same. It is not language agnostic so much as it is in a dif-
ferent language altogether, feeling more like the HTML code with which it interacts.

Because it is HTML-like, the format of the control should come as no surprise:

<asp:ServerControlName runat="server" />

As you can see, it takes the same open bracket, attributes, and closing brackets that HTML does.
The main difference that applies to all server controls is that the element name is always prefaced
by asp:, and you need a runat attribute that is set to server. The asp: is the namespace of the
controls, but this prefi x also acts to group all server controls together in IntelliSense. The runat
attribute, when set to server, enables the control to be accessed in the code-behind. Without this
attribute set, it is not possible to interact with the control on the server, basically making it useless
as a server control.

Defi ning Controls in Your Pages ❘ 131

c05.indd 12/15/2015 Page 131

FIGURE 5-1: Toolbox menu in Visual Studio

FIGURE 5-2: IntelliSense support for manually entering server controls

132 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 132

Consider what this would look like from both the UI side and the code side:

UI

<asp:TextBox runat="server" ID="mainTextBox" />

CODE-BEHIND

protected void Page_Load(object sender, EventArgs e)
{
 mainTextBox.Text = "I am text for the textbox";
}

The combination of these two, the server control in the .aspx page and the code in the aspx.cs
page, create the following HTML:

<input name="mainTextBox" type="text" value="I am text for the textbox"
 id="mainTextBox" />

The preceding HTML is then rendered into the browser as shown in
Figure 5-3.

You likely noticed how the TextBox control was given an ID of mainTextBox, and that was the
name of the object referenced in the code-behind when you assigned a value to the Text property.
Relating this back to the OO discussion in the previous chapter, there is an ASP.NET class called
TextBox that contains a string property called Text.

Each control has its own set of attributes that are translated into properties. You could have set the
Text property in the server control markup as well:

<asp:TextBox runat="server" ID="mainTextBox" Text="I am preset text" />

Each of the properties available on the server control can be set in both the markup and in the code-
behind. This should give you an idea of the power of the Web Form approach; every control on your
page is available as a pre-instantiated object whereby you can simply interact with the properties as
needed.

Before going deeper into the various types of controls, the following activity demonstrates how to
create a textbox in which the user can enter some text and a label that displays that text when a but-
ton is clicked.

TRY IT OUT Your First Interactive Control

In this activity, you clean up previous demo fi les by moving them into a new folder, create a new fi le in
Visual Studio, add a few server controls to this new page, and then watch how it all interacts.

 1. Open the RentMyWrox project in Visual Studio. At this point you have a set of fi les in your main
solution folder, including the IntroToCss.aspx fi le that you were working with earlier. Right-
click on the project name, and select Add ➪ New Folder. Name this new folder “Demonstrations.”

FIGURE 5-3

Defi ning Controls in Your Pages ❘ 133

c05.indd 12/15/2015 Page 133

 2. Click on the IntroToCss.aspx fi le, and while still holding down the left mouse button, drag the
fi le into the newly created folder. You will see the fi le move into the folder.

 3. Add a new fi le. Click the folder named Demonstrations and then right-click, select Add, and choose
Web Form from the list. When the Name box appears enter ServerControls. A new fi le will appear
in the directory with the appropriate name. This same fi le should also open in your editor.

 4. Ensure that you are in the Source window; locate the form element. It should look like the
following:

<form id="form1" runat="server">

 5. Ensure that you are between the form elements and add a TextBox element. You can do this by
either typing in the characters “<asp:TextBox” or by dragging and dropping a TextBox from
the Toolbox into the appropriate place on your source code window. If you choose to select the
control from the drop-down list and you select the wrong control you will have to delete your
entire entry before you can get another drop-down list while typing. Give the textbox an ID of
“demoToolBox.” It should look like the following when you are fi nished:

<asp:TextBox ID="demoToolBox" runat="server"></asp:TextBox>

 6. Add a Label control right below the TextBox you just created. Give it the ID of “displayLabel.”
You should now have the following:

<asp:TextBox ID="demoToolBox" runat="server"></asp:TextBox>
<asp:Label ID="displayLabel" runat="server"></asp:Label>

 7. Add a Button control right below the Label control. Give this control the ID of “submitButton.”
However, once you have created the ID and the runat attributes, there is one more attribute you
have to create, and that is to assign an event handler in your code to the OnClick event. To do this,
type in “OnClick.” You will see IntelliSense help narrow the list of available options, as shown in
Figure 5-4.

FIGURE 5-4: IntelliSense for help selecting the OnClick Event

 8. Notice the lightning bolt next to the OnClick selection. This icon is used to indicate an event. Once
you enter the equal sign, you should get the IntelliSense menu shown in Figure 5-5, which creates a
new event handler for you. When you see the option, select it. It should fi ll out the value for you.

134 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 134

FIGURE 5-5: IntelliSense help for creating an event handler

 9. Now you need to add the text that will display on your button. Use the Text attribute and set it to
“Display Text.” Close the Button element. You should have the following:

<form id="form1" runat="server">
 <div>
 <asp:TextBox ID="demoToolBox" runat="server"></asp:TextBox>
 <asp:Label ID="displayLabel" runat="server"></asp:Label>
 <asp:Button ID="submitButton" runat="server" OnClick="submitButton_Click"
 Text="Display Text" />
 </div>
</form>

 10. Open the code-behind, ServerControls.aspx.cs (or .vb), from the Solution Explorer window.
If you don’t see it in the Demonstrations folder, you should be able to click the arrow next to the
ServerControls.aspx page, causing it to expand and show several hidden fi les. Double-click
ServerControls.aspx.cs to open it in the working window. If you are working in VB.NET, you
may need to right-click on the fi le and select View Code.

 11. Take a moment to look at the contents of this page. Note fi rst that there is a partial class whose
name matches the name of the page. That indicates that this code-behind is assigned to that page.
This class inherits the System.Web.Ui.Page. You will learn more about this base class as you
move through the application. Notice also the two protected methods in the page, Page_Load and
submitButton_Click. They both have the same signature (object sender, EventArgs e), so
you know that they are both event handlers.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace csDCLapp.Demonstrations
{
 public partial class ServerControls : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {

 }
 protected void submitButton_Click(object sender, EventArgs e)

Defi ning Controls in Your Pages ❘ 135

c05.indd 12/15/2015 Page 135

 {
 displayLabel.Text = demoToolBox.Text; // set the text of the label to the
 //text from the text box
 demoToolBox.Text = string.Empty; // empty the text box
 }

 }
}

 12. Type the following lines into the submitButton_Click method body:

protected void submitButton_Click(object sender, EventArgs e)
{
 displayLabel.Text = demoToolBox.Text; // set the text of the label to the
 //text from the text box
 demoToolBox.Text = string.Empty; // empty the text box
}

 13. Click the green arrow, or push the F5 key, to run the current web page. Your application should
compile, and when your browser opens it should look similar to Figure 5-6.

FIGURE 5-6: Initial display of HTML

 14. Type some text in the textbox and then click the button. After clicking the button, the page is sent
to the server, which copies the content you entered in the box to the label so that it is displayed
between the textbox and the button while the textbox is emptied.

 15. You now need to go to the code-behind page and put a breakpoint in the Page_Load method and
the submitButton_Click button. To do so, click in the gray border to the left of the code page as
shown in Figure 5-7. You cannot click in a spot where there is no code, so the only place you can
click is the closing brackets within the Page_Load method.

FIGURE 5-7: Setting breakpoints in your code

136 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 136

DEBUGGING YOUR WEB APPLICATION

One of the most powerful features of Visual Studio is the capability it provides
developers to step through the code while it is running. This gives you the oppor-
tunity to trace the fl ow, validate variables, and see what is going on within your
application at every step.

To debug an application you need to start in Debug mode. This is the default mode
of the green arrow in the toolbar as well as the F5 function key. Typically, you
would then insert a breakpoint in those places where you want to examine the
work that is going on. When the code hits a breakpoint, it stops processing and
takes you to that line of code. You can then mouse over variables and see their
value. You can also use the F11 key to continue through your code one line at a
time. To continue running the code when you are done, you can either click the
green button again or click the F5 key.

The rest of this book uses the Debug feature extensively to show the state of vari-
ous parts of the code and to confi rm that your application is working as expected
even before anything is rendered to the screen.

16. Run the code again. Note that the code processing stops in the Page_Load method during the
initial running. If you continue, you will see that your breakpoint in submitButton_Click is not
reached.

17. Enter some text and click the Display Text button. The Page_Load method, covered later, is called
again. Continue with the debugging. The code next stops in the submitButton_Click method.

18. Mouse over the different items and note how you have access into their values. Click Continue to
see your page come up with the text you entered displayed within the Label.

How It Works

You should have a conceptual grasp of how the code in the submitButton_Click method works; you
assigned the value of the Text property in one control to the value of the Text property in the second
control. But what does that mean in terms of the process?

Up until the point at which you clicked the button it was a traditional web page. However, once you
clicked the button, the browser made a callback to the server with the content within the <form> ele-
ment. The form element is important because of the ASP.NET Web Forms requirement that all server
controls be placed within form elements. Web Forms depend upon the form submission protocol to
ensure that all necessary information is sent from the browser back to the client. All the appropriate
HTML elements within the form elements are included in a large post whenever there is any interaction
with the server. When you look at it in the browser it seems to be simple, but if you look at the HTML
source, shown in Figure 5-8, you can see that a lot more information is being passed around than just
the text that was entered.

Types of Controls ❘ 137

c05.indd 12/15/2015 Page 137

FIGURE 5-8: HTML created when using server controls

The ViewState was mentioned earlier. You can see a simple ViewState in Figure 5-7 on line 12. There
are also other items that are sent back and forth between the server and the browser, including the
_VIEWSTATEGENERATOR and the _EVENTVALIDATION hidden inputs. These items are created automati-
cally by the server when processing ASP.NET Web Form pages.

Once all of this information is received by the server it is parsed and examined. The server is able to
determine that the button was clicked; thus, because of the relationship between the button and a
method in the code-behind that was set when you created the control, the server knows that as part of
its process it needs to call the submitButton_Click method. However, it doesn’t call that method right
away. There is an order to the events, as described in Table 1-4: Lifecycle Events for ASP.NET Pages.

This process of calling the server back is known as a postback. You will spend more time learning
about postbacks later in this chapter and as you build the sample application.

TYPES OF CONTROLS

Each of the different types of control discussed here fi lls a special need; together they provide devel-
opers with a set of functionality. These controls are:

 ➤ Standard controls

 ➤ Html controls

 ➤ Data controls

138 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 138

 ➤ Validation controls

 ➤ Navigation controls

 ➤ Login controls

 ➤ AJAX extensions

Some of these controls stand on their own, others interact with other controls; some controls are
very complicated to work with, while others may be very simple. You have already seen some of the
simpler controls, the TextBox and the Label. Both of these controls are representative of a standard
control.

Standard Controls
A standard control is a built-in ASP.NET control that helps display information to the user or helps
capture information from the user. These controls are shown in Figure 5-9.

FIGURE 5-9: Standard controls list from the Toolbox

Some of these controls serve almost as simple wrappers for HTML elements, such as the TextBox
and Label controls that you worked with in the last example. Others are much more intricate, such
as the Calendar control. Table 5-1 describes the most common standard controls.

Types of Controls ❘ 139

c05.indd 12/15/2015 Page 139

TABLE 5-1: Common Standard Server Controls

CONTROL DESCRIPTION

BulletedList A bulleted list that can be data bound; this means that items can be put into
the list in code rather than having to be added in the UI. Corresponds to an
unnumbered list in HTML and consists of a list of ListItems.

Button Creates an input element of type button. It contains events that can be called
in the code-behind as well as events that can call JavaScript methods in the
browser.

Calendar Creates a UI for displaying a calendar, enabling users to select one or more
dates as needed. It handles both the rendering of the calendar as well as the
capturing of date-related user-entered information.

CheckBox Creates an input element of type checkbox. You can evaluate whether the
item has been checked in the code-behind.

CheckBoxList Provides a list of checkboxes that can be data bound. Each of the items can be
checked and then the code-behind can examine the list of items to determine
whether the item has been checked. It also contains a list of ListItems.

FileUpload Provides the capability to upload a fi le from the local fi le system to the server

HiddenField Creates a hidden fi eld on the page. By default, these items hold but do not dis-
play items to the user. They can hold data between server requests and are some-
times used to hold business information that may be needed on multiple pages.

HyperLink Enables you to create an HTML hyperlink that takes users to a different page

Image Used to place and size an image

Label A server control that displays text. It does not accept any information to return
back to the server.

LinkButton A combination between a Button and a Hyperlink; it acts like a button but
looks much more like a HyperlInk than a button.

ListBox This control can be data bound and gives you the capability to display
multiple items together. A ListBox is made up of a list of ListItem and one
or more items can be selected at a time.

Panel A container for controls. You can put a series of controls within a Panel and
then control the visibility of those controls via the Panel rather than through
individual controls.

RadioButton Represents the HTML radio button. It enables users to select one and only one
item within a group. The group is a property on the RadioButton.

RadioButtonList Represents a list of RadioButtons. Only one can be picked from this list.

TextBox As displayed previously, the Textbox control enables users to enter one or
more lines of information into an application.

140 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 140

Most of the controls that are listed can be worked with much like you did with the TextBox, Label,
and Button controls in the last example. The exceptions are those controls that support collec-
tions. You can recognize them in Table 5-1 because they have “List” as part of their name, such as
CheckboxList, ListBox, and RadioButtonList. These require a different approach both when
working in the markup section and when working in the code. The following snippet demonstrates
how you need to load information into these controls:

UI

<asp:CheckBoxList ID="availableColors" runat="server">
 <asp:ListItem Text="Red" Value="red" />
 <asp:ListItem Text="Green" Value="green" />
 <asp:ListItem Text="Blue" Value="blue" />
</asp:CheckBoxList>

CODE-BEHIND

List<ListItem> colorsList = new List<ListItem>();
colorsList.Add(new ListItem { Text = "Red", Value = "red" });
colorsList.Add(new ListItem { Text = "Green", Value = "green" });
colorsList.Add(new ListItem { Text = "Blue", Value = "blue" });
availableColors.DataSource = colorsList;
availableColors.DataBind();

There are other approaches to loading the list controls from code. You will look at some of these in
later chapters as you build the sample application. Using the values that were selected from the UI is
different from how you got the information in the last example as well. The following snippet shows
how you can determine what items in the CheckBoxList have been selected:

CODE-BEHIND

List<string> selectedColors = new List<string>();
foreach(ListItem item in availableColors.Items)
{
 if (item.Selected)
 {
 selectedColors.Add(item.Value);
 }
}

You should be able to recognize everything in the snippet based on the last chapter, so you know
that you are going through each item in the list and evaluating whether it has been selected. If so,
then you are adding it to the list of selected colors. You take this approach because this list was ren-
dered as a list of individual checkboxes, each of which could be selected.

There is a set of common properties for standard controls that can be set in both markup and in
code-behind. Some of these attributes are listed in Table 5-2.

Types of Controls ❘ 141

c05.indd 12/15/2015 Page 141

TABLE 5-2: Common Standard Control General Attributes

ATTRIBUTE NAME DESCRIPTION

AccessKey Describes the control’s shortcut key. This property specifi es a single letter or
number that the user can press while pressing ALT. For example, specify “K”
if you want the user to press ALT+K to access the control.

Attributes The collection of additional HTML attributes that are not covered by a stan-
dard property. This could cover standard HTML attributes or special custom
attributes. You cannot set these in markup, but rather need to add them in
code.

CssClass The cascading style sheets (CSS) class to assign to the control

Style A collection of attributes that are used in styling the control

Enabled Makes the control functional when this property is set to true. When set to
false, the control becomes grayed out rather than invisible.

EnableViewState Enables view state persistence for the control

Font Sets the font information for the control

ForeColor Sets the foreground color of the control

Height The height of the control

TabIndex The control’s position in the tab order. If this property is not set, the control’s
position index is 0. This enables users to use the Tab key to move between
the various controls.

ToolTip Text that appears when the user positions the mouse over the control

Width The fi xed width of the control. There are many different potential units,
including pixel, inch, or percentage.

Some of the properties in Table 5-1 may seem contradictory; CssClass and ForeColor both affect
the styling of the control. Each of the items that concern styling are placed on the control’s outer ele-
ment; these are all inline styles so they always override any of the other applicable styles. However,
remember from Chapter 3 that while you have this ability, inline styles lead to a design that is dif-
fi cult to maintain.

Although all controls have these standard attributes, some controls have specifi c attributes that pro-
vide special information that they need. These controls and some of their special attributes are listed
in Table 5-3.

142 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 142

TABLE 5-3: Standard Server Control Special Attributes

CONTROL SPECIAL PROPERTIES

BulletedList BulletImageUrl — Path to an image to display for each bullet in a
BulletedList control

BulletStyle — Manages the style of the bullet

DataTextField — The fi eld of the data source that provides the text that is
displayed

DataValueField — The fi eld of the data source that provides the value of the
items being selected

Button

LinkButton

OnClick — Event on the control that can be hooked up to an event handler in
the code-behind

Command — A special type of event that can be hooked up to anevent handler
in the code-behind that is different than the event handler that supports the
click event

CommandArgument — An optional parameter that can be included as part of a
command

CommandName — The command name that is passed along with the command

OnClientClick — Client-side JavaScript that executes when the button is
clicked

Calendar FirstDayOfWeek — The day of the week to display in the fi rst day column of
the Calendar control

NextMonthText — The text displayed for the next month navigation control

PrevMonthText — The text displayed for the previous month navigation
control

SelectedDate — The selected date

SelectedDates — A collection of dates that were selected through the UI

ShowGridLines — Displays gridlines within the control

FileUpload FileBytes — An array of the bytes in a fi le that is specifi ed from the control

FileContent — Gets a Stream object that points to a fi le to upload

FileName — Name of a fi le on a client to upload

HasFile — Determines whether the control contains a fi le

HasFiles — Determines whether the control contains multiple fi les

OpenFile — Gets a stream used to open the fi le

HyperLink ImageHeight — Sets the height of the image if using an image for the link

ImageUrl — Sets the URL to the image if using an image for the link

ImageWidth — Sets the width of the image if using an image for the link

NavigateUrl — The URL that is linked to when clicked

Types of Controls ❘ 143

c05.indd 12/15/2015 Page 143

CONTROL SPECIAL PROPERTIES

Image AlternateText — Sets the alternative text that is displayed as an image is
downloading

GenerateEmptyAlternateText — Indicates whether the control generates an
alternate text attribute for an empty string text

ImageUrl — The URL that provides the path to an image to display in the
control

TextBox MaxLength — Maximum amount of characters allowed in the box

TextMode — Behavior mode for the control, such as multi-line, password, etc.
Affects how the control is created and how it is displayed in the page.

TextChanged — Event that is fi red when the content changes between visits to
the server

Each of the different controls provides different functionality and may therefore have different prop-
erties. The list in Table 5-3 is not complete by any means; it just describes the most commonly used
other properties for those controls.

HTML Controls
Many of the standard controls act as wrappers around HTML elements. They give the developer
access to the content as well as many of the attributes of the base HTML element. They also include
many events that may be thrown, such as when values have changed or when something has been
clicked. However, you may not always need all of that support; you might only want to set the con-
tent of an element that you want to style in the .aspx markup page.

You can convert a standard HTML element to a server control by adding the runat="server" attri-
bute. You are then able to access that item in your code-behind, assuming that you have given it an
Id, just as you would a standard control. The properties of an HTML control are different from the
standard controls; for example, the content of an HTML element is accessed by the Value property
rather than the Text property, as shown in the following snippet:

UI

<input type="text" runat="server" id="htmlText" />

CODE-BEHIND

htmlText.Value = "test this";

You cannot do all of the same work that you would with a standard control. Adding items to a list,
for example, cannot be handled like it is with the various list controls. However, many of the attri-
butes are available for setting as necessary.

Because many of their features are similar, you may be wondering when you would use a standard
control versus an HTML control. There is some overhead with using a standard control; and if you do
not need any of that extra functionality, such as event handling, then it may make sense to use HTML

144 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 144

controls instead. If the HTML you are rendering is critical, you have more control over the HTML
that is output from the server with HTML controls than you do with the standard controls.

However, if none of those points are critical for your application, you should use the standard
controls. Not all of the standard controls are wrappers around HTML controls, so using standard
controls for everything makes the usage more consistent, and the performance impact is so minimal
that it would only be noticeable in a page with a considerable number of controls.

Data Controls
Data controls are those controls designed to help enter, access, and display data on a web page.
Figure 5-10 shows the different data controls that are available.

FIGURE 5-10: Data controls list from the Toolbox

An examination of the controls listed in the fi gure indicates that there are three major types of
controls. The fi rst type of controls are data source controls that all contain “DataSource” in their
names and help you get data from various providers, including SQL server, and XML fi les. The next
set of controls are data display controls, such as charts, grids, and lists that are identifi able because
they tend to include “View” and “List” in their name while the last set of controls are data entry
form management controls, which are another way to use those controls that include “View” in
their name. Chapters 13 and 14 go into more detail about the various data controls that are avail-
able in ASP.NET Web Forms as you use them to display information from the database; they are not
covered here.

Validation Controls
When you are developing a website that requests user information, you need to ensure that this
information is actually what you are expecting. For example, if you are asking for an e-mail
address, you want to ensure that it is a valid one. Similarly, if you need an integer to be used as an
order quantity, you want to ensure it is actually an integer before you try to do anything with that

Types of Controls ❘ 145

c05.indd 12/15/2015 Page 145

value. This is where the validation controls come into play. They enable you
to check the values of other controls to ensure that their content matches the
expected format of data. Figure 5-11 shows a list of the validation controls.

As you can see from the list, there are controls that validate that a fi eld has
been entered if required, whether the value entered within a control fi ts
within a specifi ed range, or whether the value in one control has the same
value as another, as well as several others. One of the neat things about these
controls is that the validation happens on both the client side and the server
side. If there is a problem, the user is notifi ed before the information is even sent to the server.

You will be working through some validator examples in Chapter 10, so this chapter doesn’t spend
any time on those controls.

Navigation Controls
As you look through websites, you can notice many common features. One of these is a
menu system that takes you to different areas of the site. Typical names for these different
areas include “About Us,” “Support,” and “Home.” These are generally clickable words,
or links, across the top or down the side of the page. Many sites may also have a
Site Map, a page that provides a visual representation of the entire website, enabling
the user to drill down into the content.

Many of these features are supported by the navigation controls. These controls,
shown in Figure 5-12, are designed to provide support as you build the navigational
structure of your site.

Chapter 8, “Navigation,” covers these controls in more depth.

Login Controls
Security is a critical aspect of the Internet, so any site that conducts business online, especially
those that capture private information such as name, phone number, and e-mail address, or those
sites that accept credit cards or other forms of online payment, must ensure that they are as secure
as possible. While there is no way to ensure that a site is completely secure, following best practices
helps you build sites that are as secure as possible. Using the ASP.NET Web
Forms login controls helps you follow these best practices.

Login controls are a type of control that supports registration and authen-
tication of users, as well as enabling you to display special content based on
whether or not the current user has logged in. Figure 5-13 shows the list of these
controls.

Chapters 15 and 16 cover security and personalization in detail.

FIGURE 5-11

FIGURE 5-12

FIGURE 5-13

146 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 146

AJAX Extensions
AJAX, or Asynchronous JavaScript and XML, is an architectural approach whereby web applica-
tions can send data to and retrieve data from a server without interfering with the display and
behavior of the existing page. These calls happen in the background and therefore do not prevent
the user from doing any work in the browser, unlike a traditional Web Form submission. AJAX can
be used to update parts of a web page or the entire web page, as necessary, and these extensions help
support the use of AJAX in ASP.NET Web Form pages. These controls are shown in Figure 5-14.

FIGURE 5-14: AJAX extensions

NOTE AJAX is becoming very prevalent in modern web applications, though
coincidentally most sites no longer use XML, instead using JSON (JavaScript
Object Notation) because it compacts into smaller payloads for transmis-
sion across the network. However, no one seemed interested in renaming the
approach to AJAJ. AJAX is covered in depth in Chapter 11.

Other Control Sets
There are other sets of controls listed in the Toolbox that are not covered any further in this book.
These sets of controls are Dynamic Data, Reporting, and Web Parts, and are shown in Figure 5-15.

The Dynamic Data set of controls serve as scaffolding that helps you quickly build data-driven
websites that work against a database and optionally enables you to do this work without having to
build any pages manually. You do not use Dynamic Data controls in the sample application.

The reporting control is a report viewer. It displays reports, another type of fi le within an ASP.NET
website, which can provide tabular, summary, and graphical data analysis. Creating a report control
is shown in Figure 5-16.

Although you won’t work with reports, and thus the report control, as part of the sample applica-
tion, you should be aware that it is a powerful technology included with ASP.NET Web Forms. The
report is created as a separate entity and then the reporting control is used to display the results of
the report within a web page.

The last set of controls that is available are ASP.NET Web Parts. Web Parts enable end users
to modify the content, appearance, and behavior of web pages directly from a browser. When users
modify pages and controls, the settings can be saved to retain a user’s personal preferences across
future browser sessions. This enables the developer to create a site that is completely customizable
by the user, who can can rearrange parts of the site, and add or remove content sections.

The ASP.NET State Engine ❘ 147

c05.indd 12/15/2015 Page 147

FIGURE 5-15: Other ASP.NET controls

FIGURE 5-16: Create a report UI.

THE ASP.NET STATE ENGINE

Recall how ASP.NET helps a developer to maintain state in an application. State is important
because it enables you to determine, on the server side, differences between posts to a page.
Consider the situation in which you have a data entry page including some labels, textboxes, and
a submit button. There are two times you use this page: when you want to create a new item and
when you want to edit an existing item. The new item is simple to manage; it simply needs to be

148 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 148

validated and persisted into the database. However, when an object is being edited you may have
different concerns based on what was changed, so the system needs to understand when that fi eld
has changed.

There are two ways to determine whether that fi eld is changed: Call the database to get the item
back out to check it against the fi elds that were submitted, or have some kind of state to help you
make this determination. Remember, the server cannot just “remember” this information; HTTP is
a stateless protocol so by defi nition it does not have this ability. Instead, ASP.NET provides a way to
get around this restriction by including the state information as part of the ViewState. Almost every
server control is capable of having its state maintained.

HOW THE STATE ENGINE WORKS

In a nutshell, the state engine performs the following actions:

 ➤ Stores values per control by key name. This would look something like
ViewState["controlname"] = controlvalue.

 ➤ Tracks changes to a ViewState value’s initial state by comparing the current value to the
stored value

 ➤ Serializes and deserializes (converting an object to and from a string) saved data into a hid-
den form fi eld on the client. This allows non-string items (such as custom types/objects) to be
managed as well.

 ➤ Automatically restores ViewState data on the postback to the server

 ➤ Automatically ensures that user-entered information is re-displayed in the appropriate con-
trols, not necessarily the ViewState data

The following activity demonstrates what this all means by providing some examples for context.

TRY IT OUT Work through State Management

In this section you are going to create two different ASP.NET Web Form pages, take various actions on
both, and compare the outcome. This enables you to get a handle on what happens during each phase
of the control’s lifecycle and how it plays into the various strategies that you use as you build the sample
application.

 1. Open Visual Studio and ensure that the RentMyWrox solution is open.

 2. Create two new Web Form pages in the Demonstrations folder by right-clicking on the folder and
selecting Add New Item. When the Dialogue opens, select Web from the left menu and select Web
Form. Call these pages Page1.aspx and Page2.aspx.

 3. In Page1, add a textbox and a button between the <div> tags:

 <div>
 <asp:TextBox runat="server" ID="mainText" Text="123" />

How the State Engine Works ❘ 149

c05.indd 12/15/2015 Page 149

 <asp:Button runat="server" Text="Submit" />
 </div>

 4. In Page2, add a textbox and a button between the <div> tags. You want to add the same textbox
and button, but ensure that the text value in the textbox is considerably longer:

 <div>
 <asp:TextBox runat="server" ID="mainText"
 Text="1234567890ABCDEFGHIJKLMNOPQRSTUVWX" />
 <asp:Button runat="server" Text="Submit" />
 </div>

 5. Save your changes and run your application while open on Page1. Do a view source on the page
so you can see the HTML that was sent to the browser. Find the element called __VIEWSTATE and
copy out the value. It should look something like this:

jE0/S0v5pFKVYV8C96qDYkirKpK5UhMi0AVvi3IjErsWkAjnZj3pJtDnhiIpwfkqHbT
HsmsskFKM1VT2FReFdG/l43PG2lzq4131Bjvh38Q=

 6. Do the same with Page2. If you put the two values together you can see that they are the same
size—regardless of the size of the values that were set. If you think about this for a minute, how-
ever, it makes sense. There is no need for this to be put into ViewState because it is something that
you have already put into code and the value has not been changed.

 7. Run Page1 again. This time change the text; copy and paste the value from Page2 into the box and
click the Submit button. Your results should look like what is shown in Figure 5-17, with the text-
box repopulated with the content that you sent.

FIGURE 5-17: Changed textbox value is returned.

 8. In Page1, remove the Text value from the markup declaration of the Textbox. That should leave it
looking like this:

<asp:TextBox runat="server" ID="mainText" />

 9. In the code-behind for Page2, change the Page_Load method so that it looks like this:

protected void Page_Load(object sender, EventArgs e)
{
 if (!Page.IsPostBack)
 {
 mainText.Text = "set in code";
 }
}

150 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 150

ISPOSTBACK

The Page.IsPostBack property provides the capability to quickly and easily
determine whether the page is handling a postback call. This enables you to set
defaults for controls and do other work such as creating and binding controls from
databases only when it is the fi rst visit to the page, before any posting of informa-
tion back to the page. ViewState will continue to ensure that the information is
available the next time it comes through the posting process. Also, if you do not
do a check here, you will end up overwriting all the values that may have been set
by the user with the values set in this method, as the code always runs through the
Page_Load method.

10. Run the application while on Page2.aspx. Notice how the textbox displays the content that was
set in the code-behind fi le. Click the Submit button. The page will fl icker as it sends information to
and receives information from the server, but the same text is displayed. Thus, no matter how the
text is set, whether through markup, code-behind, or user entry, the state engine ensures that the
same value is displayed when the textbox is redisplayed.

11. Stop the debugging session by closing the browser. In Page2, replace the textbox with a Calendar
control as shown here:

 <div>
 <asp:Calendar runat="server" ID="calendar" />
 <asp:Button runat="server" Text="Submit" />
 </div>

 You will also need to remove the changes from the Page2.aspx.cs that you added in step 9 above.

12. Run the app while on Page2. You should see a calendar above the button. If you select a date and
click the Submit button, you will see a fl icker as the new page is returned from the server, but the
date is still selected. A look at the ViewState shows a value similar to the following:

8RRSe7RKwASfhd6hxWhIx+S9y59NbQbtW5fXe9xm66s0rIBS1wnHSsQOdk9+/qD1SI5mD+N6LOR6JdwEsexDVa
ITkTn6NogHq1I2jdXdbI7EGvJNeJEIhrY6pKUb/fto9wJQMKNGf4COb73znpC6Aw==

Notice that it is a longer value than you got from the textbox ViewState. Now, stop running the
application and add the following to the calendar’s markup: EnableViewState="false". The
fi nal markup should look like this:

<asp:Calendar runat="server" ID="calendar" EnableViewState="false" />

13. Run the application again. Select a date and click the Submit button. Note that the date you had
selected prior to the submission is now unselected. A look at the ViewState on the page shows
something like the following:

x1P2ya4Xls0YdlMlpzQKGaora+5lKtjwZHnKeENAJN89iU2Gi81uvCaLauuz54T4CAsqSGCsoD1/
zcyxClbhvL4SpxojhTok1d10PHxxQWc=

How the State Engine Works ❘ 151

c05.indd 12/15/2015 Page 151

Comparing this ViewState to the previous version shows that the ViewState is smaller; it is now
the same size as the initial view states for a textbox. This demonstrates how ViewState is neces-
sary for retaining data for some of the controls.

 14. Go back to Page1, the page with the textbox. If you look in the code-behind for this page you
should just have an empty Page_Load method and a regular textbox without any preset text. Add
the EnableViewState="false" attribute to the textbox. The last time you made this change the
value that was entered by the user in the Calendar control was not retained when the page was
redisplayed. What do you think will happen when you run the app, enter a value, and click the
button?

If you guessed that the entered value would be displayed then you are correct. You read earlier
that the textbox, radio button, and checkbox controls differ from other controls; they always
display the same values that they were submitted with, regardless of where, or how, those values
were set.

How It Works

The ASP.NET state engine is an integral part of the page lifecycle. There are two main lifecycle events
that interact with ViewState:

 ➤ Load ViewState: This stage follows the initialization stage of the ASP.NET page lifecycle. During
the Load ViewState stage, ViewState information that was saved in the previous postback is loaded
into controls. This is run only when the page is a postback. Initial runs of the page, i.e., when the
user arrives there from a different page, do not go through this stage because there is no previous
information to review.

 ➤ Save ViewState: This stage precedes the render stage of the page. During this stage, the current
state, or value, of the controls is serialized into a 64-bit encoded string and then set as the value
in the hidden fi eld __VIEWSTATE. This happens after they may have been manipulated in code but
before the rendering stage so the values are understood and can be written onto the page in the
appropriate fi eld.

These two events make it seem pretty simple; load all the data from ViewState after the controls are
initialized and then save the data back into ViewState right before sending the page back to the client.

Let’s go over the decisions that had to be made by the server. It gets a post to a page. When it creates
the response, the server normally sets the content of the textbox to the value that was given as part of
its instantiation—in this case, “123.” However, the state machine instead ensures that the server fi lls
the textbox with the value that was inserted at the client.

If you would look at the ViewState in the source code now, you may be surprised to see that the size of
the value is the same, even though the value itself is different. This must mean that there is something
special about the textbox control, and there is. The textbox, checkbox, and radio-button controls all
retain values that were given them while in the browser unless deliberately changed.

However, there is some intricate work going on throughout this process. First, only those values that
differ between ViewState and the initialized value are updated; not every property. This is a subtle
point, but important. This is a very simple form, so the ViewState is simple as well. Imagine instead
that you have several hundred controls on the page—a truly serious data entry form with labels,

152 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 152

textboxes, calendars, dropdown lists, etc. That would be a complicated ViewState. If the system were
designed to set every item, it would have to go through every item in ViewState, fi nd the applicable con-
trol, and set the value.

Instead, because the system has both the ViewState data and the submitted data that holds the current
version returned by the client browser, it can quickly analyze which fi elds were changed. It then only
has to do the more expensive “fi nd the control and set some properties” on a much smaller subset of the
overall control set—those that have changed.

The key thing to realize is that ViewState is the key to managing all of this work. The next chapter
works in MVC, which is completely different. There is no built-in state management, so you need to
take different approaches when you want to do this type of work.

You just worked through an activity to help you understand how view state works. The following
Try It Out helps you build one of the screens needed for the sample application.

TRY IT OUT Building the Web Page to Add Items to the Inventory

The sample application is based around the idea that you will provide a service enabling members to
check out items. However, for this to happen you have to include the capability to create an item; other-
wise, there is nothing for the members to check out.

The last chapter covered what you would need to capture for the object. The list of properties included
the following:

 ➤ Name

 ➤ Description

 ➤ Cost

 ➤ ItemNumber

 ➤ Picture

 ➤ Date it was acquired

You will now build a data entry screen to create or edit this information. Obviously you will not be
saving this into the database as part of this exercise; you will hook that up in Chapter 13. You will also
revisit this page to add validation and user authentication when you get to those chapters.

 1. Open the RentMyWrox solution in Visual Studio.

 2. Create a new folder in the RentMyWrox project. This folder is used to hold all of the administra-
tive pages that you need in order to manage the site, so call the folder “Admin.”

 3. In the new folder, create a new Web Form named “ManageItem.aspx” by right-clicking the Admin
folder, selecting “Add New Item” and ensuring that you select the Web Form with Master Page
option, as shown in Figure 5-18.

How the State Engine Works ❘ 153

c05.indd 12/15/2015 Page 153

FIGURE 5-18: Web Form with Master Page

 4. The dialog shown in Figure 5-19 will appear. Select Site.Master from the available options.

FIGURE 5-19: Selecting a Master Page

NOTE Master pages enable you to provide a common styling and design
across multiple pages. A master page is a template that contains a set of sec-
tions for which other pages in the site provide content. Typically a Master page
contains common menus and serves as a central point for CSS and JavaScript
fi les that can then be available to all pages. A page that inherits a master page
does not contain the <HTML> elements, and will very likely not contain the
<Head> and <Body> elements. ASP.NET Web Forms master pages are covered
in much more detail in Chapter 7.

 5. Looking at the new markup page you created demonstrates the differences between regular pages
and pages created with a master page—there are only a couple lines of code. You have to do all
of the entry between the content elements. Create an initial <div> set as shown next. This moves
all the other items that you are going to create down onto the page 100 pixels, providing some
separation:

<div style="margin-top:100px;" > </div>

154 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 154

 6. Between the <div> tags that you just created, add the following code that creates a related textbox
and label that are wrapped in a <div> tag:

<div class="dataentry">
 <asp:Label runat="server" Text="Name" AssociatedControlID="tbName" />
 <asp:TextBox runat="server" ID="tbName" />
</div>

 7. Run your website by selecting F5. You should get a screen that looks similar to Figure 5-20.

FIGURE 5-20: Newly created form fi elds

 8. Add a couple more fi elds as shown next. Note the difference in the Description textbox. It has two
additional attributes, TextMode and Rows. Because you know that the description can be a lon-
ger set of textual information, you are creating a box that enables users to enter multiple rows of
data. When this HTML is created, that control renders into a <textarea> element rather than an
<input> element.

<div class="dataentry">
 <asp:Label runat="server" Text="Description"
 AssociatedControlID="tbDescription" />
 <asp:TextBox runat="server" ID="tbDescription"
 TextMode="MultiLine" Rows="5" />
</div>
<div class="dataentry">
 <asp:Label runat="server" Text="Cost"
 AssociatedControlID="tbCost" />
 <asp:TextBox runat="server" ID="tbCost" />
</div>

 9. Run the app. You should see a screen similar to Figure 5-21. Notice how the description is a dif-
ferent size compared to the other textboxes. Unfortunately, you can also see how poorly aligned
everything is.

FIGURE 5-21: Poorly formatted form

 You’ll want to fi x that. Add the styles listed next. You might remember doing this from Chapter 3;
you are identifying each of the different types of elements within the <div class="dataentry">

How the State Engine Works ❘ 155

c05.indd 12/15/2015 Page 155

elements. Also, for now you will simply put them at the top of the already added elements, rather
than in a separate .css fi le. You will move this when you work more with master pages.

 <style>
 .dataentry input{
 width: 250px;
 margin-left: 20px;
 margin-top: 15px;
 }

 .dataentry textarea{
 width: 250px;
 margin-left: 20px;
 margin-top: 15px;
 }

 .dataentry label{
 width: 75px;
 margin-left: 20px;
 margin-top: 15px;
 }
 </style>

 Run the app and note how much better the form looks.

 10. Add the remaining fi elds and the button that you need to submit the form:

<div class="dataentry">
 <asp:Label runat="server" Text="Item Number"
 AssociatedControlID="tbItemNumber" />
 <asp:TextBox runat="server" ID="tbItemNumber" />
</div>
<div class="dataentry">
 <asp:Label runat="server" Text="Picture" AssociatedControlID="fuPicture" />
 <asp:FileUpload ID="fuPicture" ClientIDMode="Static" runat="server" />
</div>
<div class="dataentry">
 <asp:Label runat="server" Text="Acquired Date"
 AssociatedControlID="tbAcquiredDate" />
 <asp:TextBox runat="server" ID="tbAcquiredDate" />
</div>
<asp:Button Text="Save Item" runat="server" OnClick="SaveItem_Clicked" />

 11. Open the code-behind page. As you may have noticed, the button that you added in step 10 has an
OnClick event that is registered to an event handler. You need to add that event handler. This han-
dler needs to be within the brackets around the ManageItem class defi nition:

protected void SaveItem_Clicked(object sender, EventArgs e)
{

}

156 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 156

 12. Run the page by clicking F5. Notice that the fi le upload section is not properly placed. The fi le
upload control has an independent streak; it has its own bizarre sets of rules for appearance, so add
the following to the styles that you created earlier so that you can style the control based on its id
(as shown by using the “#” in the selector).:

#fuPicture {
 margin-top: -20px;
 margin-left: 120px;
 }

 13. Now that you have the data entry form looking consistent, you’ll add some code to the code-
behind to demonstrate how you can use the content returned from the form. In the SaveItem_
Clicked method created earlier, add the following lines of code:

string name = tbName.Text;
string description = tbDescription.Text;
string itemNumber = tbItemNumber.Text;
double cost = double.Parse(tbCost.Text);
DateTime acquiredDate = DateTime.Parse(tbAcquiredDate.Text);
byte[] uploadedFileContent = fuPicture.FileBytes;

 This code that you are adding now will be changed in future chapters, but it gives you an idea of
how to work with the values that are returned. As you can tell, there is some risk with this code
because it relies on tbCost and tbAcquiredDate having the text input in the right format. You
fi x this as well through the use of validators. Lastly, the information that you are getting from
the fi le upload control is simply the byte array that makes up the image. You will store this in the
database, so this format makes it easier. You could also store the uploaded fi le on the server’s fi le
system if desired rather than just storing the content of the fi le as an array of bytes.

 14. Put a breakpoint by the closing bracket of the method and run the application by clicking the green
arrow or the F5 key. Mousing over the various values shows that you have captured the values
from the form. Figure 5-22 shows the content of the byte array.

FIGURE 5-22: Code-behind in Debug mode

Summary ❘ 157

c05.indd 12/15/2015 Page 157

How It Works

You have created an initial data entry screen that is capable of persisting items into the database (which
you will learn how to do later). You added several different types of controls, including labels, text-
boxes, and fi le upload. You also created some code to capture information that has been submitted to
the server through the form.

These two parts, the markup and the code-behind, work together to create multiple complete request/
response sets. The fi rst set covers when the client does the fi rst request for a page and the server
responds. At this point the communication is not a postback. When the client receives this fi rst
response, the form entry page is rendered in the browser. When the user completes fi lling out the form
and submits it, the second request/response set starts.

When this second request gets to the server, the processor can recognize that it is a postback and is able
to handle anything that may be implied by that difference, including accessing view state and running
through specifi c areas of the code. At this point any event handlers may be called as necessary; the form
has been delivered, fi lled out, and returned to the server.

You have not completed every data entry form, nor have you used every control, but you should have an
idea of how the controls are added in the markup page and then accessed in the code-behind.

Creating and working with ASP.NET server controls is quick and simple. You can easily add a series
of controls to a page, wire them up in the code-behind, and validate that they work correctly in a
matter of minutes.

SUMMARY

ASP.NET Web Form server controls provide a robust set of functional support for web developers.
These controls provide full control over many common pieces of a web-based user interface, rang-
ing from simple blocks of text to textboxes that are used to capture data from within a Web Form.
Other controls can provide calendars for date selection, fi le upload capability, and dropdown list
selection, among other things; each fulfi lls a need that you may have during the construction of
a website.

There are two parts to using server controls: putting them in the markup so they are written out to the
client as part of the returned and rendered HTML, and working with the results in the code-behind
after the fi lled out controls are returned to the server. Working with the results in the code-behind
requires that you fi rst access the control by Id, and then the property that you are trying to access.

Not only can you access the values in the control, you can have the server perform an analysis of the
data that is coming in, comparing it against the previous version. This is all controlled by the state
management engine. The state management system uses ViewState to maintain the previous values
of controls—basically, an old copy of the data that can be compared against the newly submitted
version in order to understand what changed.

158 ❘ CHAPTER 5 ASP.NET WEB FORM SERVER CONTROLS

c05.indd 12/15/2015 Page 158

EXERCISES

 1. Can every property be set in the code-behind, or must some always be set in the markup?

 2. What do you have to do differently in order to understand the selected items in a
CheckBoxList versus what you do to understand the text in a TextBox?

 3. Does adding a runat="server" attribute to an HTML element change anything?

 4. What is view state?

Summary ❘ 159

c05.indd 12/15/2015 Page 159

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

CssClass A property on standard controls. When used, the value that is entered into
this property will be put into the class attribute of the outermost HTML
element.

Debugging Debugging is a feature of Visual Studio that enables you to trace code as
it runs. You can set breakpoints that tell the program where to stop while
running, as well as look into the values of properties and other items while
running through code.

EnableViewState A standard control property that determines whether the control’s content
is stored in ViewState while running. Those items that do not enable view
state may end up losing data or missing event calls.

HTML Controls These controls are created by adding a runat="server" attribute to the
HTML element in the markup. This enables you to access various values and
attributes in code-behind.

Markup A term that describes the .aspx page where the HTML is written

OnClick An event on a button. To take advantage of the event in your code you
have to wire it up to an event handler. This event handler must have a
method signature of object and EventArgs.

Postback Describes when a page is posted back to itself. This is one of the most
common Web Forms approaches, because a fi le is downloaded to the cli-
ent where the user can make changes and then that fi le is sent back to the
server for processing. This sending back is the postback. The Page object
in the code-behind has an IsPostback property that can be used to deter-
mine when the data is coming in through a postback.

Standard Controls The most common type of controls. This set of controls includes textboxes,
radio buttons, checkboxes, and labels—most of the items you need to make
an interactive website.

ViewState Enables ASP.NET to manage state. It is a hidden fi eld in the HTML form
containing hashed versions of all the information where ViewState is
enabled that is sent to the client. This copy of the information is sent on the
round-trip so that the server can understand both the current version of the
data, as fi lled out by the user, and the previous version of the data.

c06.indd 12/18/2015 Page 161

ASP.NET MVC Helpers
and Extensions

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to display dynamic information

 ➤ What Razor syntax is and how you use it in the view

 ➤ How routing works

 ➤ Creating actions on the controller

 ➤ Getting your controllers and views to work together

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the
chapter 06 download and individually named according to the names throughout the chapter.

You have learned about how ASP.NET Web Forms take one type of approach, server controls,
to do work whose outcome is rendered into HTML for consumption by the browser on the cli-
ent machine. For example, a developer can add a server control to the markup and know that
a textbox will be displayed in the browser. However, the complete structure of the HTML that
is output is not within the developers’ control unless they are using HTML controls, with their
ancillary limited functionality.

The process is different in ASP.NET MVC. There is no such thing as a server control in the
MVC world. There is, instead, a way of writing code “in the UI” that enables the developer
to have complete control over the output that is sent to the client. As you can guess, however,
“more control” means that you may have to do more writing of code. In some cases you may
have scaffolding, or automatically created code (much like the project you started with), that

6

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

162 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 162

can provide create, edit, view, and list functionality simply by clicking a few buttons. In other cases,
you will have to perform the coding yourself.

One of the ways in which MVC provides support is by supporting various language structures in
the part of the application that was called markup in ASP.NET Web Forms but in MVC is simply
referred to as the view. This chapter introduces this new language structure, Razor, and describes
the various approaches you can use for creating your own UIs in lieu of having them created
through server controls. This chapter also covers how information from the UI is returned to the
server and processed there to perform the work. This entire process provides an overview of the
MVC approach to building websites, and by the end of the chapter you should begin to understand
some of the fundamental differences between these approaches.

WHY MVC HAS FEWER CONTROLS THAN WEB FORMS

It has already been mentioned several times that MVC does not have as many controls as Web
Forms. For example, there is no concept of an <asp:TextBox /> in the world of ASP.NET MVC.
The main reason is because of the different approaches of these two different ASP.NET technolo-
gies. In Web Forms, the markup and the code-behind are intertwined; they are always together.
Their names are even together—for example, SomePage.aspx and SomePage.aspx.cs (or .vb)—and
the Solution Explorer shows them together. This closeness is indicated by how the Id property from
a server control is available in the code-behind, as the server control is an instantiated object with
all properties available for examination or use. They are a single, bound instance.

It is not that way in ASP.NET MVC. Each piece is independent of the others. A view, whereby
the HTML is created, is completely separate from the controllers and knows nothing about them.
This separation explains the lack of server controls. Server controls were designed to help both
the creation of the HTML and the management of content returned from the client. In MVC, that
approach violates the concept of a separation of concerns. A view is concerned only with creating a
user interface. A controller is concerned only with receiving information from, and providing infor-
mation to, a view, and models are concerned only with performing the business logic. ASP.NET
MVC separates all those responsibilities by default, whereas ASP.NET Web Forms only partially
separates them.

That being said, there are still approaches that make building an ASP.NET MVC site more rapid
and provide some help to both developers and designers. These approaches are just completely
 different from what you have worked with up until this chapter.

A DIFFERENT APPROACH

Whereas ASP.NET Web Forms makes content available between both markup and the code-behind,
ASP.NET MVC takes a different approach. Rather than use a control to manage the passing of
information, it instead uses the concept of a model. A model represents the underlying logical struc-
ture of the data. It is also important to understand that the model has no knowledge of either con-
troller or the view. This model is populated in the controller and then fed into the view. The view

A Different Approach ❘ 163

c06.indd 12/18/2015 Page 163

then does the work of assigning these property values to the appropriate user interface items that are
part of the HTML returned to the client. Figure 6-1 demonstrates this fl ow.

• Property 1
• Property 2
• Property 3

Model properties
are mapped to
HTML elements

Client browser

Model is given to the view

Controller handles model creation

<div>Property1</div>

<input type=“text” value=“Property2” />

Property3</>

Controller

View

Model

FIGURE 6-1: Workfl ow for a model being passed to a view

To examine what this looks like in code, fi rst look at how the pieces fi t together (later you will actu-
ally put them together):

MODEL

public class DemoModel
{
 public string Property1 { get; set; }
 public string Property2 { get; set; }
 public string Property3 { get; set; }
}

This fi rst code snippet defi nes the model that you are displaying. This model is creatively named
DemoModel and had three properties: Property1, Property2, and Property3. Each of these prop-
erties is a string. Now that you have defi ned the model you are going to display, take a look at how
to display it:

VIEW

@model RentMyWrox.Models.DemoModel
<html>
<body>
 <div>
 <h4>Demo Model</h4>
 <div>
 @Html.DisplayFor(model => model.Property1)
 </div>
 <div>
 @Html.DisplayFor(model => model.Property2)
 </div>

mailto:@Html.DisplayFor
mailto:@Html.DisplayFor

164 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 164

 <div>
 @Html.DisplayFor(model => model.Property3)
 </div>
 </div>
</body>
</html>

The preceding snippet demonstrates using Razor syntax to write out the information. There is
a small title and then three rows, each listing the value of the property specifi ed. The @ provides
a signal to the server that the following item is to be processed as code. This approach, Razor,
enables you to intermingle your HTML elements with code snippets that perform some kind of
work, likely using the model while still in the view. You will learn about the different aspects of
this in a little bit.

Now that you have the code necessary to display the object, you need to actually create the object
and ensure that the view has been given the information that is needed. This is demonstrated in the
following snippet:

CONTROLLER

// GET: DemoModel/Details/5
public ActionResult Details(int id)
{
 DemoModel dm = new DemoModel {
 Property1 = id.ToString(),
 Property2 = string.Format("Property2 {0}", id),
 Property3 = string.Format("Property3 {0}", id)
 };
 return View("DemoModelView", dm);
}

The preceding controller action creates a new DemoModel object, gives it some values, and then
returns the instantiated view with the fi lled-out value. Figure 6-2 shows what this looks like in a
browser.

FIGURE 6-2: Simple model displayed in your MVC view

The last thing to examine in this process is the HTML that is generated for display:

<!DOCTYPE html>
<html>
<body>
 <div>
 <h4>Demo Model</h4>
 <div>

mailto:@Html.DisplayFor

A Different Approach ❘ 165

c06.indd 12/18/2015 Page 165

 5
 </div>
 <div>
 Property2 5
 </div>
 <div>
 Property3 5
 </div>
 </div>
</body>
</html>

As you can see, this code is considerably cleaner than the HTML that was created as part of the
ASP.NET Web Form process. When you asked the system to display a property, that is all the system
did. No additional HTML elements are created; it simply writes out the value.

VISUAL STUDIO BROWSER LINK

You may see additional information in your source code fi le that looks something
like the following:

<!-- Visual Studio Browser Link -->
<script type="application/json"
 id="__browserLink_initializationData">
 {"appName":"Internet Explorer",
 "requestId":"f8988d1d98254450a17a5a2eb8cb978b"}
</script>
<script type="text/javascript" src="http://localhost:1560/7b3228a4
 51c34edcba6ff58fe23c0968/browserLink" async="async"></
script>
<!-- End Browser Link -->

This is added only when you are working with the application in Visual Studio.
Browser Link creates a communication channel between Visual Studio and the
browser. When Browser Link is enabled, it injects special <script> references
into every page request from the server. These references use a technology called
SignalR. SignalR allows you to add real-time web functionality to your applica-
tions, or the ability to have your server-side code push content to the connected
clients as it happens, in real time, that enables Visual Studio to communicate with
your open browser. This in turn enables you to make changes in Visual Studio,
click a refresh button, and the browser refreshes with the changes you have made.
You won’t be using this functionality when you work through the sample applica-
tion, but you may see this code when you view source—even though it isn’t dis-
played in the browser when you view the created HTML. This code only is added
when you are running in Debug mode from within Visual Studio.

This is a big difference from the ASP.NET Web Forms approach. You will now walk through the
various parts of this triad. First is the model. In this case it is a simple class with three properties;

http://localhost:1560/7b3228a451c34edcba6ff58fe23c0968/browserLink
http://localhost:1560/7b3228a451c34edcba6ff58fe23c0968/browserLink

166 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 166

there’s nothing special at all about it. In a real-world scenario this model is much more complex, but
the process is the same.

Next is the view. The view is mostly HTML, very similar to the HTML source that was sent to the
client and rendered in the browser, other than two types of lines of code. The fi rst of these lines was:

@model RentMyWrox.Models.DemoModel

This is the very fi rst line in the page, and it serves to defi ne the model with which the view will be
working. In this case, the model is in the RentMyWrox.Models namespace and is an object of type
DemoModel. The @ sign indicates that the parsing will be done through Razor. The second type of
line is shown next.

@Html.DisplayFor(model => model.Property1)

The preceding line tells the Razor view engine to display the property Property1 from the model on
the page.

Razor
Razor syntax is a simple programming syntax for embedding server-based code in a web page. In a
web page that uses the Razor syntax, there are two kinds of content: client content and server code.
Client content is the stuff you’re used to in web pages: HTML markup (elements), style information
such as CSS, maybe some client script such as JavaScript, and plain text.

Razor syntax is a syntactical approach to adding decision making, looping, and other code
approaches in the view. It harkens back to the original Active Server Pages (ASP) approach that was
around before the advent of the .NET Framework. Classic ASP had a mix of code and UI in a single
page that would be run on the server to create the HTML that was sent to the client’s browser.
Razor supports the same approach—enabling UI logic to make some decisions based on the data
with which the view is working.

The code that is written to take advantage of the Razor support is based on C# (or VB). Whereas
Web Form server controls look more like HTML, using Razor in a view is like writing C# (or VB)
code in the UI, so you only need to write in your language of choice, rather than also need to know
the special server control attributes.

Be aware of the following when using the Razor language:

 ➤ Code is added to a page using the @ character. Using this special character tells the parser
that the next set of commands should be looked at as if they were processing code rather
than HTML elements. You saw these used twice in the example, fi rst when you declared the
type of the model and then when you told the parser to write out the value of a particular
property.

 ➤ You can enclose code blocks in braces. Not all code can be written on a single line, so
you can use braces to contain code blocks. This would look like one of the following two
approaches:

@{var someValue = model.Property1;}

mailto:@Html.DisplayFor

A Different Approach ❘ 167

c06.indd 12/18/2015 Page 167

@{
 var someOtherValue = model.Property2;
 someOtherValue += " " + model.Property2;
}

 ➤ Inside a block, you end each code statement with a semicolon. Just as if you were writing the
application code in C#, you must end each line of code with the semicolon to indicate the end
of that particular instructional line.

 ➤ You can use variables to store values. Razor enables you to create and use variables in the
view code itself. These variables are instantiated, accessed, and used just as they would be in
traditional code.

 ➤ You enclose literal string values in double quotation marks. Another demonstration of
the similarity between writing Razor syntax and regular C# code is that strings need to be
declared in the view just as they would be when working within the code.

 ➤ You can write code that makes decisions. All of your decisions do not have to be made else-
where; you can instead perform an analysis to determine some information from within your
view using the same structure you would use in a Web Forms code-behind.

 ➤ You can intermingle code and HTML code. The parser is able to understand the difference
between the two because the code is prefaced with a @ code and braces while HTML code is
defi ned by the element braces “<>”.

All of the preceding points should be familiar; they pretty much say that all the rules you have when
working with your C# (or VB) code are also applicable when working with the Razor syntax; the
sole exception is use of the @ character to identify the next command as being code-based rather
than HTML markup.

Take a look now at another example of using C# code in Razor. In this case, you write out a list of
numbers from 0 to 5:

<!DOCTYPE html>
<html>
<body>
 @{
 for(int i=0; i <= 5; i++)
 {
 <div>@i</div>
 <div>i</div>
 }
 }
</body>
</html>

This code snippet demonstrates how you can intermingle code and markup, and the Razor engine is
smart enough to fi gure out which is which and ensure that the proper HTML is created and sent to
the client.

In this example, the loop is contained within a code block that is marked with the @ character.
This lets the Razor view engine know that processing happens within the block, which is why the
line of code containing the for loop itself does not have to be marked. However, once the context
was changed by adding the HTML elements, then the @ character had to be used, which is why the

168 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 168

variable i is so prefaced. When the variable i is used without the @ character, the Razor view engine
does not identify it as being the variable value and renders it as displayed in Figure 6-3.

FIGURE 6-3: Output when including the @ character

As you can likely imagine, you can also handle lists of objects as the model that is being passed into
the view. That approach could look something like this:

@model List<RentMyWrox.Models.DemoModel>
<!DOCTYPE html>
<html>
<body>
 <table class="table">
 @foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Property1)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Property2)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Property3)
 </td>
 </tr>
 }
 </table>
</body>
</html>

Thus, if the model were a list of six DemoModel objects you would get the output shown in
Figure 6-4.

FIGURE 6-4: Output of a @foreach loop writing the display

mailto:@Html.DisplayFor
mailto:@Html.DisplayFor
mailto:@Html.DisplayFor

A Different Approach ❘ 169

c06.indd 12/18/2015 Page 169

Razor is a powerful tool because it enables you to combine processing power with HTML markup.
Although this chapter has talked about the fact that you can include code with the HTML elements,
it hasn’t yet covered the various special commands, such as those you have seen several times with
the @Html.DisplayFor() method. Table 6-1 provides some information about each of the Display
extension methods.

TABLE 6-1: Display Extension Methods

METHOD DESCRIPTION AND EXAMPLE

Display() This extension method is used when you do not know the model type that
may be passed in. This could happen when a view is used for several differ-
ent types of items that have similarly named properties, or perhaps when
OO inheritance is involved. When using the Display method you pass in the
property name as a string value. Example:

Html.Display("PropertyNameFromModel")

DisplayFor() This extension method enables you to create an expression that describes
which value on the model is displayed. This expression is a lambda expres-
sion and gives direction the view engine. Example:

Html.DisplayFor(x => x.Property1)

DisplayForModel() This extension method enables you to use templates to display information,
if you have built a custom template that manages the display. This is use-
ful when you want to reuse the same display of an object in different views.
Templates are covered in more detail in Chapter 9. Example:

Html.DisplayForModel("templateName")

LAMBDA EXPRESSIONS

In its simplest form, a lambda expression is a reusable expression. In the
DisplayFor() example in Table 6-1, the following lambda expression is used:

x => x.Property1

This can be translated to “for every given x (the variable name for the object),
return the value of the property Property1.” The variable name to the left of the
equals sign names the object you are working with, and the block to the right of
the => provides the work that is performed—in this case, returning the value of the
property. You can do anything in the code block, such as the following examples:

x => RunSomeMethod(x)
y => y.SomeMethod()

continues

mailto:@Html.DisplayFor

170 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 170

In the fi rst case, you are running a method, passing in the given variable; in the sec-
ond, you are running a method on the object.

A special feature of lambda expressions is the capability to create a usable, in-line
function out of them:

Func<DemoModel, string> myFunction = x => x.Property1 + " " +
x.Property2;

With the preceding function you can do the following work:

var newModel = new DemoModel
{
 Property1 = "blahblah",
 Property2 = "Property2",
 Property3 = "Property3"
};
string concatenatedProperties = myFunction(newModel);

While you won’t be using lambda expressions as a standalone function, you will be
using them frequently throughout the rest of the sample application, in particular
when you interact with the database.

As you can see, some powerful features are part of the view defi nition. They enable you to build your
UI using a combination of HTML elements and C# (or VB) code. It is important to keep in mind that
although this part is called a view, all of this processing is still happening on the server; that is, all of
this processing is completed before the page is sent to the client. This code that you run in the view is
based on the information passed to it, generally a model. In the next section, you’ll look at the part of
the framework responsible for creating the model and handing it to the view: the controller.

Controller
The controller in an MVC framework is appropriately named, as it is in charge of managing which
views are called and with what information, or model. The controller acts to connect the model to
the view, and it is able to determine which model and view because it is also the functionality that
handles the HTTP request.

You may remember from the earlier discussion about HTTP how communications between client
and server are based on a request-response model whereby the client requests a specifi c URL with a
specifi c verb (GET, PUT, POST, or DELETE). The server receives the request, perhaps doing some work,
and then responds with the expected information. In an ASP.NET MVC application, the controller
is what receives the request and determines what information is displayed.

Many different controllers participate in a web application, with each controller potentially hav-
ing multiple methods, or actions. A controller is responsible for handling the functionality for a
unique combination of URL and HTTP verb, especially the four major verbs just listed. This means
there would be one controller method, or action, that handles a GET request, another that handles a

continued

A Different Approach ❘ 171

c06.indd 12/18/2015 Page 171

PUT request, one for POST requests, and another for DELETE requests in those cases where you may
need to use all verbs. Listing 6-1 shows what this would look like for the DemoModel object created
earlier.

LISTING 6-1: Controller methods that manage access to DemoModel

0. public class DemoModelController : Controller {
1. // GET: DemoModel
2. public ActionResult Index()
3. {
4. List<DemoModel> list = new List<DemoModel>();
5. for (int i = 0; i <= 5; i++)
6. {
7. list.Add(new DemoModel
8. {
9. Property1 = i.ToString(),
10. Property2 = string.Format("Property2 {0}", i),
11. Property3 = string.Format("Property3 {0}", i)
12. });
13. }
14. return View("DemoModelList", list);
15. }
16.
17. // GET: DemoModel/Details/5
18. public ActionResult Details(int id)
19. {
20. DemoModel dm = new DemoModel {
21. Property1 = id.ToString(),
22. Property2 = string.Format("Property2 {0}", id),
23. Property3 = string.Format("Property3 {0}", id)
24. };
25. return View("DemoModelView", dm);
26. }
27.
28. // GET: DemoModel/Create
29. public ActionResult Create()
30. {
31. return View(); // this view will be the form that needs to be filled

out
32. }
33.
34. // POST: DemoModel/Create
35. [HttpPost]
36. public ActionResult Create(DemoModel model)
37. {
38. // Do some work to create
39. return View(); // view to confirm that a new item was created
40. }
41.
42. // GET: DemoModel/Edit/5
43. public ActionResult Edit(int id)
44. {

continues

172 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 172

45. return View(); // this view will be the form that needs to be filled
out

46. }
47.
48. // POST: DemoModel/Edit/5
49. [HttpPost]
50. public ActionResult Edit(int id, DemoModel model)
51. {
52. // do some work here to save edits
39. return View(); // view to confirm that the item was edited
54. }
55. }

This listing contains all the methods within a single controller, DemoModelController. There is a
comment above each of the methods that describes the verb that it works with, as well as the URL to
which it responds. Thus, the Index method on line 2 responds to a GET to http://websitedomain/
DemoModel, and the Details method on line 5 responds to a GET request to http://websitedomain/
DemoModel/Details/Id, where Id is an integer.

Routing
Examining the contents of Listing 6-1 may raise some questions, such as how does this controller
know to respond to the URLs that are part of the path as demonstrated by http://websitedomain/
DemoModel; and how does the server know to call that method on that particular controller? The
server is able to determine what action to take based on the routing confi guration, as shown in
Figure 6-5.

FIGURE 6-5: The RouteConfi g.cs fi le in the App_Start directory

The App_Start folder that was created as part of the project template contains several fi les. The
one that you are concerned with here is the RouteConfig.cs fi le. This fi le creates the maps that
the server uses to determine which method in which controller to call based on the URL that was
requested. It can create very specifi c routes or it can use templates, as shown in the fi gure.

Further examination of the route is in order. The following snippet shows the route describing the
class and method that need to be called:

routes.MapRoute(
 name: "Default",

LISTING 6-1 (continued)

http://websitedomain
http://websitedomain
http://websitedomain
http://websitedomain/DemoModel
http://websitedomain/DemoModel/Details/Id
http://websitedomain/DemoModel

A Different Approach ❘ 173

c06.indd 12/18/2015 Page 173

 url: "{controller}/{action}/{id}",
 defaults: new { action = "Index", id = UrlParameter.Optional }
);

The key to understanding what is happening is the line containing the url:. This sets the route
template to be Controller/Action/Id. Thus, when a URL is requested that contains DemoModel
as part of the path, the system looks for the controller that supports this object. It understands this
through the convention of combining the string value of the request, “DemoModel” and the word
“Controller,” so any incoming request that includes DemoModel as part of the path is expected to be
handled by a class called DemoModelController.

The action part of the route is the method on that controller that will be called. Thus, http://
websitedomain/DemoModel/Details/ calls the Details method in the DemoModelController.
The defaults: line of the preceding snippet shows how to handle missing values. A default is set
for the action: Index. This tells the system that if no action is included in the URL, the value given
should be substituted—in this case, Index. This is demonstrated by lines 1 and 2 in Listing 6-1,
where a method named Index is shown to respond to http://websitedomain/DemoModel, in this
case with a list of DemoModels.

The last part of the route is the Id. The default section makes this optional, so it may or may not
be included in the request URL. This item becomes the parameter of the method, so http://
websitedomain/DemoModel/Details/5 is the same as calling the Details method and passing in 5
as the parameter, as shown on line 18 of Listing 6-1.

Looking at the route you are working with, what do you think would happen to a request for
http://websitedomain/DemoModel/Details? You would expect it to call the Details method on
the DemoModelController; but the only such method also expects an integer parameter, and you
are not providing one. What do you think will happen? If you guess that the system will explode,
sending smoke everywhere, then you are pretty close, as shown in Figure 6-6.

FIGURE 6-6: Error when Id is not included in the URL

http://websitedomain/DemoModel/Details
http://websitedomain/DemoModel/Details
http://websitedomain/DemoModel
http://websitedomain/DemoModel/Details/5
http://websitedomain/DemoModel/Details/5
http://websitedomain/DemoModel/Details?

174 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 174

In this case, you get an error because the system is trying to provide a null value as the parameter to
the Details method, and integers cannot be null. If you think there’s a chance that this URL will be
called without a value, and you want to handle it, you can change the route to the following:

routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { action = "Index", id = 0 }
);

With the preceding change, the system now calls the Details method; and if no Id is provided as
part of the URL, it calls the Details method with the default of 0.

When you are working with the parameter it is critical that the variable name in the url: match the
variable name of the parameter. If they are completely different, such as when Route was defi ned
with url: "{controller}/{action}/{itemId}", then the defaults will not be set and the error
shown earlier in Figure 6-6 repeats. It is always best to ensure that the variable name you use when
mapping the route is the name that you use when defi ning your method signature; that way it’s eas-
ier to look at the route confi guration and see an identifi er that would be easily linked to the param-
eter being passed into the various actions.

HTTP Verbs and Attributes
You have learned that the server can determine what to do when a URL is requested; but what about
an example such as the following, where there is an overload of the Create method, with the over-
load (when a method has the same name and return type but accepts a different set of parameters)
expecting an object rather than a simple integer?

28. // GET: DemoModel/Create
29. public ActionResult Create()
30. {
31. return View(); // this view is the form that needs to be filled out
32. }
33.
34. // POST: DemoModel/Create
35. [HttpPost]
36. public ActionResult Create(DemoModel model)
37. {
38. // Do some work to create
39. return View(); // view to confirm that a new item was created
40. }
41.

The item [HttpPost]on line 35 demonstrates the difference. This attribute tells the system that if
there is a request to the URL http://websitedomain/DemoModel/Create using the HTTP verb
POST, then the attributed method should be called and that the form content should be mapped to
a DemoModel object and then passed in as the parameter to the method. There is a corresponding
attribute for each of the HTTP verbs, including GET. However, because GET is the default action you
do not see the attribute used in any of the code in Listing 6-1.

http://websitedomain/DemoModel/Create

Form-Building Helpers ❘ 175

c06.indd 12/18/2015 Page 175

Another reason why you do not see the HttpGet attribute used is that the attribute also acts to limit
the verbs on which the action method can work; therefore, the method with the [HttpPost] attri-
bute responds only to those requests with the verb POST, while the other Create method is able to
respond to any of the HTTP verbs. Giving it an [HttpGet] attribute would mean that it could not
respond to other requests that contain other verbs such as a DELETE call to http:// websitedomain/
DemoModel/Create. If that method were so attributed, the DELETE call would cause an error, rather
than simply being treated as a GET.

FORM-BUILDING HELPERS

This chapter has briefl y covered models, views, and controllers, and how the URL of the request
points to a specifi c method on the controller. The view that was covered shows how to display infor-
mation on the page. Not yet discussed is building a form, and how that would work such that when
a POST is sent to the server, the server knows how to understand the data and create the appropriate
model from the form values. In this section you will learn all about that.

Form Extensions
The previous section showed some examples of how you could display data in your view. This is a
pretty straightforward need. Creating the form entry fi elds is a little more involved, mostly because
you want the system to be able to understand the information in the form fi elds that are sent back to
the server so that it can build the appropriate model that you can easily work with in the controller.

You can help the server understand the relationship between an input element on the form and the
model through the use of a tightly bound, type-safe approach of linking an HTML element to a
specifi c property in the model. This is done by using the #Html.InputType (a Lambda expression
showing which property to bind). Table 6-2 provides a list of these different input types as well as an
example demonstrating how they are used and the HTML that is generated from the command.

TABLE 6-2: Type-Safe Extensions

EXTENSION DESCRIPTION AND EXAMPLE

TextArea Creates a text area control that holds multiple rows of text

Razor: @Html.TextAreaFor(m=>m.Address , 5, 15, new{}))

HTML: <textarea cols="15" id="Address" name=" Address "

 rows="5">Addressvalue</textarea>

TextBox Creates a traditional textbox

Razor: @Html.TextBoxFor(m=>m.Name)

HTML: <input id="Name" name="Name" type="text"

 value="NameValue" />

continues

http://websitedomain
mailto:@Html.TextAreaFor
mailto:@Html.TextBoxFor
http:// websitedomain/DemoModel/Create

176 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 176

EXTENSION DESCRIPTION AND EXAMPLE

CheckBox Creates a checkbox

Razor: @Html.CheckBoxFor(m=>m.IsEnabled)

HTML: <input id="IsEnabled" name="IsEnabled"

 type="checkbox" value="true" />

Dropdown List Used to create a dropdown box from which the user can select only one value

Razor: @Html.DropDownListFor(m => m.Gender,

 new SelectList(new [] {"Male", "Female"}))

HTML: <select id="Gender" name="Gender">

 <option>Male</option>

 <option>Female</option>

 </select>

HiddenField Used to create a fi eld that holds data but is not visible through the UI

Razor: @Html.HiddenFor(m=>m.UserId)

HTML: <input id="UserId" name="UserId" type="hidden"

 value="UserIdValue" />

Password Creates a password fi eld whereby the content typed in by the user is obscured and
not visible on screen

Razor: @Html.PasswordFor(m=>m.Password)

HTML: <input id="Password" name="Password" type="password"/>

RadioButton Creates a single radio button

Razor: @Html.RadioButtonFor(m=>m.IsApproved, "Value")

HTML: <input checked="checked" id="IsApproved"

 name="IsApproved" type="radio" value="Value" />

Multiple-select Creates a list of items from which multiple values can be selected

Razor: Html.ListBoxFor(m => m.Pets,

 new MultiSelectList(new [] {"Cat", "Dog"}))

HTML: <select id="Pets" multiple="multiple" name="Pets">

 <option>Cat</option>

 <option>Dog</option>

 </select>

The differences between this approach and the server controls for Web Forms may seem negligible;
you are still letting the system write the HTML. However, the main thing that is missing is the
ability to reference a control in code, as the controller does not know about that particular HTML
element. In the Web Forms example, the code-behind knew all about the control; it has access to

TABLE 6-2 (continued)

mailto:@Html.CheckBoxFor
mailto:@Html.DropDownListFor
mailto:@Html.HiddenFor
mailto:@Html.PasswordFor
mailto:@Html.RadioButtonFor

Form-Building Helpers ❘ 177

c06.indd 12/18/2015 Page 177

its name, could change the style, or do all sorts of work on it. To be honest, the power of ASP.NET
Web Forms is that it does have all this knowledge, which makes sharing information easy. In ASP
.NET MVC, the controller knows nothing about the item that is actually created for the user; it has
no idea how that information was created. All it knows is that information was submitted.

There are alternative ways to create input HTML elements that allow for data capture. Where the
approaches listed in Table 6-2 are bound to a model fi eld through the use of the lambda expres-
sion, you can always create the item with a string, rather than an expression; with that override,
the element is named with whatever you input as the string. As long as the input name and the
model’s property name are the same, you will still have the luxury of the bound model as part of the
submission.

Editor and EditorFor
You have learned that developers can choose the type of HTML element they will use to capture the
data. You can also allow the Razor engine to determine how to render the input element. There is a
special set of HtmlHelpers objects that do this work. These helpers, Editor and EditorFor, check
the data type of the property to determine what kind of input element should be created:

@Html.EditorFor(model => model.Property1);

Because the system looks at the property’s data type to determine what to display, it generally cre-
ates either a textbox or a checkbox, as anything can be entered into a traditional textbox—and
nothing represents a Boolean value better than a checkbox. With what you have learned so far,
using EditorFor might seem like a step back from having control over the HTML that is created
and sent to the client, but there are additional benefi ts to using EditorFor as the default way of cre-
ating form fi elds.

One of the key features of EditorFor is its ability to work with attributes on the model properties.
This book hasn’t covered attributes on class properties yet, but you’ll learn about their benefi ts when
you start building out your models as part of your interaction with the database. At that point, you
will look at various available attributes, one of which enables you to defi ne, on the class property
itself, what type of element should be created.

Having this attribute on the property enables you to change how the element is displayed across
every representation of an editor for that property, rather than having to manually change the ele-
ment type on every page. Adding this attribute is simple:

[DataType(DataType.MultilineText)]
public string Property2 { get; set; }

This changes the display from a traditional textbox to a textarea element with multiple rows. This
approach would make sense if you were asking for a larger quantity of data, such as a product descrip-
tion or a customer review.

Model Binding
If you have ever looked at information received from an HTML form, you realize that this informa-
tion is not provided in a nicely structured complex type. Instead, the whole thing is a set of key-
value pairs, where the Id of the control is the key, and the value(s) that were entered or selected for

mailto:@Html.EditorFor

178 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 178

that particular control are the values in the key-value pair. You can always work with the informa-
tion that way as well; for example, the following snippet is perfectly valid:

[HttpPost]
public ActionResult ActionWithFormCollection(FormCollection formCollection)
{
 var property1 = formCollection["Property1"];
 var property2 = formCollection["Property2"];
 return View();
}

This approach could be useful when using a model doesn’t make sense, such as when the action is
receiving information from a third party. Creating a model to use just to support this method may
be overkill when you can get the information you need from the key-value list in the form. Using
models makes the most sense when that model is an object in your domain that you may be using
elsewhere or it makes some business sense.

As you will see when building the sample application, when the system is doing the binding for you,
it tries to map the object’s properties in the following order:

 1. Form fi elds

 2. The property values in the JSON (JavaScript Object Notation) request body, but only when
the request is an AJAX request

 3. Route data

 4. Query string parameters

 5. Posted fi les

This order means that the fi rst place it looks for information to bind a property on the model is in
the form fi elds. Therefore, if the property is found in that set of values, then the parser evaluates
type, and if the types can be converted correctly (remember that all fi elds are received by the server
as a string), then it converts and assigns that value.

If the parser is unable to fi nd the value in the form fi elds, it then goes through the JSON request
body if the request is an AJAX request. You will learn more about this in the chapter on AJAX
requests, Chapter 13. If it can’t fi nd the value there, it then snoops through the route data to see if
that contains what it’s looking for. It then goes through the query string values to see if it fi nds the
information there. If not, it takes a quick look at uploaded fi les to see if they may match. If it doesn’t
fi nd the property, the parser shrugs, gives the property its default value, and goes on to the next
property.

QUERY STRING

A query string is part of the requested URL that does not fi t into the typical HTTP
address structure. With the URL of http://someaddress/DemoObject?field1=
value1&field2=value2, everything after the ? character defi nes the query string
and the & character acts as the separator between each set of key\value pairs. Thus,

http://someaddress/DemoObject?field1=
http://someaddress/DemoObject?field1=value1&field2=value2

Form-Building Helpers ❘ 179

c06.indd 12/18/2015 Page 179

when the value gets to the server it is a set of key-value pairs, just like the form val-
ues. Typically these values are used to qualify the request that is being called. In the
example URL just given, the call to DemoObject returns a list of objects. Imagine
the case where this list is paginated and sorted; each call to the DemoObject could
also include the following query string:

?Sort=Property1&SortType=A&Page=2&ItemsPerPage=50

This would give additional information to the server to tell it to “sort all the
DemoObjects by Property1 ascending and then return items 51–100.” If the query
string were empty, the request would still work, but the criteria added by the
query string make it more specifi c.

You could also put these values into the URL itself as part of the route, but that
would get complicated. There may be times when some of these values are not sent,
so the routing can become complicated. Rather than make the routing engine fi gure
out complicated paths, using a query string is suggested.

You can access the query string values in a pretty cool way. If you wanted to allow
the following four key-value pairs to be used, you could change the method signa-
ture from the empty list of parameters that it has now as follows:

 public ActionResult Index(string Sort, string SortType, int Page,
int ItemsPerPage)

If you don’t want to take that approach, perhaps because there are a lot of values
and you don’t want to add to the parameter list, you can also access the values as
shown here:

NameValueCollection coll = Request.QueryString;
string sort = coll["Sort"];

The Request object that contains the Querystring property gives you access to
the parsed HTTP request that is received by the server. This means that not only
do you have the capability to let the various parsers and binders do some work for
you, but you always have access to the base request itself if you need it.

The model binding is very straightforward for an object like DemoModel that has a set of simple
types. You may be wondering how this would work with complex types, for which a property is not
an integer or some other simple type but rather a different object. Consider the following structure

public class ComplexModel
{
 public int MyId { get; set; }
 public DemoModel DemoModel { get; set; }
}

public class DemoModel
{
 public string Property1 { get; set; }

180 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 180

 public string Property2 { get; set; }
 public string Property3 { get; set; }
}

where the new object ComplexModel contains a property that is a DemoModel object. In this case,
your input names have to be set up differently. If you consider the parsing engine, when it is trying
to fi nd values that can be assigned to DemoModel, how do you think it will do it? It looks for input
fi elds with a name of DemoModel. However, how can you create a textbox that takes in all the prop-
erties of the DemoModel? The answer is you can’t, nor do you need to.

Although the parsing engine does not recognize that an input fi eld named Property1 needs to be
assigned to the DemoModel property’s Property1 property, it does understand that an input fi eld
named DemoModel.Property1 will, because it recognizes the DemoModel name and the dot notation
indicates that the item to the right of the dot is a property of that particular object.

This dot notation relationship can go as deeply as needed. It is very common to have object graphs
that are four to fi ve layers deep; and the parsing engine is able to track the values down and assign
them correctly as long as the dot notation is correct. This is also the way that you would access
these properties in code, so it makes sense.

Collections work in much the same way in that you can work with them the same way that you can
access them in code. Change the object defi nition as shown here to see what that means:

public class ComplexModel
{
 public int MyId { get; set; }
 public List<DemoModel> DemoModels { get; set; }
}

As you can see, the DemoModel was changed to a list of DemoModel objects. However, the dot nota-
tion works here as well if you consider that a list can be accessed as an array, through the [index]
notation. That means that an input with a name of DemoModel[0].Property1 is mapped to the fi rst
item in the collection’s property Property1. An input named DemoModel[1].Property1 is mapped
to the second item in the list’s Property1 property, and so forth—again, just as if you were working
through the items in code.

You have already seen how the model binder works but, to be frank, as long as you use the various
approaches covered earlier to create the HTML elements with which users interact, you should not
have to worry about this at all, as the binder is just able to work.

Now that you have learned how it all functions, you will create a data entry form. In the last chapter
you created an ASP.NET Web Form data entry form to manage the administrative task of creating
an item that is available in the lending library. The rest of the administrative functions for the Web
Form already work, so in the following Try It Out you will create a form that captures demographic
information about the user.

TRY IT OUT Creating a User Demographic Information Capture Form

For many sites, it is useful, if not imperative, to know something about the people who have registered.
What kind of information might you be interested in knowing about a person? Considering that in the

Form-Building Helpers ❘ 181

c06.indd 12/18/2015 Page 181

future you may want to do directed marketing, in this activity you gather some demographic informa-
tion that may be useful:

 ➤ Birth date

 ➤ Gender

 ➤ Marital status

 ➤ When they moved into the area

 ➤ Whether they own or rent a home

 ➤ Number of people living in the household

 ➤ Hobbies (multiple choices from a known list)

This should give you enough to build on for now. As before, when you were doing the initial Web
Forms form, you won’t be able to save it, but you will come back and update this as part of the data-
base section in Chapters 8 and 9.

 1. Ensure that you have Visual Studio running, your RentMyWrox solution is open and that the
Solution Explorer window is available. Right-click the Models directory and select Add ➪ New
Item. When the Add New Item dialog appears, be sure you select the Code option in the left win-
dow, and then select Class. Name the fi le UserDemographics.cs (or.vb) as shown in Figure 6-7, and
then click the Add button.

FIGURE 6-7: Creating the Model class

 2. Add the following properties to this new class to get a structure like this:

public class UserDemographics
{
 public UserDemographics()

182 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 182

 {
 Hobbies = new List<string>();
 }
 public DateTime Birthdate { get; set; }

 public string Gender { get; set; }

 public string MaritalStatus { get; set; }

 public DateTime DateMovedIntoArea { get; set; }

 public bool OwnHome { get; set; }

 public int TotalPeopleInHome { get; set; }

 public List<string> Hobbies { get; set; }
}

 3. Save your new model after adding all the properties by selecting File ➪ Save.

 4. Now add the controller that handles all the server work. Select the Controllers directory and right-
click to get the context menu. Select Add Controller. The Add Item dialog shown in Figure 6-8
should appear. Select the MVC 5 Controller with read/write actions choice.

FIGURE 6-8: Creating the Controller class

Form-Building Helpers ❘ 183

c06.indd 12/18/2015 Page 183

 5. Select the MVC 5 Controller with read/write actions option and click the Add button. When the
dialog shown in Figure 6-9 appears, notice how it is already fi lled out with the “Default” area of
the name highlighted. Because you want this controller to manage the UserDemographics class
that you added earlier, name this fi le UserDemographicsController and then save.

FIGURE 6-9: Naming the Controller class

 6. Ensure that the Views directory is expanded in the Solution Explorer. If you didn’t notice,
the process of adding a controller also added a folder under the Views directory, as shown in
Figure 6-10. Ensure that there is a folder named UserDemographics. This is the folder where you
add your views.

FIGURE 6-10: Views folder created when adding the controller

 7. Select and right-click the UserDemographics folder to get the context menu. Select Add ➪ View to
get the dialog shown in Figure 6-11

FIGURE 6-11: Dialog to add a view

184 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 184

 8. This dialog enables you to create a view that is responsible for doing a set of work. The fi rst fi eld to
enter is the name of the view you are creating. The standard convention is to use the same name as
the action that responds to the client with that view. Thus, the fi rst view would be the Index view
that responds to a request with a list of items. Follow these steps to make this view:

 a. Change the view name to Index. You should ensure that you use the proper capitalization.

 i. In the Template area, change the template to List.

 ii. Select UserDemographics as the Model Class.

 iii. Leave DataContext class empty.

 iv. Check “Reference script libraries.”

 v. Check Use a layout page.

 b. Click Add.

 9. Note that there is now a fi le named Index.cshtml (or Index.vbhtml) available in the
UserDemographics folder. This fi le should also open in your code window. With that fi le as the
active fi le in your IDE, select the green arrow or click F5 to run the application.

 10. Your application should crash, giving you an error message that includes the phrase
“NullReferenceException.” Select the Continue button to close the dialog window or Stop debug-
ging the application to recover from the error. This exception was caused because the default Index
controller action expects a model, but because you never did any work on the controller action,
a null model is sent, which is causing problems. You need to update the view code to prevent this
from happening.

Locate the following line of code

@foreach (var item in Model) {

and change it to read as follows:

@if (Model != null)
{
 foreach (var item in Model)
 {
...

You also need to fi nd the closing curly bracket (}) at the bottom of the page and add another
one, so that there are two closing braces in a row. The change that you just made checks to see
whether there is a non-null model before it tries to do any work with the model. Stop the applica-
tion if it is still running, then run the application again; you should not get an error, but rather
the screen shown in Figure 6-12. You have successfully created the view to display a list of
UserDemographic objects.

Form-Building Helpers ❘ 185

c06.indd 12/18/2015 Page 185

FIGURE 6-12: Browser display of the Index fi eld

How It Works

You have created an initial data-entry form using the ASP.NET MVC framework that transfers infor-
mation edited by the user to the server. You began by creating the model—the defi nition of the data to
be transferred back and forth between the client and the server. You did this fi rst because everything
you do going forward involves management of the creation, editing, and viewing of that model.

Next, you used scaffolding to create a controller for that model. The model name for which you are
building the controller is important because the name that you give the controller becomes part of
the URL; therefore, if you left the “Default” value, the actions on this controller would be accessed
through http://someurl/Default/. Because MVC routing uses RESTful standards, this controller is
responsible for handling calls to a URL containing the object name—in this case, UserDemographics.

In addition, MVC manages relationships using a convention such that it expects to fi nd the handler
for an object in a controller that is named ObjectNameController, where the Controller part of the
name is the standard. The scaffolding creates a set of actions that give the developer a head start on
building the typical Read, Create, Update, and Delete processes that are usually needed when work-
ing with database items. You can see this if you look into the fi le and see how the scaffolding created
actions, or methods, called Index, Details, Create, Edit, and Delete. Each of these relate to one of the
actions we may want to take with UserDemographics as shown in Table 6-3

TABLE 6-3: Scaffold-Created Actions in a New Controller

METHOD SIGNATURE DEFINITION

Index() The default method that handles when a user goes to a URL of
http://websiteUrl/UserDemographics. A typical response could
be a list of the objects that are available. We will leave this action
alone for now, but we will come back and revisit it after we have
added authentication.

Details(int id) The method that handles when a user goes to the URL of http://
websiteUrl/UserDemographics/Details/5 and the expectation is
that it will return a read-only display of the UserDemographic
object.

continues

http://someurl/Default
http://websiteUrl/UserDemographics
http://websiteUrl/UserDemographics/Details/5
http://websiteUrl/UserDemographics/Details/5

186 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 186

METHOD SIGNATURE DEFINITION

Create() Handles a GET to the URL of http://websiteUrl/
UserDemographics/Create. The view will contain the form fi elds
required to create a new user demographics. This action does
not handle the creation, only providing the HTML form to cap-
ture the information.

Create(FormCollection

collection)
Handles a POST to the URL of http://websiteUrl/
UserDemographics/Create. The intent is that this will handle the
processing of the form. When we add in the database we will be
revisiting this action to handle the saving of the information.

Edit(int id) Handles a GET to the URL of http://websiteUrl/
UserDemographics/Edit/6 and returns a form to change the
values of a particular item. Typically the form would have some
fi elds fi lled out with the current values of those properties as
appropriate.

Edit(int id,

FormCollection

collection)

Handles a POST to the URL of http://websiteUrl/
UserDemographics/Edit/6 and handles the update of the object
that was submitted.

Delete(int id) Handles a GET to the URL of http://websiteUrl/
UserDemographics/Delete/6, and generally returns some infor-
mation on the item to be deleted and asks for a confi rmation.

Delete(int id,

FormCollection

collection)

Handles a POST to the URL of http://websiteUrl/
UserDemographics/Delete/6 and will handle the actual deleting
of the item.

Notice how all of the items that handle the POST actions have a FormCollection as one of the param-
eters. The FormCollection is a key-value pair collection of items returned as part of the request’s body.
The Model Binder can instead turn this into the appropriate model. You will keep the FormCollection
for the Edit method, but once you get to the Create handler, you change the signature to contain an
object as opposed to this FormCollection.

You have created the model and controller that will manage the data and the processing of the
request as well as the original view that interacts with that model and controller. Your next step in
the following Try it Out is to create the additional views that will provide the UI that the user can
interact with.

TABLE 6-3 (continued)

http://websiteUrl
http://websiteUrl
http://websiteUrl
http://websiteUrl
http://websiteUrl
http://websiteUrl
http://websiteUrl/UserDemographics/Create
http://websiteUrl/UserDemographics/Create
http://websiteUrl/UserDemographics/Edit/6
http://websiteUrl/UserDemographics/Delete/6
http://websiteUrl/UserDemographics/Delete/6

Form-Building Helpers ❘ 187

c06.indd 12/18/2015 Page 187

TRY IT OUT Creating a Simple Data Entry Form

In the last exercise you created a model and a controller as well as a simple view to allow the applica-
tion to run. In this exercise you will be creating the simple data entry form that will allow the user to
fi ll out and return all of their relevant user demographic information.

 1. Ensure that you have Visual Studio running, your RentMyWrox solution is open. Ensure that the
Views\UserDemographics folder is selected, and right-click, and select Add ➪ View. Confi gure it as
follows:

 a. Change the view name to Create. You should ensure that you use the proper capitalization.

 b. In the Template area, change the template to Create.

 c. Select UserDemographics as the Model Class.

 d. Leave DataContext class empty.

 e. Check “Reference script libraries.”

 f. Check Use a layout page.

 g. Click Add.

 This adds a Create view to the directory and opens the fi le in your IDE.

 2. Save the application and run the application on this page. The scaffolding builds you a data-entry
form like the one shown in Figure 6-13.

FIGURE 6-13: Initial data-entry form

188 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 188

 3. While this initial form is pretty close to what you need, you should make some changes to get it
to the point where it’s exactly what you want (just in the form part, you’ll deal with styling later).
Stop Debugging and locate the line that creates the Gender value. Rather than display a textbox,
you want to change this to a dropdown so that you have control over the information being
entered. Currently, this line of code looks like the following:

@Html.EditorFor(model => model.Gender, new { htmlAttributes = new { @class = "form-
control" } })

Change it to the following:

@Html.DropDownListFor(model => model.Gender,
 new SelectList(new[] { "Male", "Female", "Other" }),
 new { htmlAttributes = new { @class = "form-control" } })

Now you have replaced the textbox with a dropdown that has three different options. This
ensures acceptable answers, so you don’t have to worry about free-form responses such as “boy”
or “F.”

 4. Now make the same sort of change for marital status. The current code that you should change is
as follows:

@Html.EditorFor(model => model.MaritalStatus,
 new { htmlAttributes = new { @class = "form-control" } })

Change it to this:

@Html.DropDownListFor(model => model. MaritalStatus,
 new SelectList(new[] { "Single", "Married", "Divorced", "Widow(er)", "Other" }),
 new { htmlAttributes = new { @class = "form-control" } })

 After these edits, running the application will present a form that should look like the one shown in
Figure 6-14.

 5. One thing that you may have noticed is missing from the form is the capability to add hobbies.
You need to also add this. Go to the top of the Create form and fi nd the section containing the
following:

@{
 ViewBag.Title = "Create";
}

Make the following edit to create a list of potential hobbies:

@{
 ViewBag.Title = "Create";
 var hobbyList = new List<string>
 { "Gardening", "Reading", "Games", "Dining Out", "Sports", "Other" };
}

mailto:@Html.EditorFor
mailto:@Html.DropDownListFor
mailto:@Html.EditorFor
mailto:@Html.DropDownListFor

Form-Building Helpers ❘ 189

c06.indd 12/18/2015 Page 189

FIGURE 6-14: Edited data-entry form

 6. Now you need to add a set of checkboxes, one for each hobby. To do this, locate the section right
before the following:

<div class="form-group">
 <div class="col-md-offset-2 col-md-10">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>
</div>

Add the following code before the previous section:

<div class="form-group">
 @Html.LabelFor(model => model.Hobbies,
 htmlAttributes: new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @foreach (string hobby in hobbyList)
 {

 <input name="hobbies" value="@hobby" type="checkbox" />
 @hobby

 }
 </div>
</div>

 7. Now that you have changed the data-entry form, you need to make some changes to the controller
action, or method, that handles the submission. In the UserDemographicsController fi le, fi nd the
following line of code:

public ActionResult Create(FormCollection collection)

mailto:@Html.LabelFor

190 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 190

To change the object coming in, update the method signature to the following:

public ActionResult Create(UserDemographics obj)

You also need to add a using statement to the top of the page:

using RentMyWrox.Models;

Adding the using enables you to easily reference the UserDemographics object without having to
use the complete namespace.

 8. To handle the hobbies you added, put a breakpoint in the method as shown in Figure 6-15 by
clicking in the gray border to the left of the code. You need to ensure that the breakpoint is on the
same line as code that can be run.

FIGURE 6-15: Create a breakpoint in a method

 9. Switch back to have the Create view as the active fi le and run the application in Debug mode. If
you do not see the data entry screen, change the URL in the browser toolbar to the appropriate
one: /UserDemographics/Create. Fill out the form with data in the correct format, such as ensur-
ing you use a date for those fi elds asking for a date. Submit the form.

 10. The processing runs and then stops at the breakpoint you created. If you hover over the item in
the parameter list and then click the arrow, you can see the contents of the item. Note that all the
information you entered into the form is available as a property on the object. Stop the application
when you are completed.

 11. At this point you need to decide how you want to handle an edit. You can either create a new
view or reuse the Create view. If you create an Edit view, you will see that it looks exactly like the
Create view you already created, so you will instead make some changes to reuse the Create view.

However, using the Create view to also edit an object could be confusing going forward, so you’ll
fi rst change the name of the view that you just created. Locate the view UserDemographics\
Create.cshtml in the Solution Explorer, right-click, and select Rename. Change the name from
Create to “Manage.” Ensure that this fi le is your active fi le and debug the application. The URL
in your browser bar should be UserDemographics/Manage, but you get a 404 error, or resource
not found error page, as shown in Figure 6-16.

Form-Building Helpers ❘ 191

c06.indd 12/18/2015 Page 191

FIGURE 6-16: 404 error when running the Manage view

This error is expected because the system is looking for a Manage method but you don’t have one.

 12. Changing the URL from Manage to Create, which was how you were able to access it before, also
causes errors. That’s because the Create method, as it stands now, is looking for a view named
“Create” but isn’t fi nding it. You have to tell it to send the Manage view instead. To do this, go
into the Controller fi le and change the basic Create method to the following:

public ActionResult Create()
{
 return View("Manage");
}

You have told the View method to look for a view named Manage rather than the default Create
view—defaulting because the name of the view matches the name of the action. Run the applica-
tion in debug mode now and go to UserDemographics/Create, the page should render.

 13. You also need to make a change to the Edit method. In this case you will make a bit more changes
because the Edit is expected to return a model. Find the Edit method (with a single parameter) and
change it to the following:

public ActionResult Edit(int id)
{
 var model = new UserDemographics
 {
 Gender = "Male",
 Birthdate = new DateTime(2000, id, id),
 MaritalStatus = "Married",
 OwnHome = true,
 TotalPeopleInHome = id,
 Hobbies = new List<string> { "Gardening", "Other" }
 };
 return View("Manage", model);
}

You added a mocked-up model so that you can see what happens when you call the Edit method.
Note how both the BirthDate and TotalNumberInHome properties are currently set to the Id
passed into the method. That demonstrates that you have actually received the information
and passed it back to the view. Run the application and go to UserDemographics/Edit/5 by add-
ing those values after the “localhost” and port number in the URL address bar. You should get a
screen that looks like Figure 6-17.

192 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 192

 14. Everything seems to be displaying appropriately other than the hobbies, which are not being
checked even though the Model has hobby values assigned. Now you need to make a change in the
view to handle when those items have been selected. Stop the application and ensure that you are
in the view and locate the code block you created earlier:

<div class="form-group">
 @Html.LabelFor(model => model.Hobbies,
 htmlAttributes: new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @foreach (string hobby in hobbyList)
 {

 <input name="hobbies" value="@hobby" type="checkbox" />
 @hobby

 }
 </div>
</div>

FIGURE 6-17: Displaying the Edit screen

The change you want to make now checks the checkbox if the model already contains the hobby.
You tell a checkbox that it is checked by adding a "checked" attribute, so the code you are going
to add evaluates each hobby in the loop to determine whether the hobby being added is part of the
list of hobbies in the model. If it is, it adds “checked” to the input. If not, it adds an empty string.
Update your code to look like the following. Changes are highlighted.

<div class="form-group">
 @Html.LabelFor(model => model.Hobbies,

mailto:@Html.LabelFor
mailto:@Html.LabelFor

Form-Building Helpers ❘ 193

c06.indd 12/18/2015 Page 193

 htmlAttributes: new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @foreach (string hobby in hobbyList)
 {
 string checkedText = Model.Hobbies.Contains(hobby)
 ? "checked"
 : string.Empty;

 <input name="hobbies" value="@hobby" type="checkbox" @checkedText />
 @hobby

 }
 </div>
</div>

If you run the application again and go to UserDemographics/Edit/5, you can see that the hobby
checkboxes have been checked as desired.

 15. The last task is to consider the deletion. In this case, it doesn’t make sense to delete the
UserDemographic, so rather than create anything to manage this functionality, you want to instead
remove, or delete from the controller, all the methods that refer to “Delete.” This means that the
application will no longer respond to a URL containing UserDemographic/Delete.

How It Works

You created a new data entry form. One of the code snippets that you added is shown again below:

<div class="form-group">
 @Html.LabelFor(model => model.Hobbies,
 htmlAttributes: new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @foreach (string hobby in hobbyList)
 {

 <input name="hobbies" value="@hobby" type="checkbox" />
 @hobby

 }
 </div>
</div>

This section does two things: It adds a label for the hobbies, just as the other properties have, and
includes a loop that creates a checkbox and outputs the hobby name. What’s interesting here is that
you are not using any of the HTML helpers, but are instead creating the input element manually. Also,
you’re using a combination of the hard-coded name “hobby” and the value of the hobby as it goes
through the loop.

You want to take this approach because of the interesting way in which HTML checkboxes are handled
when submitted. As you saw, each of the items ends up having the same name, but values for a check-
box are included only when the item is checked. If the user does not select any of the hobbies, then
nothing is submitted. In addition, because all the inputs have the same name, when more than one item
is selected the values are appended together with a comma between them, so the value ends up looking
something like “Gardening, Other.”

mailto:@Html.LabelFor

194 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 194

The especially nice thing about this approach is that because you used the name “Hobbies” for the
element, the model binder can determine what’s going on and fi lls the Hobbies collection with the
list of items that were checked; you don’t need to do any additional work in the controller. Thus, this
approach for adding the list of checkboxes helped you fi ll your model.

You would have the same benefi t if you had used a multi-select dropdown as well, because it would
send the information to the server in the same format, as long as you named the select box with the cor-
rect name. However, checkboxes provide a friendlier user experience.

Once you had a controller and a model object, the views could be built. Because you had the model
already defi ned, the scaffolding system was able to go through the various properties and build out
the appropriate page, whether it was a list of items, a data-entry form, or a read-only display of the
information. While each of the pages needed some tweaks to help it capture and/or display all the
information, most of the work was done through the scaffolding process. On the data-entry pages, the
scaffolding creates two actions: one to take the GET request and return a form and the other to take the
POST request to process the form fi elds.

This difference between verbs is important to remember in ASP.NET MVC, which tends to use the
verbs as designated in the HTTP defi nition. Also, the nature of HTTP means that you cannot access
a form body when handling a GET, as the entire purpose of the GET is to provide read-only work. The
changing of data explicitly goes against the expectations of using a GET verb.

As you advance through the chapters, you will revisit this work to add the information you are working
with into the database, as well as adding security, because only authenticated users should be able to
do anything with the demographics, and users should also be limited to working with only their own
information.

SUMMARY

This chapter introduced using ASP.NET MVC to communicate information between the client
and the server. You have learned how to create a view and display dynamic information through
the use of HTML helpers, especially the HTML.DisplayFor. These HTML helpers also support
the creation of HTML elements that create elements on the client side for capturing information
to return to the server.

Two different types of HTML helpers create data-entry elements: generic and specifi c. The generic
Html.EditorFor looks at the property it is displaying and determines the best way to capture the
information. It is also capable of looking at attributes and infl uencing the design through attributes
on the model. Those attributes were briefl y covered, but you will learn more about them as you start
adding attributes to the models for database management. The other type of HTML helper that can
be used to create HTML input elements are the element-specifi c helpers, such as Html.TextboxFor
or Html.CheckboxFor, which create an HTML element with the name of the property.

One of the most powerful aspects of the view is how it supports running code within the view itself
through its support for Razor. Razor allows you to intermix code and HTML markup so that you
can write code to do things like iterating through a list and writing the content, or performing

Summary ❘ 195

c06.indd 12/18/2015 Page 195

calculations. Razor is also what makes the HTML helpers work. Having the property name match
the element name is important, as it helps the model binding process. When a form is submitted, the
server examines the information that is being submitted; and if the matching method (matching the
URL due to the routing rules) contains an object as an input parameter, it tries to map the various
incoming data points to the properties on the object. This enables the developer to use a type-safe
object in the controller, rather than having to parse through a series of key-value pairs and work
from those.

Although you did not do much work in the controller yet, the coordination between object, control-
ler, controller action, or method, and view should make more sense now. A lot of ASP.NET MVC
is convention driven, and this coordination is part of that convention, as the object name from the
URL is matched to a controller that has a name using the object’s name with “Controller” appended
to it, such as ObjectNameController. The action name is also typically part of the URL string,
so the system is able to determine what action, or method, on which controller needs to be run to
handle the request.

EXERCISES

 1. What is the difference between using @Html.TextboxFor and @Html.Textbox?

 2. How does the Razor view engine understand the difference between code that it is supposed
to run and text that should not be changed or affected, simply passed through?

 3. Convention plays an important role in ASP.NET MVC. Must the view name always match the
action name?

 4. How does the model binder know how to bind the properties of nested types, or objects that
are properties on other objects?

mailto:@Html.TextboxFor
mailto:@Html.Textbox?

196 ❘ CHAPTER 6 ASP.NET MVC HELPERS AND EXTENSIONS

c06.indd 12/18/2015 Page 196

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Controller Action A method on a controller that responds to a specifi c URL. The URL format
is typically something like ObjectName/Action, where ObjectName gives
direction to the controller that is going to be used and Action provides
the name of the method, or action, that is called on that controller.

Display/DisplayFor HTML helpers that bind the content of a model value to an HTML element
on the web page. These elements are not input elements, but are used to
display model information.

Editor/EditorFor These helpers enable the system to create the appropriate HTML input
element based on the object and property being bound. EditorFor also
has the capability to look at various attributes on the model in order to
determine how the display may be controlled.

Lambda Expressions Inline functions that basically take the approach of identifying a property.
Thus, x => x.Property1 is defi ned as “for every given x (the variable
name for the object), return the value of the property Property1.”

Model Binding The process whereby various values submitted to the server are parsed
to identify which values match the property names of the object that was
named in the parameter list of the Action method.

Razor The name of the view engine that handles the capability to run C# (or VB)
code within the view. The entire .NET stack is available for use within the
view as necessary. The Razor view engine can understand the difference
between code it should run and text it should ignore through the use of
the @ character, which identifi es code that should be run.

Routing The process of determining from the URL which controller and action are
responsible for handling the request. The RouteConfig fi le contains the
routing defi nitions, with the traditional, default route likely being the only
one needed for the sample application.

Type-Safe
Extensions

These HTML helpers use lambda expressions to defi ne the relationship
between the model and a particular element.

Verb Attributes These are used on a controller action to limit the type of verbs that can be
used to access that controller. An action that does not have an attribute
can be accessed through any verb. An action that has one of these attri-
butes, such as [HttpPost], only accepts requests with that specifi c verb.

c07.indd 12/18/2015 Page 197

Creating Consistent-Looking
Websites

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to create and use an ASP.NET master page for your Web
Forms pages

 ➤ How to create and use an ASP.NET MVC layout page

 ➤ How to create and use Razor sections in ASP.NET MVC

 ➤ How to create and integrate Web Forms content pages

 ➤ How to create and integrate MVC content pages

 ➤ How to create a base page

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter
07 download and individually named according to the names throughout the chapter.

You have been doing bits and pieces of work for the sample application, plugging in some
information here, some there. In this chapter, you start pulling this all together and unifying
the look and feel of the website. You do this by creating a simple, single look and feel that you
then ensure all pages will follow. This look and feel includes consistent styling, menus, footers,
and the consistent display of information—all of which users expect in a website.

In future chapters you will be plugging in more functionality. In this chapter, you are building
the shell of the application, the foundation on which all the rest of the items going forward
will be built. You will also get an introduction on how to separate much of the design of the
page from the functionality of the page by allowing the common areas to be managed inde-
pendently of the actual page content.

7

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

198 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 198

CONSISTENT PAGE LAYOUT WITH MASTER PAGES

When you look at most websites on the Internet, such as http://www.wrox.com, you can see that
they tend to have a consistent look and feel. For example, each page may have a menu at the top, a
left menu, and even a footer menu at the bottom; and all of these areas look the same on every page.

You could easily repeat all the code to effect this on each page, but that isn’t the best way to handle
it. Changes would become a management nightmare because you would have to replicate changes
across every page in the site. Clearly, it would be better to have some way to store all these shared
design elements in the same place, so you would only have to make a change in one location in order
to replicate it to the entire site. Luckily, ASP.NET provides a single place to maintain all this infor-
mation: the master page in Web Forms and the layout page in MVC.

In a nutshell, a master page is a special type of ASP.NET Web Forms page that defi nes the markup
common to all content pages as well as regions that are customizable on a content page–by–content
page basis. Whereas a master page is the template, a content page is an ASP.NET page that is bound
to the master page, as it uses the template as its primary design template. Whenever a master page’s
layout or formatting is changed, all of its content pages’ output is likewise immediately updated,
which makes applying site-wide appearance changes as easy as updating and deploying a single fi le,
the master page.

The layout provides the same functionality in ASP.NET MVC as the master page does in ASP.NET
Web Forms: keeping the UI elements and theme consistent throughout the application. Recall from
Chapter 6 that the Razor layout introduced two new concepts:

 ➤ Web body—Used to render the content of the referencing view in a specifi c place

 ➤ Web page sections—Used to declare multiple sections in a layout, which are then defi ned by
the referencing views

Both approaches are supported when creating a new fi le through the various scaffolding frameworks.
The scaffolding framework is responsible for creating a fi le, or set of fi les, based on a template. When
you are adding a fi le (or project for that matter) you are really selecting a scaffold template. The con-
tent that is added is the result of the scaffolding framework creating the content based on that tem-
plate. They can each be retrofi tted into existing pages as well. You will learn both approaches: creating
new pages that use the templates as well as converting existing content to use the centralized template
approach.

These two approaches, while different in implementation, both provide the same set of
functionality. Take a look at Figure 7-1.

The light area in Figure 7-1 is the area that would typically come from the template page, while the
dark area is from the content page. Both Web Forms and MVC support this approach. The next sec-
tion describes how this works.

Creating and Using Master Pages in ASP.NET Web Forms
When ASP.NET version 1.0 launched in early 2002, it didn’t have any support for the concept of
a master page. Some of this functionality was handled by server-side includes, whereby the web

http://www.wrox.com

Consistent Page Layout with Master Pages ❘ 199

c07.indd 12/18/2015 Page 199

server, when writing out an HTML page to the response stream, would come across a marker indi-
cating that content from another fi le should be inserted at that point. This worked fi ne, as long as
you didn’t need the inserted pages to be dynamic as well. These inserted pages could not be dynamic
because they did not go through the same processing pipeline as did the standard request so any
code in the included fi le would not be run. Typically the server only allowed fi les with extensions
such as .html or .txt to be included. In addition, because this was all handled post rendering, it was
impossible to work with the fi nal page as a complete entity; the “added in” sections would not be
visible in the IDE, so it became an exercise in “let’s run it and see what it looks like.”

Page Content

Header Area
Menu, Logo, etc.

Footer Region
Privacy, About, etc.

Left Area
Sub-Menu

FIGURE 7-1: Web page within a template

ASP.NET 2.0 changed this with the addition of master pages. These separate template pages can con-
tain code and can be executed just like the content pages. Master pages are a different page type; you
may have seen them available as an option when you were creating some of your other new pages.
They typically have a .master extension. A master page looks very much like the other HTML pages
you have looked at before, but they have a few new sections. Listing 7-1 shows the HTML that is part
of a new master page.

LISTING 7-1: A simple ASP.NET Web Forms master page

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind="DemoMaster.master.cs"
 Inherits="RentMyWrox.Demonstrations.DemoMaster" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>

continues

http://www.w3.org/1999/xhtml

200 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 200

 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

If you looked at this page in a browser it would be a completely blank page. The empty master page
looks like any other HTML page, with two additions: the ContentPlaceHolder server controls.
You can tell that these are server controls because they follow the traditional asp:control naming
convention and contain the runat="server" attribute. This control is different from the others,
however, in that it does not fully control everything that goes on as part of the control. It instead
acts as the link between the content and the master page; with the area inside the control being fi lled
by the content page.

Note that there are two areas in this default page: one in the HTML head and the other in the body,
within the form. The content section in the body is pretty straightforward, because that is where the
visible content goes, but the reason why there is a content section in the header may be less obvious.
However, when you consider the kind of information contained in the header section, it becomes
clearer. You could put links to JavaScript fi les or stylesheets that are only used on this particular
content page; or provide any other page meta information that you feel is important. You might use
this section only on some pages, but having it available for use provides a lot of functional support.
Typically there may only be two sections, but you can include as many sections as you need for your
design. Figure 7-2 shows an example of how this might look.

Main
Content

Right
Area
Ads

Header Area
Menu, Logo, etc.

Footer Region
Privacy, About, etc.

Left Area
Sub-Menu

Left Area
Related
Content

Special
Content

FIGURE 7-2: Master page with multiple content sections

LISTING 7-1 (continued)

Consistent Page Layout with Master Pages ❘ 201

c07.indd 12/18/2015 Page 201

In this case, there would be a content section in the header, a content section that defi nes the
“Left Area Related Content” that could hold links to other content similar to the content in the
page, a content section for the main content, and another content section for the right-most area
of the footer. This kind of approach looks like Listing 7-2. Note the HTML comments that show
where real content would be inserted.

LISTING 7-2: A complex ASP.NET Web Forms master page

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind="Site1.master.cs"
 Inherits="RentMyWrox.Demonstrations.Site1" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <link href="~\content\styles.css" rel="stylesheet" type="text/css" />
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <header>
 <!-- Header content here, logos, menu, etc. -->
 </header>
 <div id="leftpane">
 <div class="leftmenu">
 <!-- Regular menu stuff here -->
 </div>
 <asp:ContentPlaceHolder ID="LeftContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <div>
 <asp:ContentPlaceHolder ID="MainContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <footer>
 <!-- footer content here -->
 <asp:ContentPlaceHolder ID="FooterContent" runat="server">
 </asp:ContentPlaceHolder>
 </footer>
 </form>
</body>
</html>

Each of these asp:ContentPlaceHolder controls prefers that the content page provide content that
can be inserted into that area. This content may well be empty, but the system expects a content
page to have corresponding areas for each of the placeholders. When creating a new content page
that is attached to a master page during creation, as you do in the next Try It Out, the scaffolding
creates a content section for each placeholder in the master page. However, removing those content

http://www.w3.org/1999/xhtml

202 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 202

sections from the content page doesn’t result in an error; there just won’t be any content put into
those placeholder areas.

Another powerful feature of master pages is the capability to nest them. Consider the sample appli-
cation’s site design. There are two major, different areas of the site: one for the regular user to view
and check out items and the other for an administrator to manage the items available for checkout.
Each of those areas is likely to have a different menu structure because the user and administrator
have different goals, but you still want most of the other structure and look and feel to remain the
same. One way to do this is to put the determination of which menu to display in the master page,
i.e., an approach along the lines of the pseudocode shown here:

if user is administrator
 show administrator menu
else
 show regular menu

PSEUDOCODE

Pseudocode is a term that is used to refer to a merging of regular language and a
programming language. Nearly all languages have the same capabilities, such as if/
then/else or loops; it is their implementation that differs. Pseudocode enables you
to break down a set of requirements with a technical approach that still uses regu-
lar language which can be translated by a developer—regardless of the language
that is used to implement the business requirements. We will be using pseudocode
throughout the rest of the book as the business requirements are reviewed, with the
implementation being language specifi c.

The other approach is to instead abstract out the decision by creating a primary master page that
contains the areas you want repeated on every page, and then another set of master pages that con-
tain the various menus you want to display. This separation is displayed in Figure 7-3.

Page Content

Footer Region
Privacy, About, etc.

Header Area Logo, etc.

Left Area
Sub-Menu

Specific Menu

FIGURE 7-3: Nested master pages

Consistent Page Layout with Master Pages ❘ 203

c07.indd 12/18/2015 Page 203

The dark areas of Figure 7-3 show the content that would be managed in the nested content page. The
code to make this work is shown here:

PARENT MASTER PAGE

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind="DemoMaster.master.cs"
 Inherits="RentMyWrox.Demonstrations.DemoMaster" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <header>
 <!-- Header Area, logos, etc. -->
 <asp:ContentPlaceHolder ID="Header" runat="server">
 </asp:ContentPlaceHolder>
 </header>
 <div id="leftpane">
 <asp:ContentPlaceHolder ID="LeftContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <div>
 <asp:ContentPlaceHolder ID="MainContent" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <footer>
 <!-- footer content here -->
 </footer>
 </form>
</body>
</html>

NESTED MASTER PAGE

<%@ Master Language="C#" MasterPageFile="DemoMaster.master"
 AutoEventWireup="true" CodeFile="NestedMaster.master.cs"
 Inherits="RentMyWrox.Demonstrations.NestedMaster" %>
<asp:Content ID="Content0" ContentPlaceHolderID="head" Runat="Server">
 <asp:ContentPlaceHolder ID="HeadContent" runat="server">
 </asp:ContentPlaceHolder>
</asp:Content>
<asp:Content ID="Content1" ContentPlaceHolderID=" Header " Runat="Server">
 <!-- specific menu here -->
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="LeftContent" Runat="Server">
 <!-- left-area sub-menu here -->
</asp:Content>
<asp:Content ID="Content3" ContentPlaceHolderID="MainContent" Runat="Server">
 <asp:ContentPlaceHolder ID="PrimaryContent" runat="server">
 </asp:ContentPlaceHolder>
</asp:Content>

http://www.w3.org/1999/xhtml

204 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 204

There is nothing different in the main master page; it knows nothing about what will be fi lling its
content sections, so it just makes the necessary content placeholders available. The nested master
page is where it becomes interesting. Note the difference in the declaration section. The nested mas-
ter page has an additional attribute, MasterPageFile, which establishes the connection between the
current page and the master page with which it will be linked. You use this same approach later in
this chapter when creating the content pages.

You are also introduced to a new server control here, the <asp:Content />. This tag, as you likely
suspect, links content on this page to the template areas that will display that information. The con-
tent sections later in this chapter describe this relationship in detail, so we won’t spend any more time
on it here other than to note that this is how content is related to an <asp:ContentPlaceHolder />
server control. Figure 7-4 demonstrates the complete relationship.

Parent Master Page
ContentPlaceHolder

Nested Master
Content

ContentPlaceHolder

Content Page
Content

FIGURE 7-4: Nested master pages

Just as you can have multiple placeholders in a master page, you can have multiple layers of master
pages. The only consideration is that a content page can only refer to the placeholder in its refer-
enced master page, it cannot reference a placeholder in a master page higher up the stack. It does not
work like object-oriented inheritance; it is instead more like a one-to-one relationship between the
content and template pages.

TRY IT OUT Creating an ASP.NET Web Forms Master Page

The scaffolding that created your initial project fi les also included a master page called Site.Master.
Rather than try to edit that fi le, you will instead create a new one that enables you to start from
scratch. Keep in mind as you go through this exercise that there are a few unusual things in the applica-
tion, in that you are building a system that integrates both ASP.NET Web Forms and MVC.

You are going to keep two parts specifi c to Web Forms: the administrative section and the authentica-
tion/authorization system. You are keeping the authentication and authorization section in Web Forms
because those pages were already created for you when the project was created. These two different
areas highlight the interesting conundrum discussed earlier about supporting two potentially differ-
ent looks and feels, one for the administrative section and one for the non-admin section. This topic is
revisited later in the chapter when you work on the content pages.

 1. Start Visual Studio and ensure that the RentMyWrox project is open. Right-click on the project in
Solution Explorer and select Add ➪ Web Forms Master Page, as shown in Figure 7-5. When the
name box appears, name it WebForms and click OK. If you do not have the same option in your
right-click menu, instead select Add ➪ New Item and then selecting Web Forms Master Page from
the Web section of the resulting dialog.

Consistent Page Layout with Master Pages ❘ 205

c07.indd 12/18/2015 Page 205

FIGURE 7-5: Adding a new master page

This should provide a very empty-looking master page:

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind="WebForms.Master.cs"
 Inherits="RentMyWrox.WebForms" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

 2. Add the initial design for the master page as shown in the highlighted sections of the code below.
When you are done, you should have the following:

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind="WebForms.Master.cs"
Inherits="WebApplication2.WebForms" %>

http://www.w3.org/1999/xhtml

206 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 206

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>
</head>
<body>
 <form id="form1" runat="server">
 <div id="header">
 </div>
 <div id="nav">
 Navigation content here
 </div>
 <div id="section">
 <asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">
 </asp:ContentPlaceHolder>
 </div>
 <div id="footer">
 footer content here
 </div>
 </form>
</body>
</html>

 3. Save your master page.

 4. Because you don’t yet have a style sheet created for your sample application, you need to create a
new one. Right-click on the Content directory in Solution Explorer and select Add ➪ Style Sheet.
Name this style sheet RentMyWrox and click OK.

 5. Add the following content to the style sheet and then save it.

body {
 font-family: verdana;
}
#header {
 background-color:#C40D42;
 color:white;
 text-align:center;
 padding:5px;
}
#nav {
 line-height:30px;
 background-color:#eeeeee;
 height:300px;
 width:100px;
 float:left;
 padding:5px;
}
#section {
 width:750px;
 float:left;
 padding:10px;

http://www.w3.org/1999/xhtml

Consistent Page Layout with Master Pages ❘ 207

c07.indd 12/18/2015 Page 207

}
#footer {
 background-color:#C40D42;
 color:white;
 clear:both;
 text-align:center;
 padding:5px;
}

 6. Return to your master page and go into Design mode. You should see something like what is
shown in Figure 7-6.

FIGURE 7-6: Unstyled master page in Design mode

 7. Click the style sheet you just created in Solution Explorer. Drag it into the master page and drop it.
The styling should change to resemble what is shown in Figure 7-7.

FIGURE 7-7: Styled master page in Design mode

 8. Go back to Source mode on the master page, where you will see that the link to the style sheet was
added to the header of the master page. Your head section should look like the following (though
the style sheet may be in a different area within the head element):

<head runat="server">
 <title></title>
 <asp:ContentPlaceHolder ID="head" runat="server">

208 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 208

 </asp:ContentPlaceHolder>
 <link href="Content/RentMyWrox.css" rel="stylesheet" type="text/css" />
</head>

How It Works

You used the ASP.NET Web Forms scaffolding to create a new type of page, a master page, and then
added some content to it. The navigation structure was stubbed in rather than completed because you
will be using navigation controls later in the book to fi ll out this area.

Now that the master page is created, it will be available for selection on content pages. The next section
covers content pages and the next Try It Out will link a new content page to this master page that you
just added.

Creating a Content Page in ASP.NET Web Forms
Now that you know how master pages are created, this section describes how you get your content
to display in conjunction with the master page. Your initial look at master pages, in Listing 7-1, had
two <asp:ContentPlaceHolder /> controls. Listing 7-3 contains a content page that uses that
same master page.

LISTING 7-3: An ASP.NET Web Forms content page

<%@ Page Title="" Language="C#" MasterPageFile="~/WebForms.Master"
AutoEventWireup="true" CodeBehind="ContentPage.aspx.cs"
Inherits="RentMyWrox.ContentPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="head" runat="server">
 <!-- content for the head goes here -->
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1"
 runat="server">
 <!-- content for the body goes here -->
</asp:Content>

There are two new parts to this page that need to be understood. The fi rst is the MasterPageFile
reference in the defi nition of the page. This establishes the link between this particular content page
and the master page. With this link, the system is able to determine where each control’s content
will be placed. Every page that is going to use a master page must have this attribute, and it will
need to be populated with the appropriate page, including path.

USING THE TILDE (~) CHARACTER IN ASP.NET URLS

You will see the tilde character used in various areas of your ASP.NET application.
When you are working with ASP.NET Web Forms, the tilde character refers to the
application root directory. The tilde will be translated correctly in server control
properties such as NavigateUrl, MasterPageFile, CodeBehind, or other

Consistent Page Layout with Master Pages ❘ 209

c07.indd 12/18/2015 Page 209

areas that expect either a URL-based path or a relative path to the running page.
In the code that is part of Listing 7-3, the tilde means that in MasterPageFile="~/
DemoMaster.Master" the DemoMaster.Master fi le is stored in the application root,
or at the fi rst level of the project. This is demonstrated in Figure 7-8.

FIGURE 7-8: Location of linked master page in the project

Note also that there is no content outside of the two content controls; the only thing that will be
displayed within the master page content is the content within the content controls. As a matter of
fact, anything, including extraneous text, outside of the content controls causes an error. Figure 7-9
shows the error caused by adding a line of text outside of the last content control.

FIGURE 7-9: Error caused by having text outside content control

210 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 210

Although the system throws an error if anything is outside the content controls, as mentioned earlier
there would be no error if not all of the placeholder controls have a matching content control. The
server simply replaces those content controls with an empty value.

TRY IT OUT Adding a New Content Page and Linking to a Master Page

In this exercise, you create a new page and link it to the master page you created in the last exercise. In
a previous chapter, you created a page that is going to be used by administrators to manage the items
available. This exercise also increases the administrative sections of the application by providing admin-
istrators with the capability to view a list of orders.

You will not be putting any content into this fi le in this chapter; you will simply be creating it. Content
will start to get added in Chapter 8.

 1. Open Visual Studio and ensure that your RentMyWrox solution is open. Locate the Admin direc-
tory, click on it to select it, and then right-click on the directory to open the context menu. Select
Add ➪ New Item. This should present the dialog shown in Figure 7-10.

FIGURE 7-10: Add New Item dialog

 2. If you see something different, ensure that “Web” is selected in the left window. This fi lters the fi le
types to only those fi les that are part of web applications.

 3. Select Web Form with Master Page, change the name of the fi le to OrderList, and click the Next
button. The Select a Master Page dialog shown in Figure 7-11 will appear.

Consistent Page Layout with Master Pages ❘ 211

c07.indd 12/18/2015 Page 211

FIGURE 7-11: Selecting the master page

 4. Select the WebForms.Master fi le that you created in the last exercise and click OK. This will save
the fi le. If you examine the fi le in the editor, you will see that it is not a typical initial fi le, but
instead a fi le with two different content sections that match the sections in your master page.

How It Works

You used the ASP.NET Web Forms scaffolding to create a new Web Form page that uses a master page
to provide a templated display of content. Because you selected the master page to use, Visual Studio
was able to parse that master page and determine the content sections that are available for use. The
system then stubbed in those content sections so they would be available. By default, all content sec-
tions available in the selected master page will be available in the created Web Form.

Sometimes a project is started without a master page or a Web Form page is created by accident, such
that there is no link between the content page and the master page. In those cases, you will need to
convert your non-templated page into a page that uses the master page’s content placeholders by add-
ing the MasterPage reference in the defi nition and adding the Content control(s). You may also have
to change the master page that a fi le has assigned as shown in the next activity.

TRY IT OUT Changing Master Pages in a Web Form

Often in the course of a project you may have to convert a Web Form that does not use a master page
into a content page that is based on a master page. This activity walks you through this process to con-
vert a page created earlier in the book, the Admin/ManageItem.aspx page, so that it uses the master
page you created earlier in this chapter.

 1. Open Visual Studio and ensure that your RentMyWrox solution is open. Open the ManageItem
.aspx fi le that is in the Admin folder.

212 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 212

 2. Open the RentMyWrox.css fi le in the Content directory. This is the same stylesheet that you cre-
ated earlier when you created the new master page. Copy and paste the styles from the header of
the ManageItem fi le into the stylesheet, ensuring that you do not put the content within the curly
braces of one of the other styles already in the fi le. Do not copy the style tags.

 3. Delete the style tags (and styles if still present) from the ManageItem fi le.

 4. In the page defi nition section, change the name of the referenced master page by changing
MasterPageFile="~/Site.Master" to MasterPageFile="~/WebForms.Master".

 5. In the content control, change the name of the linked content section by changing
ContentPlaceHolderId="MainContent" to ContentPlaceHolderId="ContentPlaceHolder1".

 6. Remove the hard-coded style (style="margin-top:100px;") in the top <div> of the
ManageItem.aspx fi le.

 7. In the ManageItem fi le, click the Run button.You should see an updated look, as shown in
Figure 7-12.

FIGURE 7-12: Form in the new master page

How It Works

As you just saw, it is generally a simple process to convert a content page to use a different master page.
You merely change the referenced master page and then ensure that the content controls are linked to a
valid ContentPlaceholder.

Creating Layouts in ASP.NET MVC
ASP.NET Web Forms master pages enable you to create a template that affects any page linked to
that master page, giving you the capability to plug content into each of the areas made available
from the master page. Layouts in ASP.NET MVC are a little different, because whereas master
pages rely on server controls to indicate both content placement and content identifi cation, MVC
does not have server controls. The relationship is built between pages and then matched, one content
placeholder control to one content control.

Consistent Page Layout with Master Pages ❘ 213

c07.indd 12/18/2015 Page 213

ASP.NET MVC takes a different approach. One difference is that any kind of view can be a layout;
you do not necessarily have to use a special kind of fi le. What makes a layout fi le a layout fi le is the
fact that another fi le has designated it as such, and the layout fi le defi nes where content should be
displayed. Listing 7-4 shows what this empty layout fi le could look like.

LISTING 7-4: An ASP.NET MVC layout page

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>
</body>
</html>

As you can see, nothing in this layout page distinguishes it as a layout page, other than a Razor
syntax command that hasn’t been shown yet: the RenderBody command. The ASP.NET MVC
RenderBody command means much the same as a content placeholder in an ASP.NET Web Form
master page, in that it specifi es where content from another fi le should be rendered.

There is a difference between a default layout fi le and a default master page, in that a master page
tends to be created with two different placeholder sections, one in the HTML head and another
in the body; conversely, the layout page is generated with just the one @RenderBody command.
However, you can add additional areas where content can be inserted by using a @RenderSection
command. This enables you to create a master page with a section that is separate from the main
body, as shown in Listing 7-5.

LISTING 7-5: An ASP.NET MVC layout page with a section

<!DOCTYPE html>
<html>
<head>
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderSection("Navigation", required: false)
 </div>
 <div>
 @RenderBody()
 </div>
</body>
</html>

214 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 214

You can add as many of these different sections as needed, just as you were able to do with the
content placeholder controls in Web Forms. In the following Try It Out, you create an MVC
layout page.

TRY IT OUT Creating an ASP.NET MVC Layout Page

This page will have a body area and a section on the right for special information. You will also add
the same default styling that you added for the Web Forms master page. However, like the master page,
you will later add the menu structure and other items as you progress through the appropriate chapters.

 1. Ensure that the RentMyWrox solution is open in Visual Studio. Right-click on the Shared
folder that is within the Views folder, and select Add ➪ MVC 5 Layout Page (Razor), name it
_MVCLayout, and click OK. This creates a fi le in that directory and opens it in the editor with the
following content:

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>
</body>
</html>

 2. Update the content of the fi le as follows:

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link href="~/Content/RentMyWrox.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <div id="header">
 </div>
 <div id="nav">
 Navigation content here
 </div>
 <div id="section">
 @RenderBody()
 </div>
 <div id="specialnotes">
 @RenderSection("SpecialNotes", false)
 </div>
 <div id="footer">
 footer content here
 </div>
</body>
</html>

Consistent Page Layout with Master Pages ❘ 215

c07.indd 12/18/2015 Page 215

How It Works

You started by using the Visual Studio scaffolding to create a new page. You then added content,
including the styling. This was all easier to do this time compared to when you did the Web Forms
master page because all the ancillary items were completed, such as building the style sheet.

Of key importance here is the location of the layout fi le that you created. The convention is to start
the fi lename with an underscore (_) and place it within the Shared directory. That’s not required here
because you will be using the name and path of the layout fi le when you make the assignment, so you
can name the fi le as desired and put it anywhere. However, placing the fi le in the Shared directory and
using the underscore signifi es that it is a view available to other views.

The other difference between this layout and the Web Forms master page you created earlier is that you
created a special section called “Special Notes” that is optional; pages that use this layout do not have
to provide the section in order for the page to work.

Creating a Content View in ASP.NET MVC
Having a layout page is only part of the process; also needed is a content page that references it
before the layout page can be seen. ASP.NET MVC content pages are still views; in fact the only real
difference between a view that uses a content page and one that does not is generally the presence of
containing HTML elements such as <head> or <body>, as these elements are typically assumed to
be part of the layout page. This means that whereas ASP.NET Web Form content pages have links
to the content placeholder in the master page, that isn’t always necessary in ASP.NET MVC. The
default behavior in MVC is for the entire content of the view to be written out by the RenderBody
command, as shown in Figure 7-13.

Layout Page

@RenderBody() Content Page

FIGURE 7-13: Relationship between content page and Render command

Linking of the content page to the layout page is pretty simple as well, and there are two approaches:
Assign every page to a single layout page, or assign a content page to a specifi c layout page.

For the fi rst approach, which links every page, recall the Web Forms approach, whereby you have
the capability during content page creation to select a master page to which it will be assigned. You

216 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 216

have much the same capability when creating an MVC view. In Figure 7-14, which shows the Add
View dialog, note the bottom section.

FIGURE 7-14: Add View dialog

The “Use a layout page” option is generally checked by default, and you can open a fi le selector and
choose a layout page. However, it is the line below that’s of interest (Leave empty if it is set in Razor
_viewstart fi le). The _viewstart fi le is a fi le that will be read by any full view parsed in MVC. If
you look in Solution Explorer in your project, you will see that a default _ViewStart.cshtml fi le
was created in the Views directory. Every view that is served out of this directory, and its subdirec-
tories, will go through this fi le. Generally, the content of the ViewStart fi le is relatively simple:

@{
 Layout = "~/Views/Shared/_SomeLayoutFile.cshtml";
}

This line indicates that for all fi les for which it is not already designated within the fi le itself, the
view should use the _SomeLayoutFile in the Shared directory. Listing 7-6 shows the three different
base outputs when creating a view in ASP.NET MVC.

LISTING 7-6: Different content provided based on layout selection

NO LAYOUT

@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>PageWithoutLayout</title>
</head>
<body>
 <div>
 </div>
</body>
</html>

Consistent Page Layout with Master Pages ❘ 217

c07.indd 12/18/2015 Page 217

LAYOUT USING DEFAULT

@{
 ViewBag.Title = "PageWithDefaultLayout";
}
<h2>PageWithDefaultLayout</h2>

LAYOUT USING NAMED FILE

@{
 Layout = "../Shared/_MVCLayout.cshtml";
 ViewBag.Title = "PageWithNamedLayout";
}
<h2> PageWithNamedLayout </h2>

As you can see, the primary differences between having a layout and not having a layout are the
HTML tags that are generated and how the layout itself is referenced. If the layout is null, then you
know that the page is not a content page so that it will need to have all of the HTML elements,
including <html>, <title> and <body>; if the layout is missing altogether, then you know the
page being used for the layout is the page set in the ViewStart fi le, which will already contain the
<html>, <title> and <body> elements. Otherwise, you know that the layout page being used is the
one defi ned in the fi le itself.

Once the connection is made between the content page and the layout page, the entire content of the
content page is rendered into the layout page at the position of the RenderBody command. However,
you may be asking yourself about the RenderSection command, and how that content is populated.

Providing content to a RenderSection command is similar to the approach used in ASP.NET Web
Forms, whereby you have to identify the content that will be added to the section command, but
rather than use server controls you use a special Razor-syntax approach, as shown here:

@section SpecialNotes {
 <div class="primary">
 There are special notes here.
 </div>
}

To create the content section, use the Razor @ key character followed by the keyword section.
Then, provide the name of the section and the curly brackets that indicate the extent of the code
block. Everything within these curly brackets replaces the @RenderSection command. Because the
brackets make it a completely standalone set of code, it can be put anywhere within the content
page. However, you typically see it at either the very top or the very bottom of the page because it
provides less visual interference with the rest of the page when it’s at either end of the main content.
You can have as many sections as you need; just be sure to provide all the required sections.

Also, keep in mind that there may be many different layout pages. Consider how your sample site
has a master page for the fi les in the Admin directory and another template for the MVC fi les and

218 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 218

how the content is different. If the site was entirely MVC or Web Forms, you would still need mul-
tiple layout fi les because of the difference in the information being displayed based on the area of the
application.

The following Try It Out walks you through the process of converting ASP.NET MVC content
pages from one layout page to another.

TRY IT OUT Converting an ASP.NET MVC Content Page from One Layout Page
to Another

Though you will not be doing this often in a production site, this activity describes two different ways
to perform the conversion so that you can practice both ways to control the layout of an MVC view.

 1. Ensure that the RentMyWrox project is open in Visual Studio. Find and double-click the Index
.cshtml fi le in the Views/UserDemographics directory while in the Solution Explorer window. The
opened page should display the following:

@{
 Layout = "../Shared/_Layout.cshtml";
 ViewBag.Title = "Index";
}

 2. Replace _Layout.cshtml with the name of the fi le you created earlier in this chapter,
_MVCLayout.cshtml. This should leave you with the following:

@{
 Layout = "../Shared/_ MVCLayout.cshtml";
 ViewBag.Title = "Index";
}

 3. Open the Manage.cshtml fi le in the Views/UserDemographics directory. If you look at the top of
this fi le, you will see that it does not have any line for assigning the layout. This tells you that it
uses the ViewStart fi le for its template management, so there is nothing to do here.

 4. Open the ViewStart.cshtl fi le in the Views/UserDemographics directory. Change the layout
assignment to the following:

Layout = "~/ViewsShared/_MVCLayout.cshtml";

How It Works

Linking an ASP.NET MVC content page to an MVC layout page is simple; you do it either explicitly
by setting the Layout property to the page or by setting the Layout property to null to specify that no
layout is assigned. Leaving the layout unassigned tells the system to use the default layout defi ned in the
ViewStart fi le. This is a big difference from Web Forms, for which you have to make an effort to use
master pages; they are assumed to be part of the regular design standards in MVC, as shown in

Using a Centralized Base Page ❘ 219

c07.indd 12/18/2015 Page 219

Figure 7-15, where the use of a layout page is already checked automatically. It is assumed that you will
be using default _viewstart at a minimum.

FIGURE 7-15: Initial dialog when creating a brand-new view

USING A CENTRALIZED BASE PAGE

When you were working with the code-behind in your ASP.NET Web Form pages, you likely
noticed something without giving it much thought:

public partial class ManageItem : System.Web.UI.Page

You might recall from Chapter 4 that the preceding snippet tells you that the ManageItem class
inherits the System.Web.UI.Page class, so all public properties and methods from the System.Web
.UI.Page class are available in the ManageItem class. The use of inheritance here enables you to
easily access all the Web Form custom logic and event handlers.

You can also do the same thing with your ASP.NET MVC controllers, as you might have noticed
that the controllers are defi ned in much the same way, except they inherit from Controller as
opposed to System.Web.UI.Page:

public class UserDemographicsController : Controller

You can take advantage of this inheritance and abstract it out one more layer. This enables you to
create a different page containing code that will be available automatically across multiple pages.
Typical examples of where this could be useful include database confi guration and access manage-
ment, logging, internationalization (the capability to display the application in multiple languages
and cultures), or other scenarios in which you may need the same code on each page. Figure 7-16
gives you an idea of what this would look like. There are two sections, one without a base class and
another to which a base class was added.

220 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 220

FIGURE 7-16: Addition of a base class

You will be creating a base class for your ASP.NET Web Form pages. This base class will help with
the setting of meta tags in the rendered HTML page. You may think this is redundant because we
have a content placeholder in the HTML head section, but you will see how much easier it will be to
work with them using the base class.

META TAGS

Metadata is data about data. It gives context to the data to which it is applied.
HTML has the <meta> tag, which provides metadata about the HTML document.
Metadata is not displayed on the page, but it is machine understandable. Typically,
meta tags on an HTML document are used to specify a page description, key-
words, the document’s author, when it was last modifi ed, and other details about
the content.

The most common use of this metadata is to provide search engines with additional
details about information on the page. An example of meta information is dis-
played here:

<head>
<meta charset="UTF-8">
<meta name="description" content="Tool lending library for the local
area. We have...">
<meta name="keywords" content="Tools, Library, Checkout Tools">
</head>

Each page in your site can contain a different set of meta information, as each page
is displaying different items.

If you were not going to use a base page, you would have to ensure that you include the header
ContentControl and then build the meta tags using HTML<meta> elements. The following Try It
Out shows you a quicker and simpler process.

Using a Centralized Base Page ❘ 221

c07.indd 12/18/2015 Page 221

TRY IT OUT Creating a Base Page for Your ASP.NET Web Form Pages

In this exercise, you create a new base page, add some code that creates the meta information for you,
and then convert your current Web Form pages to use this new base page.

 1. Open Visual Studio and ensure that the RentMyWrox solution is open. Right-click on the
RentMyWrox project and select Add ➪ New Item. When the Add New Item dialog appears, ensure
that Code is selected in the pane on the left, select Class, and name it WebFormsBaseClass.cs as
shown in Figure 7-17. This adds the new fi le and opens it in your editor.

FIGURE 7-17: Creating a new base class

 2. Ensure that this new class inherits the Page class (see Figure 7-18).

FIGURE 7-18: Inheriting the Page class

222 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 222

 3. Add the following two properties to this class:

public string MetaTagKeywords { get; set; }
public string MetaTagDescription { get; set; }

 4. Add an OnLoad method with the content shown in Figure 7-19. Ensure that you also add the last
using statement; without this using statement you won’t have access to the HtmlMeta class.

FIGURE 7-19: Overriding the OnLoad method

 5. Open the Admin/ManageItem.aspx.cs code behind page and replace the System.Web.UI.Page
with WebFormsBaseClass. You must also add a using statement to ensure that your pages can fi nd
this class:

using RentMyWrox;

Repeat these same steps with Admin/OrderList.aspx.cs.

Using a Centralized Base Page ❘ 223

c07.indd 12/18/2015 Page 223

 6. Run the application while on either one of the pages that you converted. You will see that the
application runs successfully. If you look into the source of the page you will see the following:

<head>
<title>
</title>
<link href="../Content/RentMyWrox.css" rel="stylesheet" type="text/css" />
</head>

 7. Stop the application. Open ManageItem.aspx and add the content shown in Figure 7-20 to the
page defi nition.

FIGURE 7-20: Adding values to the page defi nition

 8. Run the application while still on the ManageItem page. If you look into the source of the page
now, you will see that this content has been added to the header:

<head>
<title>
</title>
<link href="../Content/RentMyWrox.css" rel="stylesheet" type="text/css" />
<meta name="keywords" content="Tools, Lending Library, Manage Items,
 actual useful keywords here" />
<meta name="description" content="Manage the items that are available to be
 checked out from the library" />
</head>

 9. Go back into the new base page and add the lines shown in Figure 7-21.

FIGURE 7-21: Adding validation that keywords and description are set

 10. Ensure that ManageItem is active in your editor window and run the application. Everything
should work just as before. Change to the OrderList page from the ManageItem page in the
address bar and press Return. Rather than render successfully, it should instead return the error
screen shown in Figure 7-22.

224 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 224

FIGURE 7-22: Error thrown when keywords and description are not set

 11. Open the OrderList markup page and add the keywords and the description. If you run the appli-
cation now the server error is no longer returned.

How It Works

You did several things during this exercise. First, you took advantage of the object-oriented feature of
inheritance to create a class that contains common logic you’re using in multiple places. This is a fea-
ture that ASP.NET was already taking advantage of because, as you saw, the pages that you changed
were already inheriting from another page; all you did was add a page in between.

One of the important things that your base page did was to also inherit from the System.Web.UI.Page
class. If you didn’t take that step and instead had the web page inherit from a non-extended base class,
you would get an error similar to that shown in Figure 7-23, which explains that the page you are try-
ing to access does not extend class System.Web.UI.Page—a pretty obvious error at this point.

Looking at the base class you created demonstrates several new features. The fi rst is where you over-
rode the OnLoad method. The keyword that you used there, override, means that there is a method in
the inherited class with the same name and method signature (the parameter list) and that you want
to extend that method. Because of this preexisting method, you would have had to use either the
override keyword to extend the base method or the new keyword, which tells the compiler to replace
the method in the base class.

It was necessary to override this method because it’s part of the default ASP.NET Web Forms event
processing stack. Using this approach ensures that the method will be called every time the page is pro-
cessed—you didn’t have to do anything else to tie it in.

Summary ❘ 225

c07.indd 12/18/2015 Page 225

The fi nished code in the method does two different things for each one of your sets of metadata.
First, it creates the tag that will be written to the output HTML. This is done through the use of the
HtmlMeta class, where you set the Name and Content properties and then added the class to the header
collection of controls. Just like the other server controls that you looked at earlier, this item ended up
creating the HTML meta tags that you wanted.

FIGURE 7-23: Error thrown when the page does not extend System.Web.UI.Page

The second thing that you did in the OnLoad method was to add a check to determine whether the
property value was set. If the method discovered that the values were not set, it would throw an excep-
tion rather than continue through the process. This means that any page that didn’t provide the neces-
sary information would not be functional, and missing keywords and description would become readily
apparent. This is why the application returned an exception the fi rst time it was run without the key-
words, yet was able to run successfully once the keywords were added.

After the new base class was created, you had to change the already existing pages to use the new class.
This was straightforward because you only needed to replace the default inheritance with the new
inheritance.

SUMMARY

Keeping a consistent look and feel is an important part of website branding, and ASP.NET provides
support to help fulfi ll this need. In ASP.NET Web Forms this support is master pages, while in MVC
it is called a layout. They both fulfi ll very similar needs; however, their implementation is different
because of the difference in the specifi c framework.

In the master page, sections of the page that will be fi lled with content from elsewhere are defi ned
through the use of a ContentPlaceholder server control. For each placeholder control in the master
page there may be a linked content control in the content page. For example, if the master page had
three placeholder controls, then the content page could have up to three content controls, with each

226 ❘ CHAPTER 7 CREATING CONSISTENT-LOOKING WEBSITES

c07.indd 12/18/2015 Page 226

linked to a particular placeholder in the master page. With this approach, all of the content enclosed
between the content elements in the content page basically replace the placeholder controls.

MVC has a different approach. The content page becomes a complete replacement to the
@RenderBody command in the layout page, rather than just the content of one control replacing a
designated area of content within the template. The only exception to this is the @RenderSection
method, which takes a subset of the content page for its replacement—the section of the page
enclosed within a specially defi ned set of curly brackets.

While the implementation of templates within each framework is different, their goal is the same:
to give the web application a consistent look and feel. ASP.NET Web Forms, in particular, offer
you the opportunity to do more to ensure consistency in your application. You created a base class
that will help you ensure that you are easily confi guring the metadata on all your pages, an easily
overlooked task. Now, however, whenever you create a page that does not contain this information,
you will receive an exception as a reminder to add that data. Adding the base class takes advantage
of standard object-oriented inheritance to provide functionality that will be used throughout your
application.

EXERCISES

 1. Why is it not as straightforward to use base classes on views as it is to use base classes on
either a Web Form web page or an MVC controller?

 2. What is the advantage of using the Layout command in the ViewStart page?

Summary ❘ 227

c07.indd 12/18/2015 Page 227

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Base Class A class containing shared functionality that may be useful in multiple
pages. ASP.NET Web Form pages can have base classes, or classes
that are inserted into the inheritance tree. ASP.NET MVC controller
pages can have them as well.

@RenderBody A Razor syntax command that the view engine uses to determine
where content needs to be written. This command is placed in the lay-
out page and, when used, all the output from the content page is used
to replace this command.

@RenderSection Another command in Razor. Whereas RenderBody drops the entire set
of output into the areas as a replacement, the RenderSection only
fi nds any named sections in the content page and uses that delimited
output. It is part of the layout page.

@Section The Razor keyword that defi nes a named area of content displayed in a
@RenderSection command. The section is part of the content page.

Content Control The asp:Content control is used in an ASP.NET Web Forms con-
tent page. It defi nes the content that will be displayed in the
ContentPlaceHolder control in the master page. The Content con-
trol is referenced to the placeholder control through the presence of
a ContentPlaceHolderId on the Content control.

ContentPlaceHolder

Control
The asp:ContentPlaceHolder control is used on a master page to
indicate where content provided from the content page will be placed.
It has no knowledge of the content that will be retrieved, only that
there may be some. No error occurs if the content is not provided by
the content page.

Template Both ASP.NET Web Form master pages and ASP.NET MVC layout
pages provide the capability to template the appearance of the web-
site, enabling much of the design to be located in one page so that a
change made in one place can affect all pages.

c08.indd 12/15/2015 Page 229

Navigation
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to create navigational schemas in ASP.NET Web Forms
and MVC

 ➤ Incorporating absolute and relative URLS into your fl ow

 ➤ A closer look at how ASP.NET MVC routing works

 ➤ How to programmatically send users to a different page

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the
chapter 08 download and individually named according to the names throughout the chapter.

Helping your site visitors fi nd what they are looking for is critical to the success of your web
application. You must have a logical and intuitive navigation structure. If users can’t fi nd what
they are looking for, they will lose interest in being your customer, and your work to create the
site in the fi rst place would all be for naught. This presence of an intuitive navigation structure
is a key factor to the overall site User Experience (UX), or how well the user can understand
and work within your site design and structure.

The last chapter covered master and layout pages that are used to provide a consistent look
and feel to a web application. In this chapter, you build these pages out even further, because
the navigation structure is among the most commonly shared parts of an application. You will
once again see the different approaches between Web Forms and MVC applications as you
build each type, as ASP.NET Web Forms uses server controls and MVC uses various other,
non–server control approaches.

8

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

230 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 230

You not only learn about the use of menus and navigation structures in the chapter, but you also
take a more detailed look at routing in ASP.NET MVC. In ASP.NET Web Forms the understanding
of what page should serve which request is straightforward. There is an .aspx page for each of the
valid page requests. You have seen how that differs from MVC; and you will learn many of the more
advanced aspects of routing and how you can manage which action on a controller will be selected
based on the URL of the request.

DIFFERENT WAYS TO MOVE AROUND YOUR SITE

The goal of the navigation structure is to enable users to move easily and intuitively from one page
to another. When you look at the menu structure of a standard website, you are really seeing noth-
ing more than a way to move to a particular part of that site. Other parts could be anything from a
static “About Us” page to an e-commerce product page that enables users to purchase a car. Each of
those pages represents a single resource—one specifi c request from the client browser whereby the
web server receives the request, performs some analysis on it, and then determines how to respond
in such a way that a specifi c resource fulfi lls the request.

The primary way to move from one location to another is through the HTML anchor tag,
Login to the Site. This causes an HTTP request to be sent to the
URL in the href attribute. Virtually every form of a navigational structure that you encounter is
based on this single HTML element.

As you likely guessed, because there is an HTML element to do this work, there is also an ASP.NET
Web Forms–based set of functionality to help you build an anchor tag through the use of a server
control. In this case, that is the asp:HyperLink server control. Although there may be a unique
server control, the output is a standard HTML anchor tag.

Understanding Absolute and Relative URLs
The HTML anchor element does a lot of the work in sending users to a different page of your web-
site. However, there are several different ways that you can defi ne the address for this resource. It is
important to remember that an HTTP request is made to a specifi c resource address. This address is
known as the URL, or uniform resource locator.

URLS AND URIS

In this book, you might also see a value called a URI, or uniform resource identi-
fi er, used alongside URLs. These are not quite the same thing, though in many
cases they may look the same. The main difference is the last character, the locator
versus the identifi er. A URI identifi es an object, the URL locates the object. This is
more than a semantic difference. A URL does not necessarily identify the resource
that it is getting, it just gets it. A URI identifi es the resource, with one of the char-
acteristics being the address of the resource, or the URL. Thus, all fully identifi ed
resources have a locator (URL), but not all URLs are part of a URI.

Different Ways to Move around Your Site ❘ 231

c08.indd 12/15/2015 Page 231

There are two different types of URLs: absolute and relative. An absolute URL contains the com-
plete address to a resource, meaning no knowledge about the site that contains the navigation struc-
ture is needed in order to fi nd the resource. The following example is an absolute URL. Note how it
includes the protocol and full server address:

Login

There is no doubt as to where the resource is located. However, using an absolute URL can be
problematic. In your sample application, for example, using this approach means you cannot link
to any of the pages in the working solution, because the links would instead be associated with
the deployed site, not your local working site. While using an absolute URL is not always ideal for
linking to pages within your current application, it is required for linking to pages with different
domains, such as external sites.

The relative URL, on the other hand, defi nes the locator using an approach that is more like direc-
tions for getting to the needed page. These directions are based on the page that displays the link.
The following code is an example of a relative URL:

Login

As you can see, there is no server name in the address, instead there are some periods and slashes.
Each of the double periods represents moving up one level in the directory structure; they serve as
the directions for getting to the resource that you want. Because this a set of directions, the URL
in the preceding example tells the browser to fi rst go up one level in the fi le structure and then go
into the admin directory and look for the page named ManageItem. In Figure 8-1, this URL would
be appropriate for the highlighted ManageItem page in the Admin directory.

FIGURE 8-1: Relative URLs

http://www.rentmywrox.com/account/login

232 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 232

As mentioned in an earlier chapter, you can also build a URL using the tilde character (~). Taking
this approach would change the preceding example to the following:

Login

This is an important difference, because with the “dot” approach the link has to be updated when-
ever either page is moved—the page containing the link as well as the page with which it is being
linked. Using the tilde approach tells the system to go to the root directory for the application and
start from there, so any change in the location of the page holding the link does not affect the sys-
tem’s ability to determine where to fi nd the resource. However, you may have noticed that you also
have to include the runat attribute to ensure that the server processes the HTML control. This
is because using the tilde character requires server-side processing; the value of the root directory
replaces the tilde, so you wind up with a more fl exible approach.

Although the tilde requires server participation, there is still another approach that enables the
system to ask for a server root-based URL. This approach looks like the following code:

Login

The difference is subtle, but by prefacing the URL with the forward slash character (/), you are
telling the system to start from the server root and work its way down the directory tree.

VIRTUAL APPLICATIONS

IIS 7 and above formalize the concepts of sites, applications, and virtual directo-
ries. Virtual directories and applications are now separate objects that are main-
tained within a hierarchical relationship as part of the confi guration within IIS.
In general, a single website contains one or more applications. An application may
contain one or more virtual directories, with each virtual directory mapped to a
physical directory on a computer.

What does that really mean to you? The most important part is the concept that
a website may have more than one application. There will always be one applica-
tion, the default application, but there may be others. Each of these applications is
hosted within its own directory; if your sample application is running as a second-
ary application on the web server, then your base URL won’t be what you expect
— it will end up using “http://server.domain.com/hostingdirectoryname/” as the
root directory, as opposed to the http://server.domain.com that it would use with-
out the virtual application. Figure 8-2 shows what this would look like in the IIS
management console if RentMyWrox were a virtual application that is part of the
default website.

http://server.domain.com/hostingdirectoryname/%E2%80%9D
http://server.domain.com

Different Ways to Move around Your Site ❘ 233

c08.indd 12/15/2015 Page 233

FIGURE 8-2: IIS management console with RentMyWrox as a virtual application

The concept of the virtual application is why the tilde is an important construct.
If you know that your application will be in a production environment where it’s
deployed as a virtual application, then using the tilde is important because it will
correctly include the relative directory in the URL that is being linked. This is dif-
ferent from using the prefaced slash because that takes you to the root directory,
which is actually one level above the directory that actually contains your code.

You might not notice this when you are working in Visual Studio because by
default, IIS Express, the local application that serves the content you are creating,
always starts in the application root. Therefore, you would not see any problems
during debug using either solution, as there is no default application. However,
when deployed to a server as a virtual application, those links that use the slash
approach don’t work because they don’t take the virtual application directory into
account.

234 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 234

Prefacing the URL with the slash character (/) should be done only when you know that the applica-
tion you’re working on will never be deployed as a virtual application.

Understanding Default Documents
Have you ever wondered how typing in a simple URL such as http://www.wrox.com takes you to a
page of content? That happens because the server has been assigned a specifi c fi le in a direction that
handles calls to a directory (including the root directory), which is to say that page’s content has
been defi ned as a default document.

The designation of default documents is part of IIS confi guration and is specifi c to ASP.NET Web
Forms because there is an expectation that a fi le will be assigned to handle those calls that do not
contain a document to retrieve. Traditionally, several documents are defi ned as potential default
documents, but the most common fi le is Default.aspx. When a request is made to http://
server.domain.com/, the Default.aspx fi le in the root directory is returned.

The server uses default documents whenever there is a request for a directory as opposed to content
within that directory; therefore, a Default.aspx fi le in a subdirectory from the root handles default
calls to that directory. Because of this built-in capability, it is recommended that you not declare
the default part of the URL when trying to link to it; instead, reference the directory name only and
allow the server to serve the default fi le as appropriate.

You can also set default documents for ASP.NET Web Form directories in the web.confi g confi gura-
tion fi le. The code to do this is shown here:

<system.webServer>
 <defaultDocument>
 <files>
 <clear />
 <add value="Default.aspx" />
 </files>
 </defaultDocument>
</system.webServer>

The preceding code snippet also sets the default document to Default.aspx, or whatever other fi le
you designate. The defaultDocument element is defi ned as part of the system.WebServer element.
While the example lists one default, you can add multiple add elements that are contained within the
files element. The server will try to return the page listed fi rst and if that fi le does not exist will go
to the next fi le name and attempt to return that fi le. It will continue through the list until if fi nds a
matching a fi le to return.

Note the clear element. This is necessary to remove any other default documents that may have
been set, such as in IIS for that web site. You are not required to add the clear element; however, by
doing so you ensure that the only default documents being set are from your web.confi g fi le.

Friendly URLs
When you create an ASP.NET project, it includes a default set of confi gurations, including a default
route. This default information is part of the App_Start\RouteConfig.cs fi le (see Figure 8-3).

http://www.wrox.com
http://server.domain.com
http://server.domain.com

Different Ways to Move around Your Site ❘ 235

c08.indd 12/15/2015 Page 235

FIGURE 8-3: Initial RouteConfi g.cs fi le

At this point you are concerned with only one of this fi le’s sections, the fi rst part that includes
FriendlyUrlSettings. Adding the FriendlyUrlSettings allows you to call ASP.NET Web Forms
without having to use the .aspx extension. That means you can create a link that accesses a fi le
called ManageItem.aspx by calling ManageItem, without needing to include the extension in
the URL.

Not only does FriendlyUrlSettings allow the use of a fi lename without the extension, it also
allows other information to be added to the URL. This is another feature of friendly URLs, the abil-
ity to parse the complete URL value and break the information down for use within the code-behind
of the page. Thus, ManageItem\36 is understandable to the system and allows access to the value
in the URL. This doesn’t occur automatically, however; you have to do a little work to access this
information. For example, suppose you want the user to access the URL http://www.servername
.com/SomePage/2/20/2015, where the work will be handled by a page called SomePage.aspx. If
the values appended to the URL represent a date, you would be able to access them as shown here:

protected void Page_Load(object sender, EventArgs e)
{
 List<string> segments = Request.GetFriendlyUrlSegments();

 int month = int.Parse(segments[0]);
 int day = int.Parse(segments[1]);
 int year = int.Parse(segments[2]);
}

Using FriendlyUrls enables you to build a consistent user experience, in terms of URLs, for both
the ASP.NET MVC and Web Forms approaches. Before the introduction of FriendlyUrls, you
would have had to take a more traditional query string approach such as

http://www.servername
http://www.servername.com/SomePage/2/20/2015

236 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 236

http://www.servername.com/SomePage.aspx?SearchDate=2-20-2015

Looking at the difference between the two URLs, you can see how it would be easier for something
like a web search engine crawler to understand a specifi c resource that includes the data as part
of the address, rather than a URL to a resource that simply includes some extraneous information
stuck onto the end of the URL, as is the case with a query string.

There are additional ways to manage the URL segments that are the results of parsing a friendly
URL, but they are included within other server controls that you work with in future chapters.

USING THE ASP.NET WEB FORMS NAVIGATION CONTROLS

ASP.NET Web Forms provides more than the anchor tag to build out navigation features in
your website. There are three different server controls that help you: the TreeView, Menu, and
SiteMapPath controls. Each of these provides a different way to manage your links and the naviga-
tion within your web application. The TreeView and Menu controls create a list of links that are
available for the user to click, while the SiteMapPath control provides a “breadcrumb” approach
to viewing one’s location in the context of the site. Figure 8-4 shows how the two link-management
controls are rendered by default.

FIGURE 8-4: Default display of TreeView and Menu controls

These two controls have a slightly different way of rendering the same content. The TreeView uses
an expander that opens or closes any contained submenu content, whereas the Menu control uses
a “grow-out” approach that provides an area to mouse over that causes a submenu to expand and
become visible.

As you may have noticed, both controls write out the same navigation structure. This structure is
defi ned in a special type of fi le, a sitemap. In ASP.NET Web Forms, a sitemap is a special XML fi le
containing the defi nition of the structure that the application uses. Listing 8-1 shows the content of
the Web.sitemap fi le used to create the items displayed in Figure 8-4.

http://www.servername.com/SomePage.aspx?SearchDate=2-20-2015

Using the ASP.NET Web Forms Navigation Controls ❘ 237

c08.indd 12/15/2015 Page 237

LISTING 8-1: Example of a Web.sitemap fi le

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
 <siteMapNode url="~/" title="Home" description="Home">
 <siteMapNode url="~/Default" title="Home" description="Home"/>
 <siteMapNode url="~/Admin/ManageItem" title="Manage Item" >
 <siteMapNode url="~/Admin/OrderList" title="Order List" />
 </siteMapNode>
 <siteMapNode url="~/About" title="About" >
 <siteMapNode url="~/Contact" title="Contact Us" />
 </siteMapNode>
 <siteMapNode url="~/Account/Login" title="Login" />
 <siteMapNode url="~/Demonstrations" title="Demos">
 <siteMapNode url="~/Demonstrations/Page1" title="Page 1" />
 <siteMapNode url="~/Demonstrations/Page2" title="Page 2" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

Each of the nodes in the fi le is a siteMapNode and may or may not contain other siteMapNodes.
When one node contains others it creates a parent-child relationship that the control is able to inter-
pret. The Menu control uses the right-facing arrow by default, while the TreeView control uses the
+/– convention to enable access to child nodes.

Three attributes are part of a siteMapNode: the url, the title, and the description. The url is
the page that you want to open, the title is the text that will be displayed as the clickable part
of the link, and the description becomes the tooltip that appears when you hover the mouse over
the link.

Getting the web.sitemap linked to the Menu and TreeView controls is not very complicated. Listing
8-2 shows the entire markup for the page shown earlier.

LISTING 8-2: Markup that adds Menu and TreeView controls as well as links in
SiteMapDataSource

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Page1.aspx.cs"
 Inherits="RentMyWrox.Demonstrations.Page1" %>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">

continues

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0
http://www.w3.org/1999/xhtml

238 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 238

 <div>
 <table width="100%">
 <tr>
 <th>Tree View</th>
 <th>Menu</th>
 </tr>
 <tr>
 <td><asp:TreeView DataSourceId="ds" runat="server" /></td>
 <td><asp:Menu StaticDisplayLevels="2" DataSourceID="ds"
 runat="server" /></td>
 </tr>
 </table>
 <asp:SiteMapDataSource ID="ds" runat="server" />
 </div>
 </form>
</body>
</html>

The new control that hasn’t been discussed yet is a SiteMapDataSource. This is a server control
that acts as a data source: a control that provides information to other controls. You may notice that
it is not pointing to any specifi c sitemap fi le. That’s because the default fi le it is looking for is the
Web.sitemap fi le in the root directory of your application. If you want to use multiple sitemaps, or a
nontraditionally named fi le, you need to do some extra work, making both confi guration and code-
behind changes. In the following Try It Out you aren’t taking that route, instead creating a single
Web.sitemap.

TRY IT OUT Creating a Web.sitemap fi le

In this activity you create a Web.sitemap fi le that you use to create the menu structure for the adminis-
trative portion of the sample application.

 1. Ensure that your sample application is open in Visual Studio.

 2. While in Solution Explorer, right-click the project and select Add ➪ New Item. Using the appropri-
ate language (C# or VB), go to the Web/General section and select sitemap, as shown in Figure 8-5.
The default name is Web.sitemap, which is what you want it to be called.

 3. Replace the content in the fi le with the following and save the fi le:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Admin/" title="Admin Home"
 description="Home page for the admin section">
 <siteMapNode url="~/Admin/Default" title="Admin Home"
 description="Home page for the admin section" />
 <siteMapNode url="~/Admin/ItemList" title="Items List"

LISTING 8-2 (continued)

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

Using the ASP.NET Web Forms Navigation Controls ❘ 239

c08.indd 12/15/2015 Page 239

 description="List of available items" />
 <siteMapNode url="~/Admin/OrderList" title="Order List"
 description="List of orders" />
 <siteMapNode url="~/Admin/UserList" title="User List"
 description="List of users" />
 </siteMapNode>
</siteMap>

You are done with the Web.sitemap fi le.

FIGURE 8-5: Creating the Web.sitemap fi le

How It Works

Note fi rst that the code you entered calls out only four different pages, three of which have not even
been added to the sample application yet: Default.aspx, ItemList.aspx, and UserList.aspx.
Therefore, don’t be concerned that they are not contained in your local solution.

Because the sitemap is an XML fi le, a couple of standard rules apply. First, there is a sitemap ele-
ment. This base node defi nes all of the content contained within it as sitemap content. The next item
in the page is a siteMapNode element. You may notice that all the rest of the siteMapNodes are con-
tained within this fi rst node. This is required; if you try to add more than one siteMapNode within the
siteMap element, you will get a server exception, as shown in Figure 8-6.

240 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 240

FIGURE 8-6: Error displayed when multiple siteMapNodes appear within the sitemap element

One last thing to note about the Web.sitemap is that you cannot have the same URL in more than one
element, likely because the ASP.NET development team thought it unlikely that you would ever need
two separate menu links going to the exact same page The data you added was able to work around
this limitation because the fi rst two elements take advantage of the concept of default pages, as one of
the URLs points to the directory while the other points directly to the Defaut.aspx fi le.

Now that the data for the menu is confi gured, the next task is adding something that uses the data.
This is where the Menu server control comes into play.

Using the Menu Control
The ASP.NET Web Form Menu control takes the sitemap fi le and parses it into a series of HTML
anchor elements that enable users to navigate through your application. As a typical server control,
you can manage the various attributes of it, as shown in Table 8-1.

TABLE 8-1: Attributes of a Menu Control

PROPERTY DESCRIPTION

CssClass Assigns a class name to the HTML elements that are written
out during processing of the server control

DataSourceId Manages the relationship between the Menu control and the
SiteMapDataSource control that manages the connection
to the sitemap fi le

Using the ASP.NET Web Forms Navigation Controls ❘ 241

c08.indd 12/15/2015 Page 241

PROPERTY DESCRIPTION

DisappearAfter Controls the amount of time a dynamic submenu is visible
after the mouse is moved away. This value is in milliseconds,
with a default value of 500, or .5 of a second.

IncludeStyleBlock Specifi es whether ASP.NET should render a block of cascad-
ing style sheet (CSS) defi nitions for the styles used in the
menu. You can get a copy of the default CSS block that
the Menu control generates by setting the property to true,
running the page, and viewing the page in a browser. You
can then view the page source in the browser and copy and
paste the CSS block into the page markup or a separate fi le.

MaximumDynamicDisplayLevels Specifi es the number of dynamic submenu levels that the
client is provided. A 3, for example, means that only those
values nested three or fewer levels deep will be rendered.
Any items that are more than three levels deep are not dis-
played as part of this menu.

Orientation Provides the direction in which the menu will be written,
horizontal or vertical

RenderingMode Specifi es whether the Menu control renders HTML table ele-
ments and inline styles, or list item elements and Cascading
Style Sheet (CSS) styles

StaticDisplayLevels Defi nes the number of non-dynamic levels that will be writ-
ten out by the Menu control

Target Specifi es the target window where the requested page will
be opened

The next step is to take advantage of this information and add a menu control to the sample applica-
tion, as demonstrated in the following Try It Out.

TRY IT OUT Adding a Menu Control

Now that you have created your sitemap, the next step is to create a menu that displays its contents. In
this Try it Out, you create a Menu control in the master page that has been confi gured for the adminis-
trative area of your sample application.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Open the
WebForms.Master fi le from the root directory into the markup window. Find the page’s place-
holder text, Navigation content here, and delete it.

 2. Open the Toolbox: expand the Navigation section, and click the Menu option. The ToolBox will
generally be a vertical tab in the upper left quadrant of your IDE. If you do not see it there you can

242 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 242

also select View ➪ Toolbox. Drag the item and drop it into the same area where you just deleted
the placeholder text. After doing so, it should look something like the following:

<div id="nav">
 <asp:Menu ID="Menu1" runat="server"></asp:Menu>
</div>

 3. Switch to Design mode. Click the Menu control to invoke the expander arrow. Click the arrow to
view the confi guration dialog shown in Figure 8-7.

FIGURE 8-7: Confi guring the Menu control in Design mode

 4. In the Choose Data Source dropdown, select <New data source…>. This opens the dialog shown in
Figure 8-8.

FIGURE 8-8: Selecting data source for the Menu control

Using the ASP.NET Web Forms Navigation Controls ❘ 243

c08.indd 12/15/2015 Page 243

 5. Select Site Map and click OK. This should return you to the design screen where you can see that
the fi rst item in your sitemap is now displayed in the Menu control.

 6. Click once on SiteMapDataSource and then press the F4 key to open the Properties window. This
window may open in the area where Solution Explorer is generally displayed. Find the property
named ShowStartingNode and change its value to false. As soon as you take this action, the Menu
control will change to display all the items contained within the parent node, rather than just the
parent node, as shown in Figure 8-9.

FIGURE 8-9: Menu display after turning off the starting node

 7. Return to Solution Explorer, right-click the Admin directory, and create the following three new
Web Form with Master Page pages: Default.aspx, ItemList.aspx, and UserList.aspx, select-
ing WebForms.Master as the master page.

 8. Run in Debug mode while on any page within the Admin directory. You should see the menu ren-
der correctly and be able to click all of its pages. The only change you would see at this point is the
URL in the address bar—and it should look something like what is shown in Figure 8-10.

FIGURE 8-10: Rendered example of the menu

244 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 244

 9. Stop debugging. Return to the WebForms.Master page and go back into Source mode. You will see
the Menu control and the SiteMapDataSource control that were added during the process.

How It Works

Once you have created the sitemap, displaying it in the Menu control is as simple as confi guring it
correctly. You used the Toolbox to drag a Menu control onto the page, but you could just as easily
have typed the commands directly into the markup window, for both the Menu control and the
SiteMapDataSource.

The SiteMapDataSource is important because it is the control that understands how to fi nd the informa-
tion that is contained within the sitemap. Once this information is found it is available for use in the Menu
control. The Menu control will then go through and create the HTML that is returned to the browser.
This HTML is interesting in that there is a lot of information created by this control. Figure 8-11
shows the HTML source that is created.

FIGURE 8-11: HTML created by the Menu control

Two major areas are written out by the Menu control. The fi rst is in the HTML head section, which
contains some local styles. These are created by the Menu control so that you can easily style them; by
copying these styles into your style sheet and disabling the writing out of the style sheet by setting the
IncludeStyleBlock attribute to false, you can take advantage of fully styled menus.

The second area written out by the Menu control is the content within the <div id="nav"> tags,
where the actual control can be seen when looking at the HTML code. Note that the fi rst line includes
SkipLink; this is an anchor tag that is completely invisible in the browser. This link is added for screen
readers and other programs that provide differently abled users with access to the screen content. In
this case, the SkipLink anchor takes them to another anchor immediately after the list of navigation
items. This enables programs to travel from the link before the menu structure to the link immediately

Using the ASP.NET Web Forms Navigation Controls ❘ 245

c08.indd 12/15/2015 Page 245

after the menu structure, basically eliminating the need for the screen reader to read out the same navi-
gation links on every page if the screen reader is so confi gured.

One last item is written out that does not currently affect the way that you use the menu in the
sample application—a JavaScript reference, on line 24, as shown in Figure 8-11. If you were using
dynamic menus, whereby submenus fl y out from parent menus when hovered over, the JavaScript
accessed through this link would be critical because that’s what controls the opening and closing of
the submenu area.

The content in Figure 8-11 includes an interesting item that you will take advantage of when adding
styling to the Menu control. There are two major approaches to styling user controls, and the Menu
control enables both of them. The fi rst is the “old-school” approach whereby you add styling directly
to the control. That is why you see attributes such as BackColor and BorderColor available in the
Menu control; these give you complete control, at the control level, over the look and feel of the ren-
dered control.

The second approach, and the one that you have used so far, is through the use of CSS. In the fol-
lowing Try It Out, you add some styling to your menu structure.

TRY IT OUT Styling Your Menu Control

Now that you have added the Menu control to the master page, you can see the menu on each of the
pages. However, you likely noticed that it appears to use the default styling that you added earlier—and
you are right. In this exercise, you add some styling to the menu to make it look more like part of the
sample application.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Open the
WebForms.master page in the Markup window. If you didn’t make any changes in the previous
walkthrough, your Menu control likely still has the default ID, Menu1. Change the name of the
control to LeftNavigation and save.

 2. Open the RentMyWrox.css fi le in the Content directory and add the following lines at the bottom
of the fi le:

#LeftNavigation ul
{
 list-style:none;
 margin:0;
 padding:0;
 width:auto;
}

#LeftNavigation a
{
 color: #C40D42;
 text-decoration: none;
 white-space: nowrap;
 display: block;
}

246 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 246

ul.level1 .selected
{
 /* Defines the appearance of active menu items. */
 background-color: white;
 color: #C40D42;
 padding-right: 15px;
 padding-left: 8px;
}

a.level1
{
 /* Adds some white space to the left of the main menu item text.
 !important is used to overrule the in-line CSS that the menu generates */
 padding-left: 5px !important;
 padding-right: 15px;
}

a.level1:hover
{
 /* Defines the hover style for the main and sub items. */
 background-color: #509EE7;
}

 3. Go back to the WebForms.master page and ensure that the Menu control has the following
attribute set: IncludeStyleBlock="false". The menu control should appear as:

<asp:Menu ID="LeftNavigation" runat="server" DataSourceID="SiteMapDataSource1"
 IncludeStyleBlock="false"></asp:Menu>

 4. Save the fi le and run the application. Go to one of the pages in the Admin folder, and you should
see that the navigation area is styled as shown in Figure 8-12.

FIGURE 8-12: Page with styled menu

Using the ASP.NET Web Forms Navigation Controls ❘ 247

c08.indd 12/15/2015 Page 247

How It Works

Before going into the details of the styles you added, take a look at the HTML that was created from
the Menu control. The SkipLink references were removed, leaving the following rendered HTML:

<div id="nav">
 <div id="LeftNavigation">
 <ul class="level1">
 <a title="Home page for the admin section" class="level1 selected"
 href="/Admin/Default">Admin Home
 <a title="List of available items" class="level1"
 href="/Admin/ItemList">Items List
 <a title="List of orders" class="level1"
 href="/Admin/OrderList">Order List

 User List

 </div>
</div>

Notice how the fi rst anchor tag has a class of "level1 selected". The selected value was added by
the Menu control because the page from which this text was taken is the page that is referenced in that
"selected" section of the Menu control; therefore, you can specially style the page that you are on. You
can see this with the selector you added for ul.level1 .selected.

Two other special areas are created by the Menu control. One is the <div> tag with the id
of LeftNavigation. You may remember that you changed the name of the Menu control to
LeftNavigation; this is the effect of that. The other is the unordered list with the class of
level1. The level1 value is assigned because the menu items being displayed are from the fi rst level.
If you had nested menu items, then they would be styled with a level2 or level3 depending upon
how deep the nesting went.

Navigation in ASP.NET Web Forms is supported by the traditional Web Forms approach of a
server control, in this case a Menu control. The Menu control reads in an XML fi le and then ren-
ders the appropriate HTML out to the page. You may be asking yourself why you would want to
take this approach rather than just build out the menu yourself manually. One of the main benefi ts
that this approach offers is the capability to change your menu structure on the fl y. Because the
fi le is read every time the menu is created, you can change the complete navigation schema of your
site without having to make any code changes. This can be especially useful as you get feedback
on your site from your users. This fl exibility allows you to continually monitor the user’s experi-
ence and change your site without having to maintain any source code.

You do not have the same capability when using the ASP.NET MVC approach to building a naviga-
tion structure, as it requires building those menu links manually. You look at this next.

248 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 248

NAVIGATING IN ASP.NET MVC

Navigation in an ASP.NET Web Forms application is pretty easy to understand: a URL is requested,
and if there is a corresponding separate, physical page that has the same name, then that page
is called, the processing occurs, and the output from the processing is returned to the client.
Interpreting the request is straightforward. However, ASP.NET MVC is different because determin-
ing what code should be called involves a completely different process. There is no physical page
that responds to the request. Instead, a simple method is called—once the system has fi gured out
which method to call.

Doing this work of determining which method to call is known as ASP.NET MVC routing. Routing
is a pattern-matching system that is responsible for mapping incoming browser requests to specifi ed
MVC controller actions (methods). When the ASP.NET MVC application launches, the application
registers one or more URL patterns within the framework’s route table. These patterns tell the rout-
ing engine what to do with requests that match those patterns. When the routing engine receives a
request at runtime, it attempts to match that request’s URL against the URL patterns registered with
it and returns the response according to a pattern match, as shown in Figure 8-13.

Requested URL

Page Returned

Yes No

404 Error

Was It
Found?

Parse URL

Locate Correct Route

FIGURE 8-13: Routing process

Routing
ASP.NET MVC routes are responsible for determining which controller method is executed for a
given URL. A route is a URL pattern that is mapped to a handler, an action on a controller. The
route consists of the following properties:

 ➤ Route name: A route name is used as a specifi c reference to a given route. Each route must
have a unique name. Generally this name is only necessary when defi ning the route, but it
also provides the capability to access a specifi c route in code if needed.

Navigating in ASP.NET MVC ❘ 249

c08.indd 12/15/2015 Page 249

 ➤ URL pattern: A URL pattern contains both literal values, such as a known string value, and
variable placeholders (referred to as URL parameters). These literals and placeholders are
segments of the URL that are delimited by the slash (/) character.

 ➤ Defaults: Whenever you defi ne a route with a variable placeholder, you have the opportunity
to assign a default value to that parameter. You can assign defaults to every placeholder or
not at all—whatever makes sense for the approach you are going to take in building your
routes.

 ➤ Constraints: A set of constraints are rules that are applied to a URL pattern to more nar-
rowly defi ne the URLs to which it may be matched.

Each different approach to building out a URL structure needs to have a corresponding route defi ni-
tion. An ASP.NET application built through Visual Studio scaffolding also includes a default route.

Default Confi guration and Route
When you create an ASP.NET MVC project it includes a set of routing confi gurations, including a
default route. This default information is part of the App_Start\RouteConfig.cs fi le, shown in
Figure 8-14.

FIGURE 8-14: The initial RouteConfi g.cs fi le

As shown, the default ASP.NET MVC project templates add a generic route that uses the following
URL convention to defi ne the URL pattern for a given request into three named segments:

url: "{controller}/{action}/{id}"

With the preceding template, a URL of http://www.servername.com/DemoModel/Details/57
would result in the application trying to fi nd a controller named “DemoModelController” that has
an action (method) named “Details” that accepts a parameter that is either a string or an integer.

http://www.servername.com/DemoModel/Details/57

250 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 250

MVC has a very convention-based approach whereby controller fi les need to have the phrase
“Controller” as part of the fi lename so that the ASP.NET MVC routing engine can fi nd the appro-
priate class to call.

Once the routing engine fi nds the correct controller, the next thing it tries to do is fi nd an action
that matches the name that is part of the URL. When the engine fi nds the action(s) that fi t the name,
it then analyzes the parameter list to determine whether there’s a match between the information
within the URL and the parameters required for those action(s). However, you have to be careful
about how you set this up. Consider the following code:

public ActionResult Details(int id)
{
 return View();
}

public ActionResult Details(string id)
{
 return View();
}

This seems pretty straightforward in that one might expect http://www.servername.com/
DemoModel/Details/57 to go to the fi rst method while http://www.servername.com/DemoModel/
Details/Orange would go to the second method. However, you will instead get the error shown in
Figure 8-15.

FIGURE 8-15: Ambiguous action exception

This error indicates that the route parsing is not as obvious as it may seem. The expectation is
that the URL can be parsed into a single action on a specifi c controller. This means you have to
ensure that you avoid the type of method overloading that you can do in traditional C# develop-
ment. Therefore, if you want to be able to pass either an integer or a string into a method, then you
have to make some changes to your approach by either creating a new action to handle one of the

http://www.servername.com
http://www.servername.com/DemoModel
http://www.servername.com/DemoModel/Details/57
http://www.servername.com/DemoModel/Details/Orange

Navigating in ASP.NET MVC ❘ 251

c08.indd 12/15/2015 Page 251

approaches, such as a DetailsByName(string name) action, or making a single method and doing
work within the method, as demonstrated in the following example:

public ActionResult Details(string id)
{
 int idInt;
 if (int.TryParse(id, out idInt)
 {
 // do work if id is an integer that can pull product from database by Id
 }
 else
 {
 // do the work when id is NOT an integer, such as getting product by name
 }
 return View();
}

In this case, the best approach is to always create a new action that specifi cally handles the different
case. Having a set of actions as shown in the following example is easier for both developers and
the system in order to successfully understand what the expectation is when looking at the route
parsing:

public ActionResult Details(int id)
{
 // do work to pull product from database by Id
 return View();
}

public ActionResult DetailsByName(string id)
{
 // do work to pull product from database by Name
 return View();
}

The fi rst method would be called by http://www.servername.com/DemoModel/Details/57, while
the second would be called by http://www.servername.com/DemoModel/DetailsByName/Orange.
Both of these approaches would then be covered by the default route, so no additional routing con-
fi guration would be required.

The default route does not necessarily serve every need, however. Imagine the case in which you
may want users to have the capability to get more specifi c details than with a single parameter
value—such as looking at the DemoModel and wanting details about an orange one. The URL that
you would want to use is http://www.servername.com/DemoModel/SomeAction/8/orange. The
default route doesn’t match this; in fact, if you add this to any of the links that are already working,
you will see that the system tries to parse the URL, but it won’t fi nd a successful match and you’ll
get a 404 - File Not Found Error.

What you need to do instead is create a new route in the RouteConfig.cs fi le and then add the
new action to the controller, as shown in the following code snippet. This ensures that the URL of

http://www.servername.com/DemoModel/Details/57
http://www.servername.com/DemoModel/DetailsByName/Orange
http://www.servername.com/DemoModel/SomeAction/8/orange

252 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 252

http://www.servername.com/DemoModel/SomeAction/8/orange is able to fi nd the appropriate
action and the parameters are set successfully.

routes.MapRoute(
 name: "twoParam",
 url: "{controller}/{action}/{id}/{name}",
 defaults: new { action = "Index"},
 constraints: new { id = @"\d+" }
);

public ActionResult DetailsWithName(int id, string name)
{
 return View();
}

There are two different approaches to building routes and actions. In the fi rst, routes are confi gured
in such a way that the same method can be called through multiple different URLs. In the second,
there is less concern with reuse, so more actions are created to handle each of the various cases. It is
recommended that you always take the second approach; it may require you to create more actions,
but each action will be more specifi c to the given criteria. This results in an application that is easier
to understand because it is easier to predict which action serves each request.

Understanding the relationship between the URL and the actions that respond to the request is
rather important when you are attempting to build a navigational schema in ASP.NET MVC. Now
that you have a deeper understanding of how routing works, the next section explains how to create
navigational structures without ASP.NET Web Forms server controls.

Creating a Navigational Structure
As you saw earlier, the main component of a navigational structure is the <a> HTML anchor tag.
This is all that was created from the ASP.NET Web Forms Menu control, so that is all that you have
to create when working with an ASP.NET MVC application. Because there is no concept of a server
control to help with this, you have to create all of the structure by hand, albeit with support from
HTML helpers.

Fortunately, however, you already have an understanding of what the output needs to look like
because you already created the HTML as part of the Admin section. This means that you only have
to create the same structure to achieve a user interface that is identical to the look and feel of the
Web Forms area of the site.

As you start to do this, you will fi nd that some helpers are available:

 ➤ The @Html.ActionLink method writes out a complete anchor tag.

 ➤ The @Url.Action method creates a URL, rather than a complete anchor tag.

http://www.servername.com/DemoModel/SomeAction/8/orange
mailto:@Html.ActionLink
mailto:@Url.Action

Navigating in ASP.NET MVC ❘ 253

c08.indd 12/15/2015 Page 253

An example of each follows:

@Html.ActionLink("textLink", "actionName", "controllerName")

textLink

These are both rendered to the same HTML:

textLink

This means that when you create an ASP.NET MVC navigation structure, you create the links your-
self, rather than having a server control do it. However, you do not have to write them all by hand
because you can use the helpers, as demonstrated in the next Try It Out.

TRY IT OUT Creating an ASP.NET MVC Navigation Structure

You have already created a navigational structure for ASP.NET Web Forms using the Menu control.
Here, you have to forgo the support of a server control and write the code for the menu yourself.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Open the
Views\Shared_MVCLayout.cshtml fi le and fi nd the section that looks like the following snippet:

<div id="nav">
 Navigation content here
</div>

 2. Delete the “Navigation content here” text, and replace it with the following:

<div id="LeftNavigation">
 <ul class="level1">
 Home
 @Html.ActionLink("Items", "", "Items", new { @class = "level1" })
 @Html.ActionLink("Contact Us", "ContactUs", "Home",
 new { @class = "level1" })
 @Html.ActionLink("About Us", "About", "Home",
 new { @class = "level1" })

</div>

 3. Now that the menu has been created, you need to create the controller and views that serve the
last two of these links. Right-click the Controllers directory in Solution Explorer and select Add ➢
Controller. When the Add Scaffolding dialog appears, choose “MVC 5 Controller - Empty” and
click the Add button. When the Controller name box appears, replace the highlighted section with
“Home” so that the name is HomeController.

mailto:@Html.ActionLink
mailto:href="@Url.Action

254 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 254

 4. When you created the controller you may have noticed that the scaffolding added a new folder,
named “Home,” into your Views folder as well. Right-click this Home folder and Select Add ➢
View. This brings up the dialog as shown in Figure 8-16.

FIGURE 8-16: Add View dialog

 5. Change the name to “ContactUs” and click Add. Perform the same steps again to add a view
named “About.”

 6. Open the HomeController fi le. Highlight the default action that was created, the code that looks
like this:

public ActionResult Index()
{
 return View();
}

 7. Replace the highlighted code with the following:

public ActionResult ContactUs()
{
 return View();
}

public ActionResult About()
{
 return View();
}

 8. Run the application and go to /Home/ContactUs. You will see your newly created menu, along
with the default header that was created when you created the view. You should be able to go to
the About Us menu selection as well.

Navigating in ASP.NET MVC ❘ 255

c08.indd 12/15/2015 Page 255

How It Works

You just fi nished manually creating a simple menu structure. As you saw, it was relatively straightfor-
ward. You added four styled links to the default layout page using the ActionLink HTMLHelper. These
helpers create HTML that matches the HTML created by the Menu control.

One of the code snippets that you added is repeated below.

@Html.ActionLink("About Us", "About", "Home", new { @class = "level1" })

This code builds a link to a controller named “Home” and calls an action named “About,” both of
which you already created; and the text displayed in the link is specifi ed as “About Us.” The last
section of the ActionLink is setting HTML attributes, in this case setting the class attribute to the
value "level1".

Programmatic Redirection
Programmatic redirection is a very useful and common action in ASP.NET web applications. One of
the most common uses is when a form is submitted to create some kind of new item in the database.
When using ASP.NET Web Forms, the page containing the form that was fi lled out posts back to
itself, where the information is validated and persisted. A traditional scenario would then send the
user to a list page where they are able to see the item that they just added to the list.

ASP.NET Web Forms support two different approaches to redirecting users to a different page
programmatically: client-side and server-side. When using client-side redirection, the server sends
a special response to the client that the browser interprets as a request to fetch a new page. With
server-side redirection, the server accepts the request at one resource and then programmatically
uses another resource to process it.

Programmatically Redirecting the Client to a Different Page
You can use two different commands to manage redirection that happens within the browser
on the client side: Response.Redirect and Response.RedirectPermanent. They each do
slightly different things: The Redirect returns a 302 status code to the browser, while the
RedirectPermanent command sends a 301 code to the browser. The 302 code means the
requested resource has temporarily moved to another location, while the 301 code tells the
browser that the resource has permanently moved to a different location.

Neither the user nor the browser notices a difference between the two codes. However, both are
important for search engine optimization (SEO). If a search engine robot crawling the website
encounters the temporary redirect, it knows to continue going. However, when the search engine
robot encounters the permanent redirect it knows that it should not index the old location and
instead ensure that the new location is indexed in its place.

mailto:@Html.ActionLink

256 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 256

Using either of these two commands is relatively straightforward:

Response.Redirect("~/SomeFile.aspx");

Response.RedirectPermanent("~/SomeFile")

As soon as the system comes to a Redirect or RedirectPermanent command, it immediately
returns the status code to the client browser. This means that any code after this command is not
called. This fl ow is shown in Figure 8-17.

List.aspx

Browser

Create.aspx

Response.Redirect
Response.RedirectPermanent

FIGURE 8-17: Client-side redirection fl ow

These client-side redirects are generally used only in ASP.NET Web Forms, not MVC. The technol-
ogy is supported in MVC, but the ability to return any view from the controller generally means
that there is no need to take this step. You will learn more about this in the section “Server-Side
Redirects.”

In this next activity you will add a new page that will redirect the user to a different page.

TRY IT OUT User Redirection

To get a better understanding of how this works, imagine a scenario in which you want to offer a prod-
uct that has special pricing. This product changes every week, but you want your site visitors to be able
to bookmark a single page showing this item, http://www.rentmywrox.com/weeklyspecial. You will
use the temporary redirect to create a page that forwards the user to the standard item detail page for
the item on special for that week.

 1. Ensure that you have the RentMyWrox solution open in Visual Studio. Right-click the project
name and select Add ➪ New Item. Select the option to add a Web Form named WeeklySpecial, as
shown in Figure 8-18. Click the Add button and save the fi le.

http://www.rentmywrox.com/weeklyspecial

Navigating in ASP.NET MVC ❘ 257

c08.indd 12/15/2015 Page 257

FIGURE 8-18: Creating a WeeklySpecial page

 2. You don’t need to do anything with the markup page. Instead, open the markup page and add the
code so that it looks like what is shown in Figure 8-19.

FIGURE 8-19: Code for the redirect of the WeeklySpecial

258 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 258

 3. Run the application while on the markup page. You will get a 404 error (you have not yet added
this page; you will do that after you begin working with the database), but note that the address
bar points to an address similar to the following: http://localhost/Items/Details/24.

How It Works

In this activity you created a forwarding page that enables the http://servername.com/
weeklyspecial URL to redirect to a specifi c item’s detail page. Because this item changes every week,
you did not use the permanent forwarding scheme; instead, you used the temporary forwarding com-
mand that sends a 302 status response to the client browser, which then makes the re-request call to the
forwarded URL.

You had to hard-code the id value of the weekly special item and send it to an items page that does not
yet exist. You will be adding this items controller and supporting view in the database section of this
book, and at that point you come back to this page and make the id refl ect the correct item on special.

Did you notice the address bar when you were running the application? This gives you an indication
of how the redirection process works. If you start the application while on the WeeklySpecial page,
you see that it starts to run on that page. However, you then see the processing stop, and the content
of the address bar changes to the forwarded address. The browser then makes the new call to the
forwarded page.

Client-side redirects enable the developer to tell the client to request a different resource from a
different address. This means that there is an extra request-response when the client gets the redi-
rection request. As a result, there is a performance cost because of the second call. ASP.NET Web
Forms also support server-side redirects. In addition, ASP.NET MVC supports server-side work
that enables the developer to return various views as needed, basically eliminating the need for any
client-side redirection at all.

Server-Side Redirects
Server-side redirects, or transfers, are different from client-side redirects in that the request is made
for a specifi c resource. Rather than respond with that resource, the server runs the redirection com-
mand and instead responds with the content from that alternate resource as specifi ed in the transfer.

There are two different ways to perform this transfer: Server.Transfer and Server
.TransferRequest. The Transfer method terminates execution of the current page and starts exe-
cution of a new page by using the specifi ed URL path of the page. The TransferRequest method
differs in that it performs an asynchronous execution of the specifi ed URL using the specifi ed HTTP
method and headers. This means that using the Transfer method requires a physical page that can
be called (a Web Form), whereas the TransferRequest does not. Instead, the TransferRequest
makes a complete call so that it can also transfer control to an MVC page.

When using Server.Transfer there are two possible parameters:

 ➤ The fi rst is the URL of the resource that will be used to handle the request.

 ➤ The second, optional, parameter specifi es whether the form body should be transferred with
the new call.

http://localhost/Items/Details/24
http://servername.com

Navigating in ASP.NET MVC ❘ 259

c08.indd 12/15/2015 Page 259

The code looks like this:

Server.Transfer("/Admin/ItemList", true);

This line of code tells the server to stop processing the current request and instead process the page
at "Admin/ItemList". The second parameter tells the system to include any of the form content that
was submitted to the initial resource. In many cases you don’t need to send the information along,
but there may be situations when it would be useful. Because all the work is handled by the server,
no additional time is spent moving the information around; therefore, it depends on whether you
need that information. If you don’t need it, don’t include it. The second parameter is optional. If you
don’t include it, then the default behavior is to transfer the query string and form information dur-
ing the transfer.

The second approach, TransferRequest, looks much the same, except it can have many more
parameters:

public void TransferRequest(
 string path,
 bool preserveForm,
 string method,
 NameValueCollection headers
)

Server.TransferRequest("/DemoModel/Details/3", true, "GET", null);

You can transfer with just the fi rst parameter, or with the fi rst and second parameters if necessary,
just as you can with the Transfer method. However, in many cases you may want to designate the
HTTP verb to be used with the request, which requires that you also send along a set of request
headers. In the preceding example, null is used because you didn’t need to add any additional
headers.

In this next Try It Out, you work with both of the transfer approaches to become familiar with what
each one does as part of the request processing.

TRY IT OUT Server-Side Redirection

In this activity you work with both approaches to setting up server-side redirection in ASP.NET MVC,
the Transfer and the TransferRequest.

 1. Ensure that you have your RentMyWrox solution open in Visual Studio. Open the code-behind for
the fi le you used in last activity, WeeklySpecial.aspx.cs.

 2. Change the Response.Redirect to Server.Transfer so that you have the following line of code:

Server.Transfer("Items/Details/" + specialItemId);

 3. Save the fi le and run the application while on that page. You should get an exception, as shown in
Figure 8-20.

260 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 260

FIGURE 8-20: Exception using Server.Transfer

 4. This exception was caused because there is no physical page to which to transfer the request. Stop
the application and change the transfer as shown here:

Server.Transfer("/Admin/UserList.aspx");

 5. Run the application. You should get a screen similar to that shown in Figure 8-21. Note that the
address bar still shows WeeklySpecial, yet it is rendering the response created by the UserList page.

 6. Stop the application. Change the Server.Transfer line of code so that it reads as follows:

Server.TransferRequest("Items/Details/" + specialItemId);

 7. When using the Server.Transfer this approach failed. Now see what it does when using the
Server.TransferRequest. Run the application while on this page. You won’t get an excep-
tion, you instead get a 404 error that contains the following text: Requested URL: /Items/
Details/24. This indicates that the forwarding was successful—or at least it will be successful
once you actually add that page to the application.

Navigating in ASP.NET MVC ❘ 261

c08.indd 12/15/2015 Page 261

FIGURE 8-21: Server.Transfer to .aspx page

How It Works

In the last activity you took advantage of the Redirect functionality to have the client redirect the
request to a different page. In this activity you eliminated the response to the client that told them
to request a different page, and instead returned the content of a different resource as if it were the
originally requested resource.

There are two different approaches to doing the server transfer. The Server.Transfer method has
been around for a long time, and forwards the request to a physical page. Note that you even had to
include the extension on the server transfer; if you had tried it without the extension, it would have
thrown an exception. All of this work happens after the friendly URL parsing is done by the server.
That is also why you were not able to get it to successfully transfer to an MVC route; the server transfer
happens after the routing engine does its work, so the transfer is incapable of parsing the URL to deter-
mine what controller and action need to be called.

However, it all worked correctly when you used the Server.TransferRequest method, as this method
actually “restarts” the request, only using the URL that was set in the method. This means that friendly
URLs and routing are able to run on the URL so that it can handle MVC routes as well as Web Form
pages using friendly URLs. You will generally fi nd it safer to use the TransferRequest approach
because you don’t have to worry about how the request is being managed (Web Forms page vs. MVC
route)—you only have to ensure that you send it to the correct page.

While both server and client transfers enable you to provide a different resource to manage pro-
cessing of the request, they take a different approach. The client-side approach causes a redirection
request to be sent to the browser. This means an additional client request-response cycle, as well as

262 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 262

showing the user the new URL in the address bar of the browser. The server-side transfer eliminates
the additional request-response cycle and it does not replace the URL in the browser’s address bar.
The last activity demonstrated how this enabled you to display the item detail created by another
page while still showing the address of the WeeklySpecial.

Which approach you want to take depends upon your requirements. Generally, it comes down
to whether or not you want to publicize the transfer. If you do, such as when a page has actually
moved, then you want to use a Response.Redirect, perhaps even the Response
.RedirectPermanent so that the replaced page can eventually be removed. If all you want to do is
something like what the WeeklySpecial does in the sample application, then the Server
.TransferRequest is a more appropriate way to manage the redirection. As with every other
choice, it ultimately depends on what you want the end user’s experience to be like.

The last type of redirection is the concept of server-side redirection in MVC. As mentioned earlier,
this is a very different concept, because the idea of redirecting from one page to another is just not the
same because there are no pages in ASP.NET MVC. Figure 8-22 shows the difference between the two
approaches if you were using a process whereby when an item is created, the UI returns the user to a
list page.

Create.aspx

List.aspx

Create
Action

Index
Action

View
Containing

List

Server.Transfer ASP.NET MVC

FIGURE 8-22: Server transfer of page fl ow

The key difference between redirection in ASP.NET Web Forms and MVC is that the MVC control-
ler simply determines what view will be returned, so there is no concept of transfer; the controller
just returns the appropriate view.

PRACTICAL TIPS ON NAVIGATION

Navigation is simultaneously one of the easiest parts of a website to build and one of the hardest
parts of a site to design because it requires that you anticipate the reasons that all of your users will
need and ensure a pleasant user experience for each of those reasons—especially for a site that will
continue to grow. Keep in mind the following tips as you build out your navigational structure:

Summary ❘ 263

c08.indd 12/15/2015 Page 263

 ➤ Categorization is critical. As the information and functionality offered by your web applica-
tion grows, it will become increasingly important for you to keep it organized in a way that
makes sense to your users. Remember: It has to be something that your users can understand.

 ➤ Keep menu depth limited. Multiple submenus leads to confusion and diffi culty in understand-
ing the appropriate choice. When you legitimately have a deep set of relationships, don’t
make them all available at once. Instead, categorize them and expose additional levels as the
user selects a certain path.

 ➤ The typical approach to building a set of MVC functionality is to have a controller for each
individual model that you may want to work with. That isn’t always necessary. Instead, your
controllers should be aligned with the navigation path that your users will travel, rather than
your data model. Sometimes they are strongly related, but don’t assume that they always
have to be that way.

 ➤ You know your business. Most likely your users do not. Don’t build your navigation struc-
ture to emulate your business divisions unless these differences are obvious to your visitors.
Instead, build your structure to emulate the reasons why your users are visiting your site, and
categorize your menu options to refl ect those reasons.

SUMMARY

Creating a clear, intuitive navigation schema for your website is critical because it helps users access
the site’s different areas. The key to a navigational structure is the HTML anchor tag, <a>. This tag
is the primary way to move from one page to another, so whenever you consider navigation you are
actually considering how you are going to build your anchor tags.

An important part of the anchor tag is the address, or URL, of the resource being requested. There
are two different types of these URLs, relative and absolute. An absolute URL points to the desired
resource by using a complete Internet address. A relative URL, conversely, points to resources that
are contained within your own application. Typically, absolute URLs are used when referencing
URLs that are outside of your website or those URLs that remain the same regardless of where the
application is running.

There are three primary menu-support controls in ASP.NET Web Forms, the Menu control and the
TreeView control, both of which create complete navigational structures, while the SiteMapPath con-
trol displays a breadcrumb. This chapter covered the Menu Control, but using the TreeView control is
very similar. When you are working in MVC, you do not have the luxury of being able to use server
controls, so you have to build the navigational structure yourself, but you do have several helpers: one
that creates an anchor tag for you, and another that builds a URL based on various parameters.

The navigational structure enables users to move around your application. You also have the
capability to move around your site programmatically. There are two primary ways. With the
fi rst, your application sends a code to the client and the client requests the new resource, the

264 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 264

Response.Redirect. With the second, the server handles the transfers; a request is made for one
resource, and the server transfers the request to a different resource that creates the response, a
Server.Transfer and Server.TransferRequest.

Both of the programmatic approaches are ASP.NET Web Forms–based, MVC does not use the same
kind of page-to-page transfer approach. Rather, the controller handles the request and determines
which view to return to the user. There is no transfer, simply a selection of views, because, unlike in
Web Forms, the URL references a piece of code rather than a physical page in the fi le system.

EXERCISES

 1. Your user is on a page at http://www.servername.com/admin/list.aspx and you have the
following link: Home. Where would they end up if they clicked
the link?

 2. If you were a new developer on a project for which a bug report is received regarding a page
found at http://www.servername.com/results/, where would you look for the code that
caused that specifi c defect?

 3. Why were friendly URLs implemented and what advantages do they bring to ASP.NET Web
Forms development?

http://www.servername.com/admin/list.aspx
http://www.servername.com/results

Summary ❘ 265

c08.indd 12/15/2015 Page 265

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Absolute URL A URL that contains the full description of the resource being requested.
This means that not only does it reference the location within the site, it
also references the location on the Web through the use of domain and
server names.

Client-Side
Redirection

Redirection in which the server sends a redirect message to the client.
These messages have a status of either 302 or 301, with the latter indicat-
ing a permanent move, and the former indicating a temporary move.

Default Document An ASP.NET Web Forms concept whereby a server administrator can
assign a specifi c page that handles requests to a directory when a spe-
cifi c page is not requested. This is how the system knows, for example, to
respond to a request to http://servername.com with the code in the
Default.aspx page; it is the default document. The default document can
be assigned across the site or be set up for each directory within the site.

Friendly URLs Firendly URLs are an enhancement to ASP.NET Web Forms that enables
the system to understand requests to .aspx pages that do not contain the
fi le extension. It is also provides the built-in capability to parse information
from the URL for access within the code-behind. This enables replacing
querystring variables with URL variables.

HTML.ActionLink An HTML helper for ASP.NET MVC that accepts a set of parameters (such
as controller and action) to build out a complete anchor tag.

Menu Control ASP.NET Web Forms server control that builds out a complete menu. It
has built-in dynamic menuing that creates fl y-out submenus from parent
menu items. It takes an XML fi le as the reference source; this fi le contains
all the menu information needed to create the visual element.

Relative URL Provides direction to the requested resource by working with everything
after the server and domain names. This means that it can only point to
items within the same server application.

Routing A concept whereby ASP.NET MVC applications can build out interpreta-
tion schemes for incoming URLS. This enables the system to determine,
from the requested URL, what controller needs to be called and which
action in that controller will be used to create the response object, gener-
ally a view.

Server-Side
Redirection

The capability to respond to a specifi c request by running a different set of
code. Typically, a request is received by a resource that handles the cre-
ation of the response. However, in a server transfer, the request is received
by a resource that then forwards that request to a different resource which
provides the response.

http://servername.com

266 ❘ CHAPTER 8 NAVIGATION

c08.indd 12/15/2015 Page 266

TreeView Control An ASP.NET Web Forms server control that builds out a complete menu. It
has built-in dynamic menuing that enables opening and closing submenus.
It takes an XML fi le as the reference source; this fi le contains all the menu
information needed to create the visual element.

URI Uniform Resource Identifi er, a complete description of a URL. A URI con-
tains a URL that adds extra metadata that may be useful programmatically.

URL.Action An ASP.NET helper that assists in building a URL. Typically, the helper is
used to build the href content of an anchor element, but it is also used to
create visible URLs. It takes a series of parameters, generally including at
least the controller and the action, to build the complete URL.

Virtual Application Concept whereby an IIS website can run many different applications
in subdirectories. There is always a default application, but there can
be as many different virtual applications as necessary. They are gener-
ally referenced through a URL such as http://www.servername.com/
virtualapplicationname/*.

http://www.servername.com

c09.indd 12/21/2015 Page 267

Displaying and Updating Data
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to install Microsoft SQL Server Express

 ➤ Using SQL Server Express Manager

 ➤ Viewing and managing data in Visual Studio SQL Server Explorer

 ➤ Working with various ASP.NET Web Forms data controls

 ➤ Managing data in ASP.NET MVC applications

 ➤ Handling sorting and pagination in a web application

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the
chapter 09 download and individually named according to the names throughout the chapter.

There are very few websites that need the dynamic capabilities provided by ASP.NET that don’t
also need a way to store data either about the visit or about actions taken during the visit. This
data could be as simple as persisting the pages that were clicked by visitors as they went through
the site, to as complex as a multi-million-dollar order for thousands of various widgets.

There are various ways that you can persist this data.

 ➤ You can store it on the local fi le system as a specially delimited fi le.

 ➤ Another, and the most common, way to store information is in a database system. A
database system is an application whose primary reason for existence is to manage the
creation, editing, deletion, and fetching of data. There are many different types of data-
base systems, from very simple to extremely complex. This chapter introduces the free
version of Microsoft’s fl agship data management application, Microsoft SQL Server.

After installing this product as part of the introduction, you learn about several parts of the
application, although you won’t spend a lot of time on the database itself. Our approach will

9

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

268 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 268

be to abstract out the database as much as possible, so after the installation and introduction you
will have little need to return to the database system.

The bulk of the chapter is dedicated to communicating with the database. After a brief introduc-
tion to the Entity Framework, Microsoft’s way of converting objects to database tables, you plunge
straight into the use of data that you can now persist. In addition to working with data-specifi c
server controls, you will see how MVC uses various approaches to make up for its lack of controls.

WORKING WITH SQL SERVER EXPRESS

Microsoft’s SQL Server product is one of the most popular database systems in the world. SQL
Server is a Relational Database Management System (RDBMS), which means that it breaks informa-
tion down into related entities, or tables. In a way that is very similar to the object modeling dis-
cussed in Chapter 4, each of these tables contains different pieces of information about that entity
and stores it as a type in a column. Each item in the table, or row, typically has some kind of col-
umn, or property, which uniquely identifi es that row. Because of this unique identifi er, it is possible
for an entity in one table to be related to an entity in another table. This is the relationship aspect of
the name, and it is one of the primary characteristics of an RDBMS.

Another primary characteristic of an RDBMS is how the data is accessed from external systems—
through the use of a customized language, Structured Query Language (SQL). There is an ANSII
defi nition of SQL, but all the major RDBMS vendors have their own interpretation of the language,
generally because they offer special competitive features. Microsoft’s own version of SQL is known
as Transact-SQL (T-SQL), and it offers various additions such as string processing, date processing,
and mathematics—all features that are not part of the standard SQL defi nition.

NOSQL DATABASES

RDBMS systems, by defi nition, are very structured. There is a well-known set of
properties for an item represented by a table, and this defi nition rarely changes.
While this approach enables you to easily understand, parse, and interpret the data,
it limits the information that you can store because you have to understand its rela-
tionship with the other entities in your system. It is this rigorous defi nition and the
resulting understanding of each fi eld and its relationship to the other entities in the
system that directly accounts for the RDBMS’s infl exibility. For example, if your
database allows only three lines for an address but some users need four lines to
accurately describe their address, then you have a problem.

A newer type of database was created to solve the fl exibility problem, but at the
cost of understanding each entity in the system. These database systems are typi-
cally referred to as NOSQL databases, short for “not only SQL.” It is called that
because these databases differ in terms of how data is accessed and managed, as
they do not support the concept of a relationship. Many instead concentrate on
storing the object as a whole item, rather than a list of specifi ed fi elds. This enables
the values being stored to be different for each item, thus storing that third address
line becomes a very simple exercise.

Working with SQL Server Express ❘ 269

c09.indd 12/21/2015 Page 269

Throughout the rest of this book you will be working with SQL Server Express, a free version of
SQL Server. The Express version is not feature-limited in any way that affects your usage here; it is
instead limited in terms of maximum memory usage, database size, and CPU cores that it can use.

Installation
A database server is not a typical piece of software. By design it has to be ready to respond to
calls from multiple applications, both on the same machine and from over the network. It also has
to be reliable, performant, and able to handle large amounts of data quickly. All of these require-
ments mean that installing a database is not as simple as installing other applications, such as
Visual Studio.

There are many more steps to installing SQL Server Express, and the current condition of your
machine may impact how your installation proceeds. If you have a brand-new machine with all the
latest patches and settings, then you may be able to install without any issues. If you do not, then
you may have to do some extra steps throughout the process. The installation program does a good
job of explaining what you have to do to solve any problems, and the following Try it Out instruc-
tions include running the system verifi cation step before the install so that your installation can run
successfully once you get there.

TRY IT OUT Installing Microsoft SQL Server Express

Before you go any further into working with databases, you should install one so that you have some-
thing to refer to. As mentioned earlier, you will be installing Microsoft SQL Server Express. If your
machine is running Visual Studio comfortably, then it should also be able to run SQL Server Express as
long as you have the hard drive space available.

 1. Open a browser and go to http://www.microsoft.com/SqlServerExpress. This should bring
you to a page from which you can download SQL Server Express. If you do not have the ability
to download from this screen you may need to go into the different editions of SQL Server and
fi nd SQL Server Express from there. Click the download link to access a page where you can
select the version of SQL Server Express that you would like to install. Choose SQL Server 2014
Express with Tools. It is available in two versions, 32 bit or 64 bit. Ensure that you choose the cor-
rect version for your processor type. Download the fi le. You will likely be asked to log in to your
Microsoft Live account. Note that the download is over 800MB, so it may take a while.

 2. Once you have the fi le downloaded, run the installer. If the User Account Control dialog appears,
as shown in Figure 9-1, select Yes.

FIGURE 9-1: User Account Control dialog

http://www.microsoft.com/SqlServerExpress

270 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 270

 3. In the Choose Directory for Extracted Files dialog, shown in Figure 9-2, you can either use the
default or choose a different folder. Once the installation process is completed you will be able to
delete the folder. After selecting a directory, click the OK button.

FIGURE 9-2: Selecting extract directory

 4. The extract process may take some time. Once it is completed, the SQL Server Installation Center
dialog shown in Figure 9-3 will open.

FIGURE 9-3: SQL Server Installation Center

 5. Select Tools from the menu on the left. This should bring up a screen similar to the one shown in
Figure 9-4.

 6. Select the top option, System Confi guration Checker. After the scan, whose progress you can fol-
low, the results dialog shown in Figure 9-5 will appear.

 7. In Figure 9-5 all but the last option passed. You may have other ones that did not pass, especially
the “.NET 2.0 and .NET 3.5 Service Pack 1 update.” If you have any that fail you can click the
Failed link on the right side of the line that failed and a dialog will open that walks you through
the process required to support SQL Server Express on your system. Go through all the items that
failed and correct them according to the popups. You may have to restart your computer several
times during the process. If so, return to the installer after each fi x and keep going through the con-
fi guration check until everything passes.

Working with SQL Server Express ❘ 271

c09.indd 12/21/2015 Page 271

FIGURE 9-4: SQL Server Installation Center - Tools

FIGURE 9-5: Setup Support Rules

 8. When all the items have been updated and your system passes, select Installation from the left
menu of the Installation Center.

 9. Select the top option, “New SQL Server stand-alone installation or add features to an existing
installation.” It may take a few minutes before anything happens, but you should eventually get the
License Terms dialog shown in Figure 9-6.

272 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 272

FIGURE 9-6: License Terms dialog

 10. Accept the license terms. You can also select the second checkbox to participate in the Customer
Experience Improvement Program (CIEP) if desired. When you choose to participate in the CEIP,
your computer or device automatically sends information to Microsoft about how you use certain
products. Information from your computer is combined with other CEIP data to help Microsoft
solve problems and to improve the products and features customers use most often. This is an
optional step. Click the Next button. You will see a progress bar, and then the Microsoft Update
dialog shown in Figure 9-7 will appear.

 11. Check the “Use Microsoft Update to check for updates” checkbox and click Next. You will get the
Feature Selection dialog. Ensure that the checkboxes for the following items are selected:

 a. Database Engine Services

 b. Client Tools Connectivity

 c. Management Tools - Basic

 d. SQL Client Connectivity SDK should be unchanged.

 e. LocalDB should be unchanged.

When you are done, your screen should match Figure 9-8. Click Next.

 12. The Feature Rules will run next. You should not have any problems with this since you already ran
this in Step 6. Click Next to continue.

 13. Once the Rules run is complete, you will get the Instance Confi guration dialog shown in
Figure 9-9.

 14. Accept all the default settings and click Next. The dialog shown in Figure 9-10 will appear.

 15. Accept all the default settings and select Next. This brings you to the Database Engine
Confi guration dialog shown in Figure 9-11.

Working with SQL Server Express ❘ 273

c09.indd 12/21/2015 Page 273

FIGURE 9-7: Microsoft Update dialog

FIGURE 9-8: Feature Selection dialog

 16. Accept all the default settings by selecting Next. The installation process will start. It can take some
time, but you can follow its progress in the Installation Progress dialog. When the process is fi n-
ished you should see a Complete dialog, indicating the installation was successful.

 17. Click the Close button. This returns you to the Installation Center dialog.

 18. Click the close icon on the top right of the window. This completes installation of SQL Server.

274 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 274

FIGURE 9-9: Instance Confi guration dialog

FIGURE 9-10: Server Confi guration dialog

How It Works

Typically, installing a Windows application is pretty simple. However, as you see, SQL Server is not a
typical application. There is a complex set of different applications and services, applications that run
without any user interaction, that make up SQL Server. Figure 9-12 shows the Windows services that
were installed as part of the SQL Server installation.

Working with SQL Server Express ❘ 275

c09.indd 12/21/2015 Page 275

FIGURE 9-11: Database Engine Confi guration dialog

FIGURE 9-12: Windows Services installed as part of SQL Server

As well as installing various different services, there are some expectations around the system that will
be running SQL Server as well as some limitations. These are all shown in Table 9-1.

TABLE 9-1: Minimum and Maximum System Settings

ITEM SETTING

.NET 2.0 and 3.5 Service Pack 1 Installed

Registry check All required registry keys are available

Windows Management Instrumentation (WMI) service Installed

Compute capacity used by a single instance Limited to lesser of 1 socket or 4 cores

Maximum memory utilized 1 GB

Maximum relational database size 10 GB

276 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 276

Along with the various services that were shown in Figure 9-12, multiple client applications are
installed as well, including wizards, centers, and managers. Each of these plays a part in the running
and maintenance of a SQL Server installation. Other than SQL Server Management Studio, you won’t
spend any time on the remaining applications or services that were installed as part of this process;
however, they are all necessary when working with SQL Server in a production environment.

Installing the SQL Server applications, services, and tools enable you to start persisting the data
from your RentMyWrox application. However, before you do that, you’ll take a look at the main
application tool installed as part of your SQL Server installation, SQL Server Management Studio.

SQL Server Management Studio
After installation you should have an icon to start the SQL Server Management Studio applica-
tion, which provides access to all the major database functionality, including creating, editing, and
deleting database items. It also provides tools for accessing and evaluating data within the various
databases.

In order to work with SQL Server Management Studio, you fi rst need to connect to a SQL Server.
This is because SQL Server is a service application that’s generally running the entire time that the
operating system is running, unless otherwise confi gured, but it lacks its own user interface; the only
way to know that SQL Server is running on your machine is to check the list of active services. This
is why Management Studio is so important; it acts as your interface to SQL Server.

A central feature of SQL Server Management Studio is the Object Explorer, which allows the user to
browse, select, and act upon any of the objects within the server.

In the following Try It Out you use SQL Server Management Studio to create a database and
some tables, and then manage some data within those tables. This process enables you to see how
all the concepts fi t together, why SQL Server is called a relational database, and the advantages this
can bring.

TRY IT OUT Running Microsoft SQL Server Management Studio

In this activity you connect to a SQL Server, create a database, and then manipulate the content within
that database by creating tables and data.

 1. Find the icon to open SQL Server Management Studio. If you are running Windows 8.0 or newer
you will fi nd a section in your Apps area that looks like Figure 9-13. The icon within the box is
SQL Server Management Studio. Going forward, you may want to pin this icon to your Start menu
or to your desktop for easy access.

 2. Double-click the SQL Server Management Studio icon to start the application. The Connect to
Server dialog will open, as shown in Figure 9-14.

Working with SQL Server Express ❘ 277

c09.indd 12/21/2015 Page 277

FIGURE 9-13: SQL Server shortcut

FIGURE 9-14: Connect to Server dialog in SQL Server Management Studio

 3. Ensure that the server name represents both your computer name and the default name that was
added in the last activity. Click the Connect button. This opens the Object Explorer window
shown in Figure 9-15.

FIGURE 9-15: Object Explorer, showing connected server

278 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 278

 a. If you were not able to connect, ensure that your settings match those shown in Figure 9-14
(with the exception that you use the correct machine name to replace “ASP-NET”).

 4. Right-click on the Databases folder. Select New Database from the context menu. This brings up
the New Database dialog, shown in Figure 9-16.

FIGURE 9-16: New Database dialog

 5. Name the Database “RentMyWrox” and leave the rest of the settings at their default value. Click
OK. You should now see a cylindrical icon named RentMyWrox under the Databases folder.

 6. Expand RentMyWrox by clicking the plus sign to the left of the icon. Your window should look
like Figure 9-17.

FIGURE 9-17: Expanded database

Working with SQL Server Express ❘ 279

c09.indd 12/21/2015 Page 279

 7. Right-click on Tables and select Table. This opens a table creation window, as shown in
Figure 9-18.

FIGURE 9-18: Window for creating a table

 8. Enter “Id” for Column Name, change DataType to int, and uncheck the Allow Nulls checkbox.
In the Properties pane on the right, change (Name) from Table_1 to “TestingTable.” Also on the
right, change the Identity Column to “Id” in the dropdown box.

 9. Click the Row below where you entered Id, and enter “Name” for the Column Name. Select
varchar(50) for the DataType. Add one more column Named “Description” with a DataType of
varchar(MAX). Your screen should look like Figure 9-19.

FIGURE 9-19: Filled-out table information

 10. Click the disk icon in the toolbar to Save. Expand the Tables directory. If you don’t see the item
that you just created, select the refresh icon in Object Explorer to refresh the list of items.

 11. Right-click on the table and select Edit Top 200 Rows. This opens an editing window that looks
like Figure 9-20.

280 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 280

FIGURE 9-20: Editable window

 12. Type a value, such as “Test” into the fi eld under the Name column header and another value into
the fi eld under Description and click Enter. A value will appear in the Id column of the row that
you were on, and another set of entry boxes appears under the row you were working on.

How It Works

The fi rst step in doing any work with SQL Server is to connect to the database. There are two different
approaches to managing security in a SQL Server database: using Windows or having SQL Server man-
age the authentication protocol. You had that choice during the installation of the software, choosing
to use Windows Authentication Mode. Since you chose Windows Authentication you are able to log
in to your database automatically because you have already logged in to your computer. If you had
selected SQL Server authentication you would have to enter a username and password each time you
wanted to connect with Management Studio.

This connection between Sql Server Management Studio and SQL Server
is important because you have to ensure that you follow the same pro-
cess every time you want to connect to the database, whether through
Management Studio or through your ASP.NET application.

When you log in through Management Studio you can see whether SQL
Server is running by looking at the small symbol next to the name of
your server. The green arrow, as shown within the dark box in Figure
9-21, indicates that the server is running.

If the server is not running, which is indicated by a red box, as shown
within the dark box in Figure 9-22, you can right-click the server and
select Start. You can also take the same approach to stop the server: right-
click on the server name and then select Stop from the context menu. You
will see several User Account Control and confi rmation dialogs, but the
server will start or stop as directed.

Once you have connected to the server, you will see multiple folders listed
under it. These folders are described in Table 9-2.

FIGURE 9-21 Object Explorer,
showing the active server

FIGURE 9-22 Object Explorer,
showing the stopped server

Working with SQL Server Express ❘ 281

c09.indd 12/21/2015 Page 281

TABLE 9-2: SQL Server Management Studio Folders

FOLDER DESCRIPTION

Databases Contains all the databases available on the server. This list includes not
only the user-created databases but also the system databases that are used
by the server itself to manage all the relationships within and without the user
databases.

Security As the folder name suggests, this folder maintains security information. In SQL
Server the primary security concepts are logins that provide authentication, and
roles that support authorization. Access to a database is determined by assign-
ing a login a role in that database. This role could be anything from read-only to
full administrative control.

Server Objects Contains various different support items, such as backup devices for confi gur-
ing backups for your databases or other servers with whom this server has open
communications.

Replication Replication is a group of technologies that support information distribution and
mirroring between different databases. SQL replication enables not only copying
data between databases, but also copying any database objects. These data-
bases can be on the same server or any other server that has connectivity, even
across the Internet.

Management Items within this folder support management of the server itself, and contains
items such as logs and events.

As a developer, you will spend virtually all of your time working within the Databases folder, because
this is where you can work with the databases that support your application. A database is a collec-
tion of tables with typed columns. SQL Server supports different data types, including primary types
such as Integer, Float, Decimal, Char (including character strings), Varchar (variable length char-
acter strings), binary (for unstructured blobs of data), and Text (for textual data), among others.
Thankfully, the approach that you take here to work with the database will hide the database types
from you, enabling you to work with .NET types instead.

Now that you have been able to create a database and table using SQL Server Management Studio,
the next section moves maintenance and access to your data into Visual Studio so that you will
be able to evaluate your application’s interaction with the database within your primary develop-
ment tool. Going forward, you can use SQL Server Management Studio to access your database.
Although you will generally be doing this in Visual Studio, you will see that there are multiple ways
to access your data even while working in Visual Studio.

282 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 282

Connecting in Visual Studio
While you have already worked with multiple windows in Visual Studio, there is one to which
you have yet to be introduced, the SQL Server Object Explorer window. This window is different
from the Object Explorer window that you worked with in SQL Server Management Studio. From
here you can connect to your SQL Server and access your databases and tables just as if you were
using Management Studio. In this activity, you connect Visual Studio to the database that you just
created.

TRY IT OUT Connect to the Database from within Visual Studio

In this activity you will connect to the SQL Server instance that you just installed and manipulate the
various server objects and data just as you did in SQL Server Management Studio. However, you will
be doing all of this in Visual Studio.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. From the
View menu option select SQL Server Object Explorer. This will open the window shown in Figure
9-23. It may open in one of many different areas, including in the same area as your Solution
Explorer. If so, drag it into your main working pane.

FIGURE 9-23: SQL Server Object Explorer

 2. In the Object Explorer window, right-click on SQL Server and select Add SQL Server. This brings
up the Connect to Server dialog, shown in Figure 9-24.

FIGURE 9-24: SQL Server Object Explorer Connect to Server dialog

Working with SQL Server Express ❘ 283

c09.indd 12/21/2015 Page 283

 3. From the Server Name dropdown select Browse for More. This opens the Browse for Servers dialog
shown in Figure 9-25, including the name of the server that you created when installing SQL Server
Express.

FIGURE 9-25: SQL Server Object Explorer Browse for Servers dialog

 4. Select your SQL server and click OK. This returns you to the Connect to Server dialog. Click the
Connect button. This adds your SQL Server to the list of connections under Sql Server as shown in
Figure 9-26.

FIGURE 9-26: New database connection in SQL Server Object Explorer

 5. Expand the RentMyWrox database by clicking the arrow. If the Tables folder is not expanded you
can open the folder by clicking the arrow.

 6. Right-click on dbo.TestingTable and select View Data. This opens a data window similar to the
one shown in Figure 9-27.

FIGURE 9-27: Working with the data in SQL Server Object Explorer

284 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 284

 7. Close the data window and right-click once again on the dbo.TestingTable table. Select
Delete from the context menu. This brings up the Preview Database Updates dialog, shown in
Figure 9-28.

FIGURE 9-28: Preview Database Updates in SQL Server Object Explorer

 8. Click the Update Database button. Note that the table was deleted.

How It Works

Visual Studio is a complete development environment in that it also enables you to access databases
and evaluate data. The steps that you just took to connect Visual Studio to the database so that you
can access that database’s objects are the same as those you performed when connecting SQL Server
Management Studio to the server. These steps include identifying the server to which you are going to
connect and then authenticating to the server, in this case using the Windows authentication schema.

While Visual Studio Object Explorer does not have the same set of functionality that is offered through
SQL Server Management Studio, it does enable you to easily and quickly evaluate whether or not your
connection to the database is working correctly and whether all the fi elds are being stored in the right
columns. The main thing to remember as you evaluate whether information was persisted correctly is
that you need to refresh before you can see any new table or rows of data that may have been added
since the last refresh. Table 9-3 lists some different database management functionality items and
whether that item is available in Management Studio and/or Visual Studio SQL Server Object Explorer.

TABLE 9-3: Database Management Feature Availability

FEATURE MANAGEMENT

STUDIO

VISUAL

STUDIO

Add / Edit / Delete database X X

Add / Edit / Delete table X X

Entity Framework Approach to Data Access ❘ 285

c09.indd 12/21/2015 Page 285

FEATURE MANAGEMENT

STUDIO

VISUAL

STUDIO

Add / Edit / Delete data within table X X

Run SQL scripts X X

Run data analysis X

Manage backups and replication X

Now that you have SQL Server installed and can connect to the server in several different ways
outside of your application, the next step is enabling your application to communicate with the
database.

ENTITY FRAMEWORK APPROACH TO DATA ACCESS

ASP.NET uses the Entity Framework to access the database. The Entity Framework is a set of
technologies that support the development of data-oriented software applications. Developers have
typically struggled with the need to achieve two very different objectives: modeling the entities, rela-
tionships, and logic of the business problems they are solving, and working with the data engines
used to store and retrieve the data. This data may span multiple storage systems, each with its own
protocols; even those applications that work with a single storage system, such as SQL Server, must
balance the requirements of the storage system against the requirements of writing effi cient and
maintainable application code.

The key feature of the Entity Framework is that it enables developers to work with the data as they
need it for their application, rather than having to worry about the database tables, columns, and
data types. Because the Entity Framework can manage all of this, it frees developers to work at a
higher level of abstraction when they deal with data, and enables them to create and maintain data-
oriented applications with less code than other database access approaches.

When the Entity Framework fi rst became available it was simply a way to convert your database
into a set of objects that were available in your code. It has evolved since then to support multiple
approaches to accessing your database. The two primary approaches are data fi rst and code fi rst,
which refers to what is handled fi rst, the database design or the code design.

Data First
In a data fi rst approach, the code is created based on the tables in a database. This approach is espe-
cially common when converting a preexisting system, as the database is already created. Using this
approach, you create class fi les from the database tables that have already been created by pointing a
tool at the database and letting it run against the tables and other server objects that you select.

The larger the preexisting set of tables and relationships, the more time you can save using a data
fi rst approach. However, when doing new application development for which you don’t have a set of
already created databases with which you will be interacting, you can use the code fi rst approach.

286 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 286

Code First
In a code- fi rst approach, you create your business models as you need them for your application
and then the Entity Framework creates the database tables from them. Because you are building a
completely new application, you will take this approach, in particular because it enables you to con-
centrate on the ASP.NET part of the system, rather than spend much more effort walking through
the database.

Just as with connecting SQL Server Manager, the fi rst step is ensuring that you can reach the new
server and authenticate. This allows your application to connect to the server. However, after this
is confi gured the process will proceed differently from what you are used to in that you certainly
do not want the application displaying login screens every time you want to access the database.
Instead, you have to take your login information, such as server name, user, password, and perhaps
the default database, and put it into a format that the server will be able to understand; and then
put this information in a location where the application will be able to understand it. This format
is called a connection string, and you will be storing this connection string in the confi guration fi le,
web.config.

The connection string is a set format that contains all the information necessary to connect to the
database. The following snippet shows a typical connection string:

data source=ASP-NET\SQLEXPRESS;initial catalog=RentMyWrox;integrated security=True;
MultipleActiveResultSets=True;App=EntityFramework

You may have recognized some of these values from the last activity. Table 9-4 describes the most
common parts of a connection string.

TABLE 9-4: Parts of a Connection String

SECTION DESCRIPTION

Data source Name of the server to which the application will be connecting

Initial catalog Name of the database to which you will be connecting

Integrated security A Boolean value that determines whether the authentication is going to
use a Windows authentication approach. If so, as in your case, then this
should be true.

MultipleActiveResultSets A Boolean fi eld that defi nes whether multiple queries can be running at
the same time

App Specifi es which framework is going to be managing the connection. In
the preceding case this is the Entity Framework.

Entity Framework Approach to Data Access ❘ 287

c09.indd 12/21/2015 Page 287

SECTION DESCRIPTION

uid When you are not using Windows authentication (integrated
security=False), you need to include a username when creating any
authentication requests.

Password When you are not using Windows authentication (integrated
security=False), you need to include a password along with the username
when creating any authentication requests.

Looking at the connection string displayed earlier, you can see that the database server name is
ASP-NET\SQLEXPRESS, that the database connected to by default is RentMyWrox, that Windows
authentication is used, that multiple result sets are wanted, and that the Entity Framework is used to
manage access.

The application accesses this connection string because it has access to it through the confi gura-
tion fi le. This confi guration fi le, called Web.Config when working with an ASP.NET application,
contains many different items, one of which is the group of connection strings that will be used to
enable the application to get dynamic data.

Historically, creation of the connection string was a manual task, and it was easy to get something
wrong during the process, leading to unexpected results that could be diffi cult to debug. The new
scaffolds that are available when working with Entity Framework items now do much of the work in
building those strings for you—you just need to update the data source and the initial catalog.

The last remaining task in connecting your application to the database is building the database con-
text. The connection string enables the application to understand what it is connecting to, while the
context handles all of the actual communication.

The context is the part of the application that uses the connection string, so it is also the part of the
framework that manages the rest of the interaction with the database. The context basically defi nes
the relations between models in your application and the objects, such as tables, within your data-
base. In the next activity you add the context class to your project.

TRY IT OUT Adding a Database Context to Your Application to Allow
Database Access

Using the following steps, begin the process of linking your application to the database.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Right-click
on the Models directory and select Add New Item. When the Add New Item dialog appears, ensure
that you are in the Data directory under your appropriate language and select ADO.NET Data
Entity Model. Name it RentMyWroxContext, as shown in Figure 9-29.

288 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 288

FIGURE 9-29: Adding the database context fi le

 2. Click the Add button. This will bring up the Entity Data Model Wizard shown in Figure 9-30.

FIGURE 9-30: Entity Data Model Wizard

 3. Select Empty Code First Model and click Finish. This creates the fi le and opens it in your main
working window. It should look similar to Figure 9-31.

Entity Framework Approach to Data Access ❘ 289

c09.indd 12/21/2015 Page 289

FIGURE 9-31: Basic DbContext fi le

 4. Open SQL Server Object Explorer. Note the name of your server, the section that is highlighted in
Figure 9-32.

FIGURE 9-32: SQL Server Object Explorer with server name

 5. Open your Web.Config fi le. It is in the root directory of your web project. Scroll down until you
fi nd a section that says connectionStrings (see Figure 9-33).

FIGURE 9-33: Web.Confi g fi le connection strings

 5. Find the node that has name="RentMyWroxContext". Change the current value of "initial
catalog=xxx" to "initial catalog=RentMyWrox".

290 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 290

 6. In that same node, change "data source=xxx" to "data source= the name of your server"
(found in the highlighted area from Figure 9-32). Save the fi le.

 7. Right-click on the Models directory and select Add ➪ New Item ➪ Code ➪ Class. Name the class
“Hobby” and when the fi le opens in Visual Studio add the using System.ComponentModel
.DataAnnotations; using statement at the top of the fi le.

 8. Add the following properties and save your work. When complete, your fi le should look like
Figure 9-34.

[Key]
public int Id { get; set; }

public string Name { get; set; }

public bool IsActive { get; set; }

public virtual ICollection<UserDemographics> UserDemographics { get; set; }

FIGURE 9-34: Hobby class

 9. Open the model that you created in Chapter 6, UserDemographics.cs. It’s located in the Models
directory. Locate the Id property and add an attribute so that it looks like the following:

[Key]
public int Id { get; set; }

 10. Change two other lines as well by replacing the “string” in the List<string> with Hobby. You
need to change the Property as well as the line in the constructor. When you are changing the
property, also add the keyword virtual. When completed, it should look like Figure 9-35. Save
the fi le.

 11. If the Models\RentMyWroxContext that you created in Step 1 is not open, open it again. You
should see a commented version of a similar line. Add the following lines to the fi le. These lines can
go in place of the commented line as illustrated in Figure 9-36, which shows just the RentMyWrox
class section of the fi le.

public virtual DbSet<UserDemographics> UserDemographics { get; set; }

public virtual DbSet<Hobby> Hobbies { get; set; }

Entity Framework Approach to Data Access ❘ 291

c09.indd 12/21/2015 Page 291

FIGURE 9-35: UserDemographics class

FIGURE 9-36: Updated data context class

 12. Expand your Controllers directory and open the UserDemographicsController fi le. Find the Edit
action. Note that there is a section where a new UserDemographic was created. Replace that code
with a simple new statement for now. That action should look like the following snippet when
fi nished:

public ActionResult Edit(int id)
{
 var model = new UserDemographics();
 return View("Manage", model);
}

 13. In that same class, fi nd the Index action and change it to the following:

public ActionResult Index()
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {

292 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 292

 var list = context.UserDemographics.OrderBy(x => x.Birthdate).ToList();
 return View(list);
 }
}

 14. Run the application and navigate to \UserDemographics. This initial run may take a little bit lon-
ger than normal.

 15. Open SQL Server Object Explorer, and expand the RentMyWrox database. Go into the Tables
folder. If you do not see anything, click the Refresh button. You should see four tables listed, as
shown in Figure 9-37.

FIGURE 9-37: Newly created database tables

How It Works

In this activity you created the context fi le that you will be using to access the database. Figure 9-31
shows a simple context fi le. The fi rst thing to examine is the class defi nition, shown in the following
snippet:

public class RentMyWroxContext : DbContext

When the class was generated it was created so that it inherits DbContext. As mentioned earlier,
DbContext handles all interaction with the database, so the choices that you had during the creation
process were all related to how Visual Studio would build out the DbContext, and had nothing to do
with whether or not there would be a DbContext. When in the dialog to add a new context fi le, each of
the four options you had during the creation process simply build the DbContext fi le differently, gener-
ally with more information than what occurs with the Empty Model approach that you chose.

As you created this fi le you came across a dialog with four options:

 ➤ EF Designer from Database

 ➤ Empty EF Designer Model

 ➤ Empty Code First Model

 ➤ Code First from Database

Entity Framework Approach to Data Access ❘ 293

c09.indd 12/21/2015 Page 293

There are two different sets of criteria: The fi rst is
whether or not the information is created from the data-
base and the second is whether or not a visual designer is
created. This chapter has already discussed building the
models from a database, but there has not yet been any
mention of using the visual designer.

The original approach to the Entity Framework was
tied to a database, so much so that there was even a
visual designer that looked like a database creation tool.
Figure 9-38 shows what the visual approach would look
like, using two different simple models.

Creating everything in the visual designer gives developers an experience very similar to the approach
they would have taken before the Entity Framework supported code fi rst. This means you do the con-
fi guration in one place (the visual tool), which is separate from the models. In the code fi rst approach,
any needed confi guration is part of the model defi nition itself. The approach that you took to creating
the tables in the database shows how different it is to use the code fi rst approach. There is no concept of
a designer, just a set of classes with which you build the relationships so that they make sense for your
code.

However, this leads to some interesting effects. Look back at the changes that you made to the
UserDemographics class, and especially the Hobbies property. You went from a List<string> to a
List<Hobby>. Why couldn’t this be left as the original type, a list of strings? The reason goes back to
the Entity Framework having no awareness of how to store this information, mainly because it doesn’t
have an Id that is defi ned as a Key, which would enable it to manage getting information in and out of
the database. Understanding that this is a key value is important because it acts as a unique identifi er;
there can never be two rows with the same value in this property.

As you go further into the Entity Framework, you will notice that there are some rules, a primary one
of which is that there needs to be a Key attribute, or some way that the Entity Framework can specify
an individual row. As you learn about getting information in and out of the database, you will see how
important this is and how it helps support many of the built-in EF methods. Examining the database
will demonstrate that the Id columns have been set as primary keys and are columns defi ned as Identity.
The primary key constraint guarantees that one, and only one, value is allowed into the table. Trying
to insert a new item using an already existing value will not work. The use of Identity means that the
server will create the value, and create these values in order. This ties back into the key value that was
discussed earlier; this is the database’s interpretation of that attribute.

Because EF needs a key, it becomes clear why there had to be a Hobby model, as it contains the Id and
the Name properties, with the name being the string that you used to have on the UserDemographics.
The IsActive fl ag enables you to turn hobbies on and off in the UI without deleting the data, and is
therefore straightforward, but why did you add a virtual List<UserDemographics> to the Hobby? Why
would that be necessary?

The main reason that property was added is that the list of available hobbies is maintained indepen-
dently. It is intended that the values in the Hobby table will be used to fi ll the checkboxes from which
users can select. However, if the expectation is that the Hobby is an independent object, that means
that this two-way relationship needs to be defi ned somewhere; otherwise, you will never be able to

FIGURE 9-38: Visual Designer approach

294 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 294

understand that John’s hobby is gardening, because while John’s demographic information is stored as
a UserDemographics, and Gardening is stored as a Hobby, there is nothing connecting the two.

The Entity Framework solved this problem by creating the intermediate database
table, UserDemographicsHobbies, which contains only two columns, Hobby_Id and
UserDemographics_Id. These are important columns, however, because they establish the rela-
tionship between the UserDemographics and the Hobby, enabling the following two things:

 ➤ A UserDemographic can have more than one Hobby.

 ➤ A Hobby can be available to more than one UserDemographic.

Note that there is no corresponding C# class; the table is used behind the scenes to manage this many-
to-many relationship. However, this table would not have been created without that property on the
Hobby model.

Once the models were completed, there were still a few steps that had to be taken. The fi rst was
ensuring that the class that acts as the mediator between your application and the database,
RentMyWroxContext, understands that there are UserDemographics and Hobbies that need to be
maintained. You did this by adding them as properties onto the context. This enables the Entity
Framework to understand that these classes are to be persisted, and defi nes the names that you will use
when you access the information. Without this step, these tables would not be created.

Now that you have linked the tables to the data context, the next step is to use the data context
somewhere. The fi rst implementation of this class is in the Index action—the action that returns the
complete list of items in the database. Take a closer look at this section of code; the important part is
listed here:

using (RentMyWroxContext context = new RentMyWroxContext())
{
 var list = context.UserDemographics.OrderBy(x => x.Birthdate).ToList();
 return View(list);
}

The fi rst part is the line containing the using statement. This using is different from the keywords
that you have used before at the top of a class fi le to link functionality from other namespaces to the
current fi le. In this case, it’s shorthand for “when you are done using the object that is being created,
destroy that object.” Destroying the object ensures that it is available for garbage collection and that
the memory using that item is cleared. This is important because an application server can quickly run
out of available memory if connections such as this (this is a connection to the database after all!) are
not cleaned up when you are done with them. You should get in the habit of ensuring that you use the
using statement to wrap your creation of the database context.

Once you have the context created, the next step the code takes is to access the data. When you
added the items into the context fi le earlier you made them properties. One of these properties,
UserDemographics, is the item that is being worked with. In this case you can consider it directly
related to the table because the rest of the line is sorting every entry in the database by the BirthDate
and then creating a List of the resulting items.

Entity Framework Approach to Data Access ❘ 295

c09.indd 12/21/2015 Page 295

You had to add that code at this point because you need to instantiate, or create it, and access the con-
text before it creates the tables in the database. You accessed the context when you changed the URL to
go to UserDemographics; the reason it took longer than normal is because it was doing all the compar-
ing and creation of the databases. This shows one of the advantages of the code fi rst approach: Every
time the context starts, it evaluates the models in the system and compares these models to the tables
in the database. If it is the fi rst time creating tables in this database, it simply creates them. If there are
more tables than classes, it will simply ignore them. If the tables in the database do not match the
models in your application, however, the system will throw an exception. This helps you ensure that
you keep the models and the database in sync. Later in this chapter you will learn about modifying
already existing tables due to changes in the model.

Creating the initial connection to the database, adding the context, and creating some initial models
enabled you to see how the code fi rst approach in the Entity Framework can hide a lot of the data-
base work for you. It makes you look carefully at the relationships within your models, however;
otherwise, you may not get the expected outcome. The many-to-many relationship was an excellent
example. You will be seeing more of this as you continue to build out your models throughout this
chapter.

Selecting Data from the Database
There was a new construct in the last activity, the OrderBy method that was used in the
controller. Earlier, in Chapter 4, you were introduced to some of the dot operators that are used
when working with collections, such as Add or AddRange. There are additional operators that sup-
port interacting with collections. Table 9-5 contains a list of some of the most commonly used
operators when interacting with information contained within a collection.

TABLE 9-5: SELECTING AND SORTING DATA

OPERATOR DESCRIPTION

Find Takes a value that is of the type of the [Key] property. If the Entity
Framework can fi nd an item containing that Key, then that item is
returned. An exception will be thrown if the item is not available in the
table. This method never returns more than one item.
List.Find(5);

First Returns the fi rst item that matches a set of criteria. If there is no item,
then the operator throws an exception. The easiest way to use this
method is through the use of a Lambda expression. This method never
returns more than one item.
List.First(x=>x.FirstName="Arnold");

continues

296 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 296

OPERATOR DESCRIPTION

FirstOrDefault Works like the First operator except the FirstOrDefault method
returns a null if the value is not found, rather than throwing an exception.
Therefore, it is recommended that you use FirstOrDefault in prefer-
ence over First, and handle a potential null result instead of an excep-
tion being thrown by the application.
List.FirstOrDefault(x=>x.FirstName="Arnold");

Where Allows fi lters to be added to the list. It is confi gured like the First and
FirstOrDefault methods with the use of Lambda expressions, but
instead of selecting the fi rst item that meets the criteria it instead returns
all items that match the criteria. If no items meet the criteria, the method
returns an instantiated list with no elements. By defi nition, you will always
get a list back, regardless of the number of items that meet the criteria.
List.Where(x=>x.FirstName="Arnold");

OrderBy Sorts the result set in ascending order. It can be used before or after
other methods and uses a Lambda expression as well. Because OrderBy
chains with other methods, you can see how you might have different
results based on the order in which items are chained together. Whereas
the other methods support the concept of and and or, there is an
implicit expectation that an OrderBy contains only one fi eld, the primary
fi eld to be sorted on.
List.OrderBy(x=>x.FirstName);

OrderByDescending Acts like the OrderBy method except the sorting is done in descend-
ing order rather than ascending order by the fi eld within the lambda
expression

ThenBy Enables you to chain multiple sorts together. It must be used immedi-
ately after an OrderBy and adds an additional ascending sort on the item
identifi ed in the Lambda expression.
List.OrderBy(x=>x.FirstName).ThenBy(x=>x.LastName);

ThenByDescending Similar to ThenBy, the ThenByDescending method adds an additional
sort on an OrderBy or OrderByAscending. Just as with ThenBy, you can
chain multiple statements together to add ordered sorting using other
fi elds.

Take Enables you to take a subset of items from a larger collection. The
parameter for the method is an integer that defi nes how many items the
method will take. The method never returns more than the parameter,
but it may return less if the number of records is less than the parameter
value.
List.Where(x=>x.FirstName="Arnold").Take(10);

TABLE 9-5 (continued)

Data Controls in Web Forms ❘ 297

c09.indd 12/21/2015 Page 297

There is a lot of potential overlap in outcome when you are using the dot operators, because
List.First(x=>x.Id == 3) will give you the exact same outcome as List.Find(3), or List
.Where(x=>x.Id == 3).First(). The order in which the methods are assigned can also be impor-
tant; List.OrderBy(x=>x.FirstName).Take(10) will most likely not return the same set as List
.Take(10).OrderBy(x=>x.FirstName)if there are more than 10 items in the list because the fi rst
approach will sort and then take 10 rows, whereas the second approach will take the fi rst 10 rows
(unsorted) and then sort the output.

A lot of new developers approach working with a database with a little trepidation. However, there
is no reason to do so; while there is indeed a database behind the scenes, it doesn’t affect what you
are doing when you work with the data because there is absolutely no difference between working
with the database and working with a collection that you manually created. The context hides all
of that from you; just work with the data lists and let the context take care of doing all the actual
interaction with the system.

DATA CONTROLS IN WEB FORMS

Now that you have created the database context and set up the fi rst models, the next step is to start
integrating the database and working through different approaches of creating, editing, displaying,
and deleting data, as there are many different ways to manage this. Some of these ways can involve
the use of a server control specifi cally designed to interact with live data, while others can involve
a manual approach to designing the form and handling all the interaction. In this section you will
learn about several of the Web Form server controls that manage database interaction.

Details View
The DetailsView is a server control that is meant to eliminate a lot of the manual work of creating
a data entry form. In Chapter 5 you built a data entry form for an item using labels and textboxes.
In this chapter you are going to look at using model binding in server controls designed specifi cally
to support interaction with the database.

Model binding allows you to map and bind HTTP request data to a model that you have defi ned. Model
binding makes it easy for you to work with form data because the request data (POST/GET) is automati-
cally transferred into a data model you specify. ASP.NET does this work behind the scenes for you.

Some properties are common between various data controls. The fi rst is defi ning what will be dis-
played, generally as either a column or a fi eld. This defi nition gives you some control over the prop-
erties that will be displayed, how these properties will be labeled, and the order in which they will
be displayed. Table 9-6 shows the major fi eld defi nitions.

298 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 298

TABLE 9-6: Data Control Field Defi nitions

NAME DESCRIPTION

BoundField Displays the value of a property from the bound object or data source.

ButtonField Displays a command button as defi ned. Generally used for Add or
Remove buttons.

CheckBoxField Displays a checkbox for the item from the bound object. This is gener-
ally used to display Boolean-typed properties.

CommandField Displays predefi ned command buttons, such as for selecting, editing, or
deleting actions.

HyperlinkField Displays the value of a property as a hyperlink. This approach also
allows you to bind a second fi eld to the URL.

ImageField Displays an image in the control.

TemplateField Displays user-defi ned content for each bound item. This enables you to
create custom columns and/or fi elds.

The second item common to various data controls is the binding of specifi c actions to different
event handlers in the code-behind. This is necessary because although the server control is relatively
smart about building different parts of the UI, it understands that it should leave some of the crucial
parts to the developer; in this case, interacting with the database, mainly because it doesn’t want to
assume that the object it is working with in the UI is actually the same object persisted in the data-
base. It may instead be a view model that holds different information from various models, rather
than all fi elds for a single model. Table 9-7 shows these different methods.

TABLE 9-7: Data-Binding Methods

METHOD DESCRIPTION

SelectMethod Allows the control to access a method where it can pass in a key value and get
back one instance of the object with which it is working

InsertMethod Allows the control to bind to a particular method that will handle creating a
new item in the database

DeleteMethod Allows the control to bind to a specifi c method that will handle deleting an
item from the database

UpdateMethod Allows the control to bind to a method that is used when the control is updat-
ing an item in the database

Between these two different sets of properties you can defi ne where properties from your model are
going to be displayed, as well as how to handle database interaction. In the following activity, all the
concepts are used together to manage a control that will be used to input data into your database.

Data Controls in Web Forms ❘ 299

c09.indd 12/21/2015 Page 299

TRY IT OUT Create a Data Entry Form That Will Save Information
to the Database

In this activity you continue to build the functionality of the sample application by creating a page that
supports the data entry of the Hobby model you created earlier in the chapter.

 1. Ensure that Visual Studio is running and that you have opened your RentMyWrox solution. Right-
click the Admin directory in the RentMyWrox project and select to Add a New Item. Add a new
Web Form with Master Page. Be sure to select the WebForms.Master master page and name the fi le
ManageHobby.

 2. Ensure that you are in the Source view of the ManageHobby markup page. Add the following con-
tent to the second content control. When you are done, the page should look like what is shown in
Figure 9-39.

<asp:DetailsView ID="DetailsView1" AutoGenerateRows="false" runat="server"
 DataKeyNames="Id" DefaultMode="Insert">
 <Fields>
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:CheckBoxField DataField="IsActive" HeaderText="Active ?" />
 <asp:CommandField ShowInsertButton="True" ShowCancelButton="false" />
 </Fields>
</asp:DetailsView>

FIGURE 9-39: New DetailsView control

 3. Click in the end of the opening tag, between "Insert" and the closing > tag. Add a space and
then start to type “Insert.” IntelliSense will display a dropdown of potential attributes. Highlight
InsertMethod and click Enter.

 4. Type in =. This will bring up a dropdown that says “<Create New Method>.” Select this option.
Repeat with "Select" to add a SelectMethod. You should have a screen similar to what is shown
in Figure 9-40.

FIGURE 9-40: DetailsView control with methods assigned

300 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 300

 5. Open the code-behind fi le for the ManageHobby Web Form. You should see two empty methods
that were created when you selected the Create New Method option. Fill them out as follows:

public void DetailsView1_InsertItem()
{
 Hobby hobby = new Hobby();
 TryUpdateModel(hobby);
 if (ModelState.IsValid)
 {
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 context.Hobbies.Add(hobby);
 context.SaveChanges();
 }
 }
}

public object DetailsView1_GetItem(int id)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 return context.Hobbies.Find(id);
 }
}

 6. Run the application. This will bring you to a screen similar to the one shown in Figure 9-41.

FIGURE 9-41: DetailsView rendered in the browser

 7. Enter some information and select Insert. The page will refresh, and the box will be returned
empty.

 8. Open SQL Server Object Explorer and drill down into the RentMyWrox database. Go into the
Tables folder, right-click on dbo.Hobbies, and select ViewData. You should see the values you just
entered in the database.

How It Works

In this activity you added a new page with a DetailsView server control. A few key attributes on this
control made it work as needed. First you set AutoGenerateRows to false. If you didn’t set that

Data Controls in Web Forms ❘ 301

c09.indd 12/21/2015 Page 301

attribute, the page would have thrown an exception because it was being loaded without any object
already bound to the control and it would have tried to bind the integer Id to a column, failing because
the fi eld does not exist. The second important attribute is DefaultMode, set to Insert. If you didn’t
take that action you would have had the same exception thrown, again because there was no item to
display.

The other attributes that you added, the methods that linked to event handlers in the code-behind, all
provided the actual business functionality needed to persist the data. The HTML created by the control
is made up of standard input elements, so when you clicked the Insert link it returned all the form fi eld
values to the code-behind in a postback.

The last part of the control defi nition in the markup page is the Fields list. This is where you bound
the various properties of the model into a UI element. Each of the items listed in the Fields set was dis-
played in the UI when the page was rendered. You did this by providing the DataField, which bound
that particular control to a property on the model. As you will see when you look at the code-behind,
this binding is important for both display and processing.

Take a moment to review the InsertItem method in the code-behind. The fi rst three lines of this
method are shown here:

Hobby hobby = new Hobby();
TryUpdateModel(hobby);
if (ModelState.IsValid)

The fi rst line is pretty standard—you constructed a new Hobby. The next line is interesting, however,
in that it actually performs some work. The TryUpdateModel method takes the new object that was
just created and tries to map the data that came across in the request to the appropriate properties,
matching them up by name. This is an important concept in that it enables the developer to focus on
the model rather than manually map the request fi elds to a model property.

When the process is completed, the ModelState.IsValid property is checked. This property evalu-
ates the model that was just fi lled (in the TryUpdateModel method) to confi rm it’s valid, such as all
required fi elds have been fi lled out. Because you have yet to defi ne any of these requirements, this model
should always pass, even if no information was provided in any of the forms. The functionality of the
TryUpdateModel method adds a lot of capability to Web Forms as it enables developers to avoid time
repeatedly writing trivial code.

Once you have a valid model, it’s a simple step to add it to the Hobbies table by using the Add method,
just as you would if adding the item to a list; that’s really what you are doing in this case. The only new
part is the SaveChanges method, but this is a very important item. The SaveChanges method actually
does the work of saving the information to the database.

The separation between adding the item to the collection and calling the SaveChanges method is
important. Consider a situation in which you may be working with multiple objects and you add each
one to a different database collections set. None of the items that you add to the list will actually be
persisted until after you call the SaveChanges method.

This can cause some interesting behavior with related types, especially when you are doing a fresh add
rather than a change. This is because when you are using the Key attribute (that relates directly to the

302 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 302

Identity column-type whereby the database creates the Key value for you), you do not actually have the
value until after the framework has ran the SaveChanges method. Figure 9-42 shows the debug values
of an item running through the code. You can tell the location of the running process by the arrow
indicator on the left side of the code line. Note that the code fl ow was stopped after the Add method
was called but before the calling of the SaveChanges method, and how the Id value is shown as 0.

FIGURE 9-42: Debug values before running the SaveChanges method

Figure 9-43 shows the debug value after the SaveChanges method is called. Note how the Id value has
been changed.

FIGURE 9-43: Debug values after running the SaveChanges method

Data Controls in Web Forms ❘ 303

c09.indd 12/21/2015 Page 303

This change is due to the item actually interacting with the database. However, you should also be able
to understand how interacting with some of the database-created values could be problematic. If you
had set a variable equal to the Id value before running the SaveChanges method, then you would not
have the correct value.

The SaveChanges method needs to be run before any changes are persisted to the database—either
adds, as you just performed, or updates, whereby information is changed but not added. As mentioned
earlier, you do not have to have a one-to-one relationship between acting on items in the database and
calling the SaveChanges method, as the SaveChanges method operates on any items run on the context
since the last time it ran. This enables you to chain multiple changes into one call to the database.

The DetailsView provided a demonstration of how some of the ASP.NET server controls can work
on one item in a list at a time. There are other controls that help ASP.NET Web Form developers
when working with sets of data. One of these controls is the GridView, covered next.

Web Form GridView
A GridView is used to display the values of a series of data in a table format. Each column repre-
sents a fi eld, while each row represents a record, much like working with a spreadsheet application.
Some of the built-in functionality of a GridView includes the following:

 ➤ Sorting

 ➤ Updating and deleting

 ➤ Paging

 ➤ Row selection

The GridView supports the various column options that are available with the DetailsView, as was
shown in Table 9-5, and you create the defi nition much like you did with the DetailsView. In the
following activity, you add a GridView to the sample application to help manage the items that you
will be making available for rent.

TRY IT OUT Add A GridView Control

In this activity you are adding a GridView server control to your site in order to manage database
access to the items available for rent.

 1. Ensure that Visual Studio is running and that you have opened your RentMyWrox solution. Right-
click on the Models directory and add a new class named Item.

 2. Add the properties as defi ned here:

[Key]
public int Id { get; set; }

public string Name { get; set; }

304 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 304

public string Description { get; set; }

public string ItemNumber { get; set; }

public string Picture { get; set; }

public double Cost { get; set; }

public DateTime? CheckedOut { get; set; }

public DateTime? DueBack { get; set; }

public DateTime DateAcquired { get; set; }

public bool IsAvailable { get; set; }

 3. Open the RentMyWroxContext.cs fi le from the Models directory.

 4. Add the new DbSet for Item to ensure that the tables are created in the database. The line of code
to add this DbSet is as follows:

public virtual DbSet<Item> Items { get; set; }

 5. Run the application in Debug mode and navigate to \UserDemographics. You should get an error,
as shown in Figure 9-44.

FIGURE 9-44: Error displayed when trying to update the database

 6. Go to Tools ➪ NuGet Package Manager ➪ Package Manager Console. This will open a new pane
within Visual Studio (see Figure 9-45).

Data Controls in Web Forms ❘ 305

c09.indd 12/21/2015 Page 305

FIGURE 9-45: Package Manager Console

 7. Click to the right of PM>, type in the following command, and press Enter:

 enable-migrations -ContextTypeName RentMyWrox.Models.RentMyWroxContext

 8. When the processing is complete, type in the following command and press Enter:

Add-Migration "Adding Items"

 9. When the processing is complete, type in the following command and press Enter:

Update-Database

 10. Expand the Admin folder, open the ItemList.aspx page created previously, and go into
Design mode. Also, open the Server Explorer window by selecting View ➪ Server Explorer.

 11. In the Data Connections section, expand your database, and then open the Tables folder. You
should see a new table, Items. Your arrangement should look something like Figure 9-46 after
some screen rearrangement.

FIGURE 9-46: Server Manager and Design mode

306 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 306

 12. Click the new table in the Server Explorer window and drag it into the ContentPlaceHolder1 box
in the page’s Design mode. It should look like Figure 9-47 when complete.

FIGURE 9-47: Screen after dropping table into page design

 13. Check all the boxes in the GridView Tasks window. In the Server Explorer window, right-click on
the Items table and select Show Table Data. This will open a window in which you can enter data.

 14. Seed the database by entering some information. You do not have to enter data in the CheckedOut
or DueBack columns.

 15. Run the application. Ensure that you are on Admin\ItemList. You should see the information that
you added in Step 10, and it should look similar to Figure 9-48.

FIGURE 9-48: Displaying the GridView

 16. Back in your ItemList.aspx markup page, add the following attribute to the GridView element:

OnSelectedIndexChanged="GridView1_SelectedIndexChanged"

 17. In the same page, add the following attributes to the CommandField element:

ItemStyle-HorizontalAlign="Center" DeleteText="Delete
"
SelectText="Full_Edit
" EditText="Quick_Edit
"

Data Controls in Web Forms ❘ 307

c09.indd 12/21/2015 Page 307

 18. In the rest of the columns, take some time to update the HeaderText attribute by adding spaces as
necessary.

 19. In the code-behind (ItemList.aspx.cs), add a new method:

protected void GridView1_SelectedIndexChanged(object sender, EventArgs e)
{
 GridViewRow row = GridView1.SelectedRow;
 string id = row.Cells[1].Text;
 Response.Redirect(@"ManageItem\" + id);
}

How It Works

Several new concepts were introduced as part of this activity, mainly code fi rst database migration,
the Server Explorer window, and the GridView server control and SQLDataSource. Creating the Item
model class and adding it to the database context were straightforward affairs, no different than the
steps that you took earlier in this chapter. However, once that was completed you had to do some extra
work to manage the movement from the code fi rst class fi le to the database.

This is where the database migration process comes into the foreground. Once the initial database is
created, by default every change to the structure of the models requires creating a migration. This is
necessary because the Entity Framework and Visual Studio have no real understanding of where you
are in the development lifecycle. Understanding whether you are creating a completely new application
or whether you are updating a long-running production application is unknown.

Because the framework doesn’t know what effect each database change has on the underlying system, it
falls to the developer to make that determination. By default, the system is set to always expect migra-
tion scripts, but you have the capability to confi gure the system to automatically update the database
upon changes. However, you won’t take that approach in this process because it is bad practice to
lose that control. By default, the system drops and recreates the tables; and even in this environment it
would be better if that didn’t happen.

When working with code fi rst and the Entity Framework, a migration is the process of updating the
database based on changes in the applicable model fi le. A change could be as simple as altering a fi eld in
a table, or it could affect multiple tables; each set of changes can be thought of as a migration, with the
end of the process being when the migration itself is run.

As you saw in the walk-through, once you made the change to the system by adding the new class, you
were unable to successfully run the application. That’s because the Entity Framework did an evaluation
of the models, comparing them to the defi ned and managed database. When it determined that there
was a difference it threw an exception. After you got the error, the next step you had to take was to
turn on the migration process. While you may not have noticed the change, enabling migrations added
items to your project.

Among the items that were added to the project is a new directory named Migrations. If you look
in this directory you will see that it currently contains three different fi les. One of these fi les is

308 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 308

Configuration.cs, while the other two start with the current date.
One of them includes “InitialCreate” in the name, while the other
includes “Adding_Items,” a representation of the information that you
used in Step 6. That directory should be similar to the one
shown in Figure 9-49.

Each of these fi les acts as a script that updates the system. The fi rst
one, InitialCreate, was created when you enabled migration. That fi le is a snapshot of the initial
database—the version of the database that was created the fi rst time the database context was run.
The second script was created when you ran the add-migration command. That command instructs the
Entity Framework to create a new script that contains the differences between the current version of
the database and the current version of the models. If you look into that fi le you will see the following
method:

public override void Up()
{
 CreateTable(
 "dbo.Items",
 c => new
 {
 Id = c.Int(nullable: false, identity: true),
 Name = c.String(),
 Description = c.String(),
 ItemNumber = c.String(),
 Picture = c.String(),
 Cost = c.Double(nullable: false),
 CheckedOut = c.DateTime(nullable: true),
 DueBack = c.DateTime(nullable: true),
 DateAcquired = c.DateTime(nullable: false),
 IsAvailable = c.Boolean(nullable: false),
 })
 .PrimaryKey(t => t.Id);
}

As you can probably decipher, the action taking place during this migration is the creation of a single
table. If there were more changes, then there would have been more tables being managed.

After creating the migration script, the next step is to run the update command. If there have been addi-
tional changes in the model after the add-migration command was run but before the update command,
you can always bring the current migration script up to date by running the same command again.

Each migration name should be unique; otherwise, the framework will try to update an already exist-
ing script. This may seem confusing because the name under which the script is actually saved includes
the full date-time on which it ran, but the framework parses these values to determine whether there is
a script that needs to be updated.

All these migration scripts anticipate that you are running against a single database server. When you
deploy your code against a new database, perhaps in a different environment, the framework evaluates
the state of the database assuming that one already exists. If the database in the new environment is
empty, then the framework simply creates the complete set of tables as necessary by running through
all the applicable scripts.

FIGURE 9-49: Migrations directory
after enabling and running code
fi rst migrations

Data Controls in Web Forms ❘ 309

c09.indd 12/21/2015 Page 309

Conversely, if the new database already contains a version of the model, the framework evaluates this
new database to determine where it needs to start running the applicable database scripts. It does this
by looking into the __MigrationHistory table in the database. This table contains a history of all the
Entity Framework upgrades that have been run against the server. The framework is able to determine
which migration scripts are missing and run them in the correct order; this order is understood because
each of the script names also contains a timestamp indicating when they were created.

After running the update database command, you were able to see the new table in the Server Manager
window. This is another Visual Studio window that enables you to interact with SQL Server, including
the capability to see, create, edit, and delete data. You used the Server Manager window because it sup-
ports the drag-and-drop approach that you took when dropping the GridView onto the markup page;
the SQL Server Object Explorer window that you used earlier does not support this action.

Once you dropped the GridView onto the page another control was created as well, the
SQLDataSource. The SQLDataSource enabled you to defi ne the relationship between the GridView con-
trol and the database. This was done through three sets of parameters, Insert, Update, and Delete.
Each of these defi ned the various sets of information that were managed through each call, with
Insert and Update containing a complete list of all the object properties, while the Delete contains
just the Id.

These various items were all added because that is the default set of functionality with a GridView. It
enables you to view items in the list, as well as update and delete information. If you had clicked on the
Update link, you would have seen that all the read-only text fi elds on that row suddenly converted to
textboxes that allowed you to enter the information. The Delete link would delete that item from the
database upon clicking. All of this functionality is included when using the GridView.

Looking in the attributes of the data source defi nition reveals several of interest, including
InsertCommand, UpdateCommand, and DeleteCommand. As you can imagine, each of these is related
to a set of parameters. The following code sample shows this relationship for one of the attribute sets:

UpdateCommand="UPDATE [Items] SET [Name] = @Name, [Description] = @Description,
 [ItemNumber] = @ItemNumber, [Picture] = @Picture, [Cost] = @Cost,
 [CheckedOut] = @CheckedOut, [DueBack] = @DueBack, [DateAcquired] = @DateAcquired,
 [IsAvailable] = @IsAvailable WHERE [Id] = @Id"

<UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="Description" Type="String" />
 <asp:Parameter Name="ItemNumber" Type="String" />
 <asp:Parameter Name="Picture" Type="String" />
 <asp:Parameter Name="Cost" Type="Double" />
 <asp:Parameter Name="CheckedOut" Type="DateTime" />
 <asp:Parameter Name="DueBack" Type="DateTime" />
 <asp:Parameter Name="DateAcquired" Type="DateTime" />
 <asp:Parameter Name="IsAvailable" Type="Boolean" />
 <asp:Parameter Name="Id" Type="Int32" />
</UpdateParameters>

The command text is pure SQL, with the items prefaced by the @ symbol being the values that will be
replaced by the content in edit fi elds. If you look carefully through the command text, you will see that

310 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 310

each item with the @ symbol has a corresponding entry as an asp:Parameter. This means, however,
that a GridView goes completely around the intermediary offered by the Entity Framework and instead
communicates directly with the database using the queries displayed in the various Command attri-
butes. This becomes especially clear if you open and look at your web.config fi le. You will fi nd a new
connection string added to the fi le by the act of dragging and dropping the table onto the page.

You might expect that there would be a more Entity Framework–like approach to doing this work; but
with the changes in the most recent versions of both ASP.NET and the Entity Framework, you will
fi nd that the other approaches do not work together as well as one would hope. Therefore, you need
to decide whether or not the risk of accessing the same table in two different ways (direct vs. Entity
Framework) is greater than the benefi ts of using the simple data source. In this case, you will accept the
additional risk of dual access, as the table defi nition is fi rm at this point, so the pain of having to main-
tain changes in multiple places is minimal.

The last item added was a method that would respond to the clicking of the Select link (that you
renamed to Full Edit). This code is shown again here:

protected void GridView1_SelectedIndexChanged(object sender, EventArgs e)
{
 GridViewRow row = GridView1.SelectedRow;
 string id = row.Cells[1].Text;
 Response.Redirect(@"ManageItem\" + id);
}

This method responds to the SelectedIndexChanged event from the GridView that is thrown when
the user clicks the Select link. In this method you are fi nding the row where the link was clicked,
GridView1.SelectedRow, and then fi nding the content in the second cell (remember, zero-based index),
which happens to be the Id of the Item. You are then using a Response.Redirect command to forward
the user to the previously created ManageItem page with the Id as part of the URL.

As you have just seen, getting a GridView into your application and confi gured to enable you to
present, edit, and delete information is relatively painless as long as you are willing to make some
compromises regarding data access and the control’s output. In our case, this is an administrative
page, so you will worry less about presentation and concentrate on functionality.

The same concerns are not present when working with ASP.NET MVC, however, as there are no
server controls to help you build the application. In the following section, you’ll take a look at how
these approaches differ.

DATA DISPLAY IN MVC

The approaches to managing data display in ASP.NET MVC are different from the approaches used
in Web Forms. Rather than providing you with a server control with which you can do a lot of dif-
ferent work, you instead can use scaffolding to get you part of the way to a fi nished page. Then you

Data Display in MVC ❘ 311

c09.indd 12/21/2015 Page 311

can rearrange the content to exactly how you want it to display in the fi nished form—the approach
that you will take now.

List Display in MVC
Listing items in MVC takes a different approach by relying on a combination of HTML and your
programming language of choice (C# or VB) to give you the ability to manage your content. This
enables you to craft the look that you want for each row, without any potential limitations caused
by the use of a control to do the management, and simply use code to repeat the writing of the row.
In this next activity you create the list of items that your visitors will be able to rent.

TRY IT OUT Create a List of Items in ASP.NET MVC

In this activity you create the new home page for your RentMyWrox application. This page contains a
short list of items that visitors can check out. If they want the full list, they will be able to go to a page
of items.

Handling this requires a new controller and several new views: the controller to manage the interaction
with the item, the default view for the site, and the view to display the full product list to the user.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Open the
App_Start\RouteConfig.cs fi le and add the following line above any MapRoute statements:

routes.MapMvcAttributeRoutes();

 2. Right-click on the Controller directory and add a new Empty MVC 5 controller, naming it
“ItemController.”

 3. Add the following using statement:

using RentMyWrox.Models;

 4. Change the content of the Index method as shown here and save the fi le:

[Route("")]
public ActionResult Index()
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 List<Item> itemList = context.Items.Where(x => x.IsAvailable).Take(5).ToList();
 return View(itemList);
 }
}

 5. When you added the new controller fi le, Visual Studio added a new directory named Item. Right-
click on that directory and add a new view. Ensure that the name of the fi le is Index, that it uses an
“Empty” template, and that no Model class is selected (see Figure 9-50).

312 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 312

FIGURE 9-50: Adding the view fi le

 6. Add the following content to this new view fi le:

@model IEnumerable<RentMyWrox.Models.Item>

@{
 ViewBag.Title = "Index";
}

@foreach(var item in Model)
{
<div>
 <div class="listtitle">
 @item.Name
 @item.Cost.ToString("C")
 </div>
 <p>
 @item.Description.Substring(0, 250)
 @if (item.Description.Length > 250)
 { ... }
 @Html.ActionLink("Full details", "Details", new { @item.Id },
 new { @class = "inlinelink" })
 Add to Cart
 </p>
</div>
}

 7. Open the Content\RentMyWrox.css fi le and add the following at the bottom:

.productname
{
 color: #C40D42;
 font-size: x-large;
}
.inlinelink
{
 margin-left:25px;
 color: #C40D42;
}
.listprice

mailto:@item.Description.Substring
mailto:@Html.ActionLink
mailto:@item.Id

Data Display in MVC ❘ 313

c09.indd 12/21/2015 Page 313

{
 float:right;
 color: #C40D42;
 font-size: x-large;
 text-align:right;
}
.listtitle
{
 background-color: #F8B6C9;
 padding:5px;
 width:750px;
}

 8. Enter some additional information in your Item database table so that you have at least two items
available for viewing.

 9. Run the application and go to the home page of the site. Your page should look much like the one
shown in Figure 9-51.

FIGURE 9-51: List of items on front page

How It Works

In this activity you were introduced to quite a few new concepts. The fi rst was a new way to create
routes that was introduced as part of MVC version 5. All of your routing up to this point was created
using the MapRoute template approach. However, in MVC 5 a new way to create routes was intro-
duced, attribute routing. The fi rst thing you did in this activity was enable the capability to use attri-
bute routing by adding a line to the RouteConfig.cs fi le, routes.MapMvcAttributeRoutes(). This
method ensures that upon startup the framework will go through all the available actions and evaluate
whether they have Route attributes. If the action has attributes, the framework then creates the appli-
cable mapped route. You will typically want to set your attribute routes before you do your template-
based mapped routes.

When you created the controller action you took advantage of attribute routing by assigning the Index
method the route of "", which means the default home page. You can assign any string value at this
point and it will defi ne the actual route necessary to reach that action. You can also use optional

314 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 314

variables and constraints, just as you can with the templates. You’ll learn more about this usage in the
next activity when you create the detail views.

The action method that you created will pass fi ve items to the applicable view as the model. You can see
this on the view that you created because it defi ned the model as IEnumerable<RentMyWrox.Models
.Item>. In the view you simply added a loop that goes through each item in the result set and displays
several fi elds to the user—mainly the title, price, and description. The description was capped at dis-
playing 250 characters, adding ellipses (…) to the description if the value is truncated so that users are
informed that additional information is available. Two links are added to each item as well—one is a
link to see the full details page, and the other enables adding the item to the shopping cart. You will
build the full details page in the next activity. The “add to cart” functionality is covered in Chapter 13,
which covers AJAX.

The ActionLink that you used to build the link to the details, Html.ActionLink ("Full details",
"Details", new { @item.Id }, new { @class = "inlinelink" }), uses the method signature
that accepts the following:

 ➤ The text to display

 ➤ The action method to call—in this case, it assumes the same controller as the view that contains
the call

 ➤ Additional URL objects—in this case, adding the Id of the item to the URL

 ➤ Additional element items—in this case, adding a class attribute, with value, to the element

The following code is the entire element as written out in the HTML page:

Full details

In the preceding activity, you created a list that displayed a custom view of your information,
and it was certainly more development effort than using the Web Forms GridView server control.
However, you also had full control over the information and how it is displayed because of the capa-
bility to run code in your view. Therefore, while it may indeed be more work, it is also much more
customizable.

Details Views
Now that you know how to create lists in MVC, this section briefl y covers how to manage details
views, as you have already created an MVC form in Chapter 6. At this point, however, you will be
linking the form that you created to the database.

If you recall from Chapter 6, you created an edit view for the UserDemographics model by using
the default scaffolding, selecting the template and model to use. Those various template scaffold
approaches are all available when working in ASP.NET MVC; however experienced developers
tend to avoid these templates because they would usually delete most of the content and recre-
ate it manually anyway. In the following activity, you build out the single product page that fully
describes the product.

mailto:@item.Id

Data Display in MVC ❘ 315

c09.indd 12/21/2015 Page 315

TRY IT OUT Create a Details Page

In this activity you create a product page to display the full set of information about a particular
product.

 1. Ensure that Visual Studio is running and that you have opened your RentMyWrox solution. Open
your ItemController and add the following action:

public ActionResult Details(int id)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 Item item = context.Items.FirstOrDefault(x => x.Id == id);
 return View(item);
 }
}

 2. Right-click on your Views\Item directory and add a new view. Name it “Details” and ensure that it
is an empty view.

 3. Delete the content of this new view and add the following to the page:

@model RentMyWrox.Models.Item

@if (Model == null)
{
 <p>That is not a valid item.</p>
}
else
{
 ViewBag.Title = Model.Name;

 <div>
 <div class="detailtitle">
 @Model.Name
 @Model.Cost.ToString("C")
 </div>
 <div>
 @if(!string.IsNullOrWhiteSpace(Model.Picture))
 {

 }
 <p>
 @Model.Description
 </p>
 </div>

 @if (Model.IsAvailable)
 {
 Add to Cart
 }
 else
 {

mailto:@if(!string.IsNullOrWhiteSpace
mailto:src="@Model.Picture
mailto:@Model.Description

316 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 316

 This article was checked out on @Model.CheckedOut.Value.ToString("d")
 and is due back on @Model.DueBack.Value.ToString("d").

 }
 </div>
}

 4. Add the following to RentMyWrox.css:

.detailtitle
{
 background-color: #F8B6C9;
 padding:5px;
 width: 950px;
}
.textwrap
{
 float: right;
 margin: 10px;
}
.checkedout
{
 font-weight:bold;
 color: #C40D42;
}

 5. Run the application. Ensure that you are on the home page. Click one of the Full Details links. You
should get a page similar to the one shown in Figure 9-52.

FIGURE 9-52: Details page for an item

How It Works

In this activity you added a new, simple action to the ItemController that will retrieve the speci-
fi ed item from the database and provide it to the view. Because you used the FirstOrDefault method
when you retrieved the item, no exception is thrown, which would have been the case if you used the

mailto:@Model.CheckedOut.Value.ToString
mailto:@Model.DueBack.Value.ToString

Data Display in MVC ❘ 317

c09.indd 12/21/2015 Page 317

Find or First methods, because both of those methods expect that the item you are requesting exists.
However, this does mean that there is a chance your view will be provided a null model.

This possibility is why the fi rst thing that happens in the view (after defi ning the type of the model) is
a check to determine whether the item is null. If the value passed in does not exist within the database,
then a simple page notifi es the user about this issue, as shown in Figure 9-53.

FIGURE 9-53: Details page when an item does not exist

Once you know that you are working with a valid model, you then set the tab display to the name of
the item and create the rest of the display.

There are only a few more pieces of logic in this view code. The fi rst is determining whether an image
was assigned to the item by checking the Picture property to confi rm that it is not null or whitespace.
The second check determines whether the item is available. If it is, the Add to Cart link is displayed;
if the item is not available, a line of text is displayed indicating when the item will be available. Figure
9-54 shows what the page would look like if there were no image for the item and it were not available.

FIGURE 9-54: Details page when an item is not available

While creating a details page in ASP.NET MVC may take more work, it makes up for that by using
Razor syntax that allows the mixture of code and markup. This enables you to put view logic into
the system to easily make decisions and show content as desired.

318 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 318

SUMMARY

A lot of new information was introduced in this chapter, including new software applications, new
Visual Studio windows, new Web Forms server controls, and new .NET concepts. As part of this,
you started to wire different parts of your application together, and you now have the ability to per-
sist information in a database.

The use of databases in a web application is important, and for this web application it is critical.
You installed Microsoft SQL Server Express, a free and functional version of Microsoft’s fl agship
database system SQL Server, to act as your local database during the development process.

You accessed the database in three different ways: SQL Server Management Studio, an external pro-
gram, and two new Visual Studio windows, SQL Server Object Explorer and Server Explorer. Each
of these tools enables you to view information in the database and ensure that the information you
expect to be present is being persisted and displayed successfully.

Although there are various tools the developer can use to access the information in the database,
this project is taking an Entity Framework code fi rst approach, which enables you to write the vari-
ous class fi les needed by the application. This communication is managed through the DbContext
fi le by adding virtual DbSets of each model class that you want persisted. Those DbSets then
become available on the context fi le to be accessed as if they were typical lists, using all the same
operators and Lambda expressions.

When running the context for the fi rst time it will create all the tables to support the models that
have been added to the context. Each change to a model after that period, however, requires that
you run a database migration. These migrations, run in the NuGet Package Manager Console,
require the developer to name the migration and then run the update. This enables each set of incre-
mental changes to be applied to a database based on its current state, which is tracked in a database
table that was created when the fi rst set of tables were created.

DetailsView and GridView are data-specifi c server controls that are available in ASP.NET Web
Forms. The DetailsView enables you to determine what information to display, and it supports the
capability to show this information in both a read-only and an editable version without having to do
a lot of coding support; it pretty much supports it straight out of the box.

The GridView does much the same thing, except it displays a list of items and allows you to edit or
delete them one at a time. The GridView communicates directly with the database, bypassing the
Entity Framework, but it gives you almost complete control over the information contained within
that database table.

ASP.NET MVC supports the interaction between pages and database differently from the way
that Web Forms do. The controller manages all interaction with the database by interacting with
the DbContext. It can select multiple items or a single item as needed, and then gives this informa-
tion to the view as the model. The view can then use a combination of code and markup to build
out the fi nal HTML that’s be returned to the user. When working with the MVC approach, rather
than worry about ensuring that controls are confi gured correctly, you can instead focus on ensuring
that the display is what you wanted. The capability to interact with the model’s properties enables
a lot of decision-making to happen in the view in order to support this customization of the view’s
output.

Summary ❘ 319

c09.indd 12/21/2015 Page 319

You’ll see a lot more interaction with the database going forward in the other chapters; this was just
an introduction to the possibilities for managing this interaction. There are slightly different ways to
manage this, as demonstrated in the rest of the chapters, but all of it is based on what was covered
in this chapter.

EXERCISES

 1. From what you know about code fi rst migration (in the Entity Framework), what kind of infor-
mation do you think is contained within the __MigrationHistory table?

 2. What does attribute routing enable you to do that the template approach does not?

 3. Why do the code examples that are interacting with the database have the following line?
What benefi t does it offer?

using (RentMyWroxContext context = new RentMyWroxContext())

320 ❘ CHAPTER 9 DISPLAYING AND UPDATING DATA

c09.indd 12/21/2015 Page 320

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

add-migration The add-migration command runs in the NuGet Package Console and
has the Entity Framework create a new migration package—basically a
new script added to the Migrations folder that manages changes to the
database based on model changes in the code. When you run the add-
migration command you have to pass in the name of migration package.
This should be as unique as possible to ensure that there is no confusion
with historical migrations.

Code First Code fi rst is an Entity Framework approach whereby the developer writes
code rather than interacts with the database. The Entity Framework then
builds out the database tables based on the relationships built within the
code classes.

Connection String The connection string is stored in the web.config fi le and contains all of
the necessary information describing how to log in to the database so
that the application can successfully interact with the data.

Data First Data fi rst is an Entity Framework approach whereby the developer creates
the database structure fi rst and then relies on the Entity Framework to cre-
ate the models that will be used in the application.

DbContext The DbContext is the brains behind the communication between the
application and the database. An application creates a context class that
inherits from the DbContext class and then adds all the items that need to
be retained in that inheriting class. Once the items have been added to the
context with the appropriate type, DbSet, the context enables the devel-
oper to interact with these properties as if they were the database tables,
allowing collection operations that go directly to the database.

DetailsView An ASP.NET Web Forms server control that is designed to view and main-
tain a single item

Entity Framework A .NET set of functionality that abstracts communication with a database.
It acts as an object-to-relational database mapping system and handles a
lot of the mapping of a database fi eld to an object property behind the
scenes. It also supports many other aspects of database interaction, includ-
ing database migration and validation.

GridView The GridView is an ASP.NET Web Forms server control that manages the
display of a list of information in a grid, much like the presentation of a
spreadsheet. It provides more than that, however, by providing built-in
support for updating and deleting information directly from the database
in conjunction with the SQLDataSource.

Summary ❘ 321

c09.indd 12/21/2015 Page 321

RDBMS RDBMS stands for relational database management system and refers to
a persistence approach whereby like entities are grouped together into
a single table. Any connections these entities have with other entities are
defi ned through relationships.

Server Explorer A Visual Studio window that enables the developer to access different
items, including Windows Server and SQL Servers. It supports a lot of drag-
and-drop functionality when working with Web Form markup pages.

SQL SQL, which stands for Structured Query Language, is used to commu-
nicate directly with a database. The Entity Framework abstracts out the
developer’s need to interact with SQL, but using the GridView and the
SQLDataSource exposes some simple SQL to the developer because it is
used to defi ne the relationship between the control and the database.

SQLDataSource An ASP.NET Web Forms server control that acts as the intermediary
between a data control and the database. It enables you to defi ne the
fi elds that are affected by using parameters that are mapped to placehold-
ers in the SQL statements.

SQL Server Express A free version of Microsoft SQL Server for use in development and learning
environments. It is the RDBMS that handles all the persistence from both
the Entity Framework and SQLDataSources.

SQL Server
Management
Studio

A user interface to SQL Server. It enables you to visually create, modify,
and delete database objects, including databases, as well as any specifi c
data stored within the database itself.

SQL Server Object
Explorer

A Visual Studio window that is designed to help you interact directly with a
SQL Server instance.

update-database This command, when run in the NuGet Package Manager Console window,
compares the version of the database to the version of the code. If there
are any differences, it then runs the necessary migration scripts from the
Migrations directory.

c10.indd 12/21/2015 Page 323

Working with Data—Advanced
Topics

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Integrating pagination and sorting into an application

 ➤ Different approaches to inserting and updating data

 ➤ Non-Entity-Framework approaches to database access

 ➤ Caching in a web application

 ➤ Practical advice about using databases in web applications

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter
10 download and individually named according to the names throughout the chapter.

You learned a lot of information about databases in the last chapter, including how to set them
up and interact with them. This chapter takes a deeper dive into the process of interacting
with the database, including connecting the pages that you created in earlier chapters.

Two of the more important usability items when looking at a list of information are sorting and
pagination. Sorting enables users to see items in their preferred order rather than in a database-
defi ned order, while pagination is the capability to break long lists of information into sets of
defi ned size, or items on a page as pagination is the breaking of a data list into small pages of
data. Using pagination enables the user to work with smaller sets of information at one time,
providing both a reprieve from the intimidation of an extremely long list as well as faster per-
formance resulting from transferring and rendering smaller sets of information.

The last chapter served as an introduction to working with Entity Framework code fi rst and
hiding the actual database behind the code. In this chapter, you will have the opportunity to

10

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

324 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 324

peek through the curtain a bit more and work a little closer to the database so that you can take
better advantage of some of the powerful features provided by the database server.

Just as knowing how to interact with the database is a useful skill, so is knowing when not to
interact with the database. Caching provides an opportunity to make decisions about what
information should be delivered to a user straight from the database or from a cache where the
data was already retrieved once and then stored in memory for a certain period. This means that
cache hits are more performant because there is no need to make a call to the web server and/or a
database unless a certain amount of time has passed.

SORTING AND PAGINATION

Whenever you are working with a list that contains more than a dozen or so items, you should always
consider a few things. The fi rst is sorting, putting the items in the list in a particular order. This is
important to all lists containing more than a few items because it provides immediate context to the
information being displayed, enabling users to readily understand it. Consider the list of items that
you created in the last chapter. Because it wasn’t sorted, users have no way to quickly identify what
they want. This means they will be forced to examine every item to see if it is what they are looking
for. Alphabetizing the list, however, enables users to skip through it to fi nd what they want; if, for
example, the user is looking for a rake, it is a simple matter of jumping to items that start with an
“R.” Clearly, fi nding an item is much more diffi cult without any obvious sorting.

Not only should you have a pre-defi ned sorting on each list, you should consider whether it makes
sense to offer users the capability to control how they want items sorted. One of the most common
areas where users have control is over the capability to sort in descending order, or reverse-
alphabetical order. Using the same example, if users are searching for a rake, it would be useful to
provide a clickable button that enables the user to have to scroll through only the eight or so letters
that precede R (if going in reverse order) before they get to the one item they care about, saving them
time and making their user experience more positive.

The same rules can apply to pagination. An 80-item list can be intimidating to work with, but four
20-item lists are much less daunting. It also enables each database call to return less information, so
less information needs to be passed over the network, and less information has to be interpreted by
the browser on the client side. If users have the capability to sort based on their needs, then adding
paging can help them fi nd their information even faster.

Handling pagination and sorting is different between Web Form server controls and MVC
approaches. Many Web Form controls allow sorting and pagination to be performed directly in
the control.

Sorting and Pagination in Web Form Server Controls
This section fi rst examines sorting in a GridView. When you dragged the control into the markup
there was really nothing that you had to do after that before it was simply working. Setting up

Sorting and Pagination ❘ 325

c10.indd 12/21/2015 Page 325

pagination is almost as easy, as there are attributes in the control that handle the management of
this functionality for you. Table 10-1 lists and describes these attributes.

TABLE 10-1: GridView Pagination and Sorting Attributes

ATTRIBUTE DESCRIPTION

AllowCustomPaging Normally, every row in the data source is read every time
the GridView control moves to a different page. This can
consume a lot of resources when the total number of items
in the data source is very large. Custom paging enables you
to read just the items you need for a single page from the
data source. Using AllowCustomPaging means you need
to handle the PageIndexChanging event. Handling the
PageIndexChanging event will give you the information on
the current page and the expected page count where you
can limit the amount of data brought in from the database
rather than going through every item.

AllowPaging This is a Boolean value that tells the control to turn paging
on. When paging is enabled, all of the other paging proper-
ties become available.

AllowSorting This is a Boolean value that lets the control know that
sorting is available. When sorting is enabled, all columns
become sortable unless otherwise turned off in the column.
When used in combination with pagination, this approach
ensures that sorting is maintained across postbacks so that
when you are performing sorting you are sorting each page
correctly.

EnableSortingAndPagingCallbacks When this property is set to true, a service is called on the
client to perform sorting and paging operations, which
eliminates the need to post back to the server.

PagerSettings-FirstPageText When the Mode property is set to the
NextPreviousFirstLast or NumericFirstLast value,
use the FirstPageText property to specify the text to
display for the fi rst-page button.

PagerSettings-LastPageText When the Mode property is set to the
NextPreviousFirstLast or NumericFirstLast value,
use the LastPageText property to specify the text to
display for the last-page button.

continues

326 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 326

ATTRIBUTE DESCRIPTION

PagerSettings-Mode Four different modes are built into the GridView pagina-
tion, each of which sets up a different display for the pagi-
nation structure:
NextPrevious: Previous-page and next-page buttons
NextPreviousFirstLast: Previous-page, next-page, fi rst-
page, and last-page buttons
Numeric: Numbered link buttons to access pages directly
NumericFirstLast: Numbered and fi rst-link and last-link
buttons

PagerSettings-PageButtonCount Manages the number of page buttons to display in the
pager when the Mode property is set to the Numeric or
NumericFirstLast value. The default value is 10.

PagerSettings-Position Determines where the pagination should be located.
There are three options: Top, Bottom, and TopAndBottom.
TopAndBottom duplicates the pagination both above and
below the visible list.

PagerSettings-Visible Specifi es whether or not the pagination links are visible and
available for use

PageSize Specifi es the number of items that will be displayed on
each page

Looking through the items in Table 10-1 shows a discrepancy between the amount of confi guration
needed for sorting versus pagination. That is because the standard behavior for sorting within a
GridView is very straightforward. With sorting enabled, the column header becomes a clickable link
that will sort based on that column. The fi rst click sorts in ascending order, while clicking it again
sorts the data results by that column in descending order.

One important consideration is that sorting occurs not only across the items displayed on the screen,
but across the entire result set, returning you to the fi rst page of the list with each sort. In addition,
if you simply turn sorting on in the GridView, then every visible column becomes sortable. That
might be overkill for your application, so you also have the capability when you bind the column/
fi eld to disable sorting for that particular column. There is no property such as “EnableSorting” on
the bound fi eld, but there is an attribute SortExpression.

Typically, SortExpression is set like

<asp:BoundField DataField="Name" HeaderText="Name" SortExpression="Name" />

where the SortExpression defi nes the fi eld name in the data source on which the GridView will
be sorted. By completely removing that attribute, you remove that column from the list of sortable
columns.

TABLE 10-1 (continued)

Sorting and Pagination ❘ 327

c10.indd 12/21/2015 Page 327

In the following activity, you add pagination and sorting to the administrative list of items that you
created in the last chapter.

TRY IT OUT Styling

In this activity you will be enhancing the usability and readability of the list of rentable items that are
presented within the administrative section of the demo application. This list will hold all the items that
you have available for rent, so in a real-world scenario that would hopefully be a list with thousands of
different objects.

 1. Ensure that Visual Studio is running and that you have opened your RentMyWrox solution.
Open the Admin\ItemList.aspx page.

 2. Change the GridView control confi guration to the following (new or changed items are
highlighted):

<asp:GridView ID="GridView1" OnSelectedIndexChanged="GridView1_SelectedIndexChanged"
 runat="server" AutoGenerateColumns="False" DataKeyNames="Id"
 DataSourceID="SqlDataSource1"
 AllowPaging="True" AllowSorting="True" PageSize="5"
 PagerSettings-Mode="NumericFirstLast" PagerSettings-Visible="true"
 PagerSettings-Position="TopAndBottom" PagerSettings-PageButtonCount="3"
 EmptyDataText="There are no data records to display.">
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="True" ItemStyle-HorizontalAlign="Center"
 DeleteText="Delete
" SelectText="Full_Edit
"
 EditText="Quick_Edit
" />
 <asp:BoundField DataField="Id" HeaderText="Id" ReadOnly="True"
 SortExpression="Id" />
 <asp:BoundField DataField="Name" HeaderText="Name" SortExpression="Name" />
 <asp:BoundField DataField="Description" HeaderText="Description" />
 <asp:BoundField DataField="ItemNumber" HeaderText="Item Number"
 SortExpression="ItemNumber" />
 <asp:BoundField DataField="Picture" HeaderText="Picture" />
 <asp:BoundField DataField="Cost" HeaderText="Cost" SortExpression="Cost" />
 <asp:BoundField DataField="CheckedOut" HeaderText="Checked Out"
 SortExpression="CheckedOut" />
 <asp:BoundField DataField="DueBack" HeaderText="Due Back"
 SortExpression="DueBack" />
 <asp:BoundField DataField="DateAcquired" HeaderText="Date Acquired"
 SortExpression="DateAcquired" />
 <asp:CheckBoxField DataField="IsAvailable" HeaderText="Is Available"
 SortExpression="IsAvailable" />
 </Columns>
</asp:GridView>

 3. Run the application. You should see a screen similar to what is shown in Figure 10-1.

328 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 328

FIGURE 10-1: GridView with pagination and sorting

 4. Click several column headers such as “Name” and “Description” and notice the sorting change.
Do the same by clicking to other pages.

How It Works

ASP.NET Web Form server controls were designed to help developers write more effi cient code, and
adding pagination and sorting to a control demonstrates how this relatively complex behavior can be
simply implemented. The only work you had to do was add some sorting and pagination-specifi c con-
fi guration attributes and then remove some SortExpression attributes anywhere you didn’t need the
capability to sort, such as the Picture URL column.

The change that you just made added fi ve new attributes to the GridView:

PagerSettings-Visible="true"
PagerSettings-Position="TopAndBottom"
PageSize="5"
PagerSettings-Mode="NumericFirstLast"
PagerSettings-PageButtonCount="3"

The fi rst attribute, PagerSettings-Visible, made all the pagination management links visible so that
you could move between pages. Removing this attribute, or setting it to false, would remove all the
pagination links, as shown in Figure 10-2.

Sorting and Pagination ❘ 329

c10.indd 12/21/2015 Page 329

FIGURE 10-2: GridView with pagination turned off

The next attribute of interest is PagerSettings-Position. This attribute enables you to specify
whether pagination is visible at the top of the grid, below the grid, or both. When you are looking at
a page that has any scrolling, it typically makes sense to have the links both above and below so that
users don’t have to scroll up or down as far. Next is the PageSize attribute, which specifi es the number
of items to be displayed in each page, in this case fi ve. This means, for example, that if there were six
items in the list, there would be two pages, the fi rst with fi ve items and the second with one item.

As described in Table 10-1, the PagerSettings-Mode attribute determines how the menu will be
displayed. In the case of this selected attribute, NumericFirstLast, the GridView displays a First and
Last link (usually as << or >>), as well as a list of page numbers from which users can select to go to a
specifi c page. The number of page numbers displayed is defi ned by the next attribute, PagerSettings-
PageButtonCount, which specifi es how many numbers are displayed. Table 10-2 shows how the links
would be built in a 30-item list using the preceding settings.

TABLE 10-2: Displaying Links by Page

PAGE # DISPLAY EXPLANATION

1 1 2 3 … >> The … takes you to Page 4, while the >> takes you to Page 6

2 1 2 3 … >> The … takes you to Page 4, while the >> takes you to Page 6

3 1 2 3 … >> The … takes you to Page 4, while the >> takes you to Page 6

4 << … 4 5 6 The … takes you to Page 3, while the << takes you to Page 1

5 << … 4 5 6 The … takes you to Page 3, while the << takes you to Page 1

6 << … 4 5 6 The … takes you to Page 3, while the << takes you to Page 1

Once pagination confi guration was complete, you then did some customization of sorting. When the
control was created, the SortExpression for each column was set to the same column to which the

330 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 330

fi eld was bound. You removed this attribute from several of the columns, thus rendering those columns
unsortable. The SortExpression can also be used when creating and working with custom sorting
methods, but in this simple scenario they instead refer to the column used during the default sorting
scenario. While all of these columns refer to themselves in the SortExpression, if the SortExpression
exists, they could also refer to a different column if desired. This would mean that the user clicks on
one column header but the results are instead sorted by another column value.

Now that you have introduced sorting and pagination into an ASP.NET Web Forms GridView con-
trol, you need to add sorting and pagination to a list in an MVC view.

Sorting and Pagination in MVC Lists
Whereas ASP.NET Web Form server controls handle a lot of sorting and pagination for you, in ASP
.NET you generally have to manage all that work yourself. Typically you have to provide informa-
tion to the view upon rendering so it knows how to build the pagination links and then provides
that same information back to the controller upon submission so that the controller then knows how
to build the next page.

The items that you generally need on the client side include the following:

 ➤ Current page number

 ➤ Count of items per page

 ➤ Total number of items in a list

 ➤ Sorting method, if any

Items that you generally need on the server are as follows:

 ➤ Desired page number

 ➤ Count of items per page

 ➤ Sorting method, if any

With each of those items you will be able to display information to users about where they are in
reference to the complete list. This communication is one of the things handled by an ASP.NET
server control. Also handled by the control is processing of the information that you have to handle
manually. The next Try It Out demonstrates the processing that you need to add on both the client
side and the server side to manage pagination and sorting.

TRY IT OUT Add Pagination and Sorting to MVC

In this activity, you update the home page of your demo application to support both pagination
and sorting. It requires changes to the controller and the view, as well as the addition of several more
simple styles.

Sorting and Pagination ❘ 331

c10.indd 12/21/2015 Page 331

 1. Ensure that Visual Studio is running and that you have opened your RentMyWrox solution. Open
the Controller\ItemController.cs fi le.

 2. Add the following to the method signature of the Index method. When completed it should look
like what is shown in Figure10-3.

int pageNumber = 1, int pageQty = 5, string sortExp = "name_asc"

FIGURE 10-3: New Index method signature

 3. Update the contents of this method to the following code. It should look like Figure 10-4 when
completed.

using (RentMyWroxContext context = new RentMyWroxContext())
{
 // set most of the items needed on the client-side
 ViewBag.PageSize = pageQty;
 ViewBag.PageNumber = pageNumber;
 ViewBag.SortExpression = sortExp;

 var items = from i in context.Items
 where i.IsAvailable
 select i;

 // setting this here to get the count of the filtered list
 ViewBag.ItemCount = items.Count();

 switch(sortExp)
 {
 case "name_asc":
 items = items.OrderBy(i => i.Name);
 break;
 case "name_desc":
 items = items.OrderByDescending(i => i.Name);
 break;
 case "cost_asc":
 items = items.OrderBy(i => i.Cost);
 break;
 case "cost_desc":
 items = items.OrderByDescending(i => i.Cost);
 break;
 }

 items = items.Skip((pageNumber - 1) * pageQty).Take(pageQty);
 return View(items.ToList());
}

332 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 332

FIGURE 10-4: New Index method

 4. Open the Views\Item\Index.cshtml fi le. Update the initial bracketed code section to the
following. It should look like Figure 10-5 when completed.

@{
 const string selectedText = "selected";
 ViewBag.Title = "Index";
 int itemCount = ViewBag.ItemCount;
 int pageSize = ViewBag.PageSize;
 int pageNumber = ViewBag.PageNumber;
 int fullPageCount = (itemCount + pageSize - 1) / pageSize;
 string sortExp = ViewBag.SortExpression;
}

FIGURE 10-5: New view code

Sorting and Pagination ❘ 333

c10.indd 12/21/2015 Page 333

 5. In this same fi le, add the following code below the bracketed section and above the loop. It should
look like Figure 10-6.

<form>
 <div>
 <div class="paginationline">

 Sort by:
 <select name="sortExp"
 onchange='if(this.value !="@sortExp"){ this.form.submit(); }'>
 <option value="name_asc"
 @if (sortExp == "name_asc") { @selectedText }>
 Name
 </option>
 <option value="name_desc"
 @if (sortExp == "name_desc") { @selectedText }>
 Name (Z to A)
 </option>
 <option value="cost_asc"
 @if (sortExp == "cost_asc") { @selectedText }>
 Price
 </option>
 <option value="cost_desc"
 @if (sortExp == "cost_desc") { @selectedText }>
 Price (high to low)
 </option>
 </select>

 @if (pageNumber > 1) // means there are additional pages backwards
 {
 <a href="?pageNumber=@(pageNumber - 1)&pageQty=@pageSize
 &sortExp=@sortExp">
 Previous Page

 }

 You are currently on Page @pageNumber of @fullPageCount

 @if (fullPageCount > pageNumber) //means that there are pages forward
 {
 <a href="?pageNumber=@(pageNumber + 1)&pageQty=@pageSize
 &sortExp=@sortExp">
 Next Page

 }

 </div>
 </div>
</form>

334 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 334

FIGURE 10-6: New view pagination code

 6. Open Content\RentMyWrox.css and add the following selectors at the end of the fi le:

.paginationline
{
 font-size:medium;
}

.leftside
{
 text-align:left;
}

.rightside
{
 margin-left: 100px;
 text-align:right;
}

 7. Before going any further, ensure that you have at least 6 items loaded into your application.

 8. Run the application. You should get a screen similar to the one shown in Figure 10-7. Change the
dropdown to see the sort working. Click through the pages if you have enough information in your
system to have multiple pages.

How It Works

Converting an MVC list to support pagination and sorting is more complicated than doing the same
with an ASP.NET Web Forms server control, but you were able to take advantage of some built-in fea-
tures to make the conversion process easier. The fi rst of these is the capability to have the system parse
items that are submitted in the form’s request values into the parameters of the action method.

Sorting and Pagination ❘ 335

c10.indd 12/21/2015 Page 335

FIGURE 10-7: Running the paginated list

In the fi rst step you added three new parameters to the method. Because of this mapping capability,
both http://localhost:port/?sortExp=name_asc and a request in which a form key/value pair
was "sortExp=name_asc" would each have its value mapped to the action method parameter named
"sortExp". As long as the variable names are the same, the system understands and maps the appropri-
ate values. When there is a confl ict (such as the same variable in both the query string and the request
form values), the item in the query string will win.

This concept is important because of how the view was changed to send pagination and sorting infor-
mation back to the controller. Before going into more detail in the controller, consider how the UI was
changed to take advantage of this capacity. There are two different approaches to informing the server
that a change in page or sort order was requested: a dropdown list of possible sorting options, and
hyperlinks to the page being requested. First, look closer at the dropdown list, whose code has been
copied here:

<select name="sortExp" onchange='if(this.value !="@sortExp"){ this.form.submit(); }'>
 <option value="name_asc" @if (sortExp == "name_asc") { @selectedText }>
 Name
 </option>

http://localhost:port/?sortExp=name_asc

336 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 336

 <option value="name_desc" @if (sortExp == "name_desc") { @selectedText }>
 Name (Z to A)
 </option>
 <option value="cost_asc" @if (sortExp == "cost_asc") { @selectedText }>
 Price
 </option>
 <option value="cost_desc" @if (sortExp == "cost_desc") { @selectedText }>
 Price (high to low)
 </option>
</select>

Note a few things when considering the <select> defi nition itself. First, the name attribute is sortExp.
This is important because there is a method parameter named sortExp as well, so the value selected in
this dropdown will be the value that is mapped to that particular parameter in the action. It is impor-
tant that these two names are the same so that the value can be properly mapped.

The next item to consider is the onchange event. Although you haven’t yet covered JavaScript, the
line of code within the onchange single quotes causes the browser to check the value of the selected
item and if it is not the same as the value returned from the controller to the view, the system knows
that the user has requested a change in sorting and the browser will immediately submit the form.
However, when the form is submitted the only value returned to the controller is the sortExp value in
the Request’s form value collection. Because the new action parameters all were assigned a default value
when defi ned in the method signature, if the value is not passed into the method then the default value
is substituted.

The dropdown list is coded to automatically submit the form whenever the selected value is changed
to a new value, so the next thing to analyze is the information that will be sent back to the controller.
Within the defi nition of each option element is the value attribute, which defi nes the value that is sent
back to the server. In the case of the fi rst item, this value is "name_asc", which means that the sort
should be by the Name property in ascending alphabetical order.

The @if (sortExp == "name_asc") { @selectedText } part of the element defi nition deter-
mines whether the current option’s value is the same as what was returned from the controller in the
ViewBag.SortExpression fi eld. If so, then a constant value named selectedText that was defi ned
earlier in the page is written out. Each of the options has this same logic, its value compared to the
value sent back from the controller, and a successful comparison results in “selected” written out dur-
ing processing. The user’s browser would then cause that item to be selected in the dropdown list. This
means that as the sorting expression is changed by the user, the dropdown list continues to display the
correct sorting type—the one that represents the result set that the user is viewing. The select element
is rendered into the following HTML code:

<select name="sortExp"
 onchange='if(this.value !="name_asc") { this.form.submit(); }'>
 <option value="name_asc" selected>Name</option>
 <option value="name_desc" >Name (Z to A)</option>
 <option value="cost_asc" >Price</option>
 <option value="cost_desc" >Price (high to low)</option>
</select>

Sorting and Pagination ❘ 337

c10.indd 12/21/2015 Page 337

Notice how the default sorting value is the one that has “selected” as part of the option element
defi nition.

You may have noticed that there is nothing within the form that you entered in Step 4 that sets the
other values that were added to the parameter list of the Index action. That is OK, because the
expected behavior is for the user to always be brought back to the fi rst page of the result set whenever
the sorting changes, so the default values set during parameter creation are the correct values. You go
back to the fi rst page because once you change the sort, you no longer have any context about the data
that was on the page where you changed the sorting. They could easily be scattered across every page in
the list; it just becomes more consistent and clear to send the user back to the fi rst page based on their
new sort order.

The other new functionality in the view is related to pagination. There are three UI items in the
approach taken in this screen: going to the previous page, going to the next page, and displaying where
the user is in the entire list. The code section that does this work is displayed here:

 @if (pageNumber > 1) // means that there are additional pages backwards
 {

 Previous Page

 }

 You are currently on Page @pageNumber of @fullPageCount

 @if (fullPageCount > pageNumber) // means there are additional pages forward
 {

 Next Page

 }

The fi rst thing to notice is that the links to go to the previous or next page are only displayed when
a page fi ts that criteria: The Previous Page link is displayed only when the user is on the second or
greater page. Similarly, the Next Page link is displayed only when the user is not yet on the last page of
the list. The full page count was calculated using the following formula:

int fullPageCount = (itemCount + pageSize - 1) / pageSize;

This formula ensures that the proper number of pages is calculated because it always accounts for the
remainder, whether it is 0 or pageSize - 1. It is important to recognize the calculation that is going on
with the pageNumber in the link, as the previous link does not pass the current page that the user is on,
but rather passes the current page number − 1; or the actual page that would be displayed. The same
type of calculation is used for the next page link by asking for the current page number + 1.

The last part of this code refl ects where the user is in the list by displaying a string that indicates both
the current page and the total number of pages.

The controller and action were updated to handle all this additional information being returned by
adding the appropriate parameters that will be set as needed. Getting the information from the user is

338 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 338

handled by the parameters; but if you recall from the material about the UI, it is expecting some infor-
mation from the controller as well. The section of code is shown here:

ViewBag.PageSize = pageQty;
ViewBag.PageNumber = pageNumber;
ViewBag.SortExpression = sortExp;

In this snippet you are adding some values to the ViewBag. You might recall that the ViewBag can act as
a data transfer mechanism between the controller and the view to hold and pass information that may
not make sense as part of the model but is still needed to give the user a full experience.

Now that much of the applicable information has been sent to the user, the action gets ready to take
advantage of this same information to determine which items need to be returned to the user in the
model. However, before it does this you see it making the communication with the database and
retrieving the set of items after applying a fi lter. The approach that was taken here though was different
from any other list work that you have used so far in this book. The code is shown here:

var items = from i in context.Items
 where i.IsAvailable
 select i;

Logically this code snippet is the same as using the dot notation fi lter that you are already famil-
iar with: context.Items.Where(x => x.IsAvailable). The preceding approach is in Language
Integrated Query (LINQ), a language designed to work with sets of objects just as SQL works with
tables in a database. LINQ is a very powerful feature that you will use more of as we progress through
the rest of the book. The main advantage that it has over dot notation is that it is easier to read, espe-
cially with complicated queries that may span multiple different sources. This example uses only one
collection, but LINQ easily supports joining multiple sets of objects in an intuitive fashion. The dot
notation approach also offers this capability but it is handled in a much less readable fashion.

Three LINQ sets of keywords are being used: from \ in, where, and select. The from keyword
defi nes the instance and the collection that provides the source data for the query. In this case it speci-
fi es that the query is against the Items collection in the DbContext and that each instance is accessible
by using “i.” You can think of the value after the from keyword as being equivalent to the value before
the => indicator in a Lambda statement.

The where keyword acts as a fi lter, just as when using dot notation. If you want to have multiple crite-
ria, then you can use the standard and as well as or notations (& as well as |). The select keyword is
slightly different from the dot notation approach in that it is always required when using LINQ. You
can return either the complete object, as shown in the example, or parts of the object. When returning
parts of an object, LINQ has the capability to create anonymous types, or read-only undefi ned types.

If you changed those lines of code to

var items2 = (from i in context.Items
 where i.IsAvailable
 select new
 {
 Id = i.Id,
 Name = i.Name
 }).ToList();

Updating and/or Inserting Data ❘ 339

c10.indd 12/21/2015 Page 339

you would no longer get a collection of Item objects, but instead a list of anonymously typed objects
that have two properties, Id and Name. Unfortunately, it is more complicated to pass anonymous types
to a view so you won’t generally see this approach as a way to communicate with the UI; instead, you
may see it in code where the results are not sent to the UI. Anonymous types are not used anywhere
in our sample application but they provide a very fl exible piece of functionality when working with
collections.

Looking back at the controller code, after the initial fi ltered dataset is pulled from the database the
last piece of miscellaneous information for the UI is captured: the count of items in the fi ltered list. It is
important to ensure that you use the fi ltered list because these are the actual items that would be pro-
vided to the user—using the count of the database table would provide an inaccurate number.

The only work left to do in the action is to perform the sorting and get the page worth of content.
There is always sorting that will happen—either the default name sorting or sorting as specifi ed by the
user. The appropriate sorting is selected through a switch statement that evaluates the selected search
expression and performs the search.

The last step is getting the page worth of data. The code performing this work is shown here:

items = items.Skip((pageNumber - 1) * pageQty).Take(pageQty);

Two key steps are taken in this line. The fi rst is the Skip method, which ignores items that are on pages
prior to the requested page that will be displayed. The -1 needs to be included to ensure that when
users are on the fi rst page the system won’t skip any items. This means that when users are on the
second page, the Skip method requires the application to go past “2 – 1”—or one page of items.

After the application has gone past, or skipped, the previous pages’ worth of information, the Take
method runs in order to add a specifi c number of records to the list: the number of items on a page.
After this subset is narrowed down it is passed to view and used there as the model that fi lls the UI.

Although more coding is required when adding pagination and sorting to ASP.NET MVC lists than
with ASP.NET Web Forms list server controls, it is not typically a complex requirement. You tend to
have much more control over the output and how paging and sorting all interact.

UPDATING AND/OR INSERTING DATA

Now that you have a much stronger understanding of how to work with lists through your practice
with pagination and sorting, it is time to spend some more time on updating and inserting data
when using the Entity Framework. Chapter 9 touched briefl y on persisting data in the database. In
this section you learn more about that and updating other parts of the application that have not yet
been updated.

Saving new data when using the Entity Framework is as simple as adding the new item to the
DbContext collection and running the DbContext.SaveChanges method; and as long as all the
necessary properties are set in the object being saved, the attempt to save will be successful.

However, editing an item does not necessarily work the same way. You will not be able to add it
to the collection, as it is already in the database; instead, you need to edit the existing item. In the

340 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 340

old days that would have required you to manually map all the fi elds from the request, both query
string and form body, to the applicable property in the model. It is no longer the dark days of pro-
gramming, and ASP.NET has a wonderful method that was touched on in the last chapter named
TryUpdateModel.

TryUpdateModel and its close sibling UpdateModel both map incoming values to properties with
the same names. The general approach to using these is to instantiate an object of the type that you
need (such as an Item or UserDemographics) and then pass that object into the method. The system
will then go through all the properties on the object and try to fi nd matching values in the data that
was attached to the request. If there is a match, then the system tries to set the property. The differ-
ence between UpdateModel and TryUpdateModel is that the UpdateModel method throws an excep-
tion if it encounters a binding error, such as trying to set “red” to a decimal-typed price, whereas the
TryUpdateModel method simply skips that binding, leaving that property value at its initial value.

In ASP.NET Web Forms there is a bit of a problem in using the TryUpdateModel approach across
the board. That’s because TryUpdateModel is designed to be used within data-bound server con-
trols. If you are working on the supporting methods for a server control, then you will be able to
perform the work without a problem. If not, such as in the instance where you created a data entry
form by hand, then you have to do the mapping yourself, old-school style.

This means that when you are working in ASP.NET MVC, you have two different approaches to
managing the values that are returned from the browser:

 ➤ The TryUpdateModel approach

 ➤ The straight model-binding approach that you used in Chapter 6 whereby you include a
parameter of a specifi c type in the action method’s signature and the system attempts to pop-
ulate that parameter; basically running a TryUpdateModel on a just constructed object. You
do not have this same capability to use model binding when using ASP.NET Web Forms.

Other than the capability to perform model binding in MVC, there are no differences between
working with the model in either MVC or Web Forms. In this next Try It Out, you update some
previously created items, both Web Forms and MVC, to persist the items that were created from
the form.

TRY IT OUT Connecting Pages to the Database

In this activity you fi nish up some of the forms that were left unfi nished. These forms, the saving
of the UserDemographics and the Item classes, were created in earlier chapters, but they were never
connected to the database to save the newly created object.

 1. Ensure that Visual Studio is running and that you have opened your RentMyWrox solution. Open
the UserDemographicsController fi le.

 2. Delete the method that is defi ned as public ActionResult Details(int id).

 3. Change your non-attributed Create method as shown here:

public ActionResult Create()
{
 using (RentMyWroxContext context = new RentMyWroxContext())

Updating and/or Inserting Data ❘ 341

c10.indd 12/21/2015 Page 341

 {
 ViewBag.Hobbies = context.Hobbies.Where(x => x.IsActive)
 .OrderBy(x => x.Name).ToList();
 }
 return View("Manage", new UserDemographics());
}

 4. Change your attributed Create method to the following:

[HttpPost]
public ActionResult Create(UserDemographics obj)
{
 try
 {
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var ids = Request.Form.GetValues("HobbyIds");
 obj.Hobbies = context.Hobbies
 .Where(x => ids.Contains(x.Id.ToString())).ToList();
 context.UserDemographics.Add(obj);
 context.SaveChanges();
 return RedirectToAction("Index");
 }
 }
 catch
 {
 return View();
 }
}

 5. Change your non-attributed Edit method as follows:

public ActionResult Edit(int id)
{
 UserDemographics result = null;
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 ViewBag.Hobbies = context.Hobbies.Where(x => x.IsActive)
 .OrderBy(x => x.Name).ToList();
 result = context.UserDemographics.FirstOrDefault(x => x.Id == id);
 }
 return View("Manage", result);
}

 6. Change your attributed Edit method to the following:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{
 try
 {
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var item = context.UserDemographics.FirstOrDefault(x => x.Id == id);
 TryUpdateModel(item);

342 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 342

 context.SaveChanges();
 return RedirectToAction("Index");
 }
 }
 catch
 {
 return View();
 }
}

 7. Open the Manage view for UserDemographics. In the initial code section, change the defi nition of
hobbyList to the following. It should look like Figure 10-8 when you are done.

List<RentMyWrox.Models.Hobby> hobbyList = ViewBag.Hobbies;

FIGURE 10-8: Initial change to the Manage view

 8. While still in the Manage view, replace the current section that is managing the Hobbies with the
following code. When completed it should look like Figure 10-9.

<div class="form-group">
 @Html.LabelFor(model => model.Hobbies,
 htmlAttributes: new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @foreach (var hobby in hobbyList)
 {
 string checkedText = Model.Hobbies.Any(x=>x.Id == hobby.Id)
 ? "checked" : string.Empty;

 <input name="HobbyIds" value="@hobby.Id" type="checkbox" @checkedText />
 @hobby.Name

 }
 </div>
</div>

 8. Run the application and go to UserDemographics. You should see the list with any items that you
entered into the database. Click the Create link.

 9. Add a new UserDemographic and save. You should be sent back to the list screen, where you can
see the data that you just entered.

 10. Open your Admin\ManageItem.aspx.cs fi le. Add a new using statement, using System.IO;, to
the list at the top of the page.

mailto:@Html.LabelFor
mailto:value="@hobby.Id
mailto:@hobby.Name

Updating and/or Inserting Data ❘ 343

c10.indd 12/21/2015 Page 343

FIGURE 10-9: Redoing the Manage view

 11. Add a new property inside the partial class: private int itemId;. It should look like
Figure 10-10 when completed.

FIGURE 10-10: New property in the code-behind

 12. Update the Page_Load method as follows:

protected void Page_Load(object sender, EventArgs e)
{
 IList<string> segments = Request.GetFriendlyUrlSegments();
 itemId = 0;
 if (segments != null && segments.Count > 0)
 {
 int.TryParse(segments[0], out itemId);
 }

 if (!IsPostBack && itemId != 0)
 {
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var item = context.Items.FirstOrDefault(x => x.Id == itemId);
 tbAcquiredDate.Text = item.DateAcquired.ToShortDateString();
 tbCost.Text = item.Cost.ToString();
 tbDescription.Text = item.Description;
 tbItemNumber.Text = item.ItemNumber;
 tbName.Text = item.Name;
 }
 }
}

344 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 344

 13. Update the SaveItem_Clicked method as shown here:

protected void SaveItem_Clicked(object sender, EventArgs e)
{
 Item item;
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 if (itemId == 0)
 {
 item = new Item();
 UpdateItem(item);
 context.Items.Add(item);
 }
 else
 {
 item = context.Items.FirstOrDefault(x => x.Id == itemId);
 UpdateItem(item);
 }
 context.SaveChanges();
 }
 Response.Redirect("~/admin/ItemList");
}

 14. Add the following new method to the fi le:

private void UpdateItem(Item item)
{
 double cost;
 double.TryParse(tbCost.Text, out cost);
 item.Cost = cost;

 DateTime acqDate = DateTime.Now;
 DateTime.TryParse(tbAcquiredDate.Text, out acqDate);
 item.DateAcquired = acqDate;

 item.Description = tbDescription.Text;
 item.Name = tbName.Text;
 item.ItemNumber = tbItemNumber.Text;
 item.IsAvailable = true;

 if (fuPicture.PostedFile != null && fuPicture.HasFile)
 {
 Guid newPrefix = Guid.NewGuid();
 string localDir = Path.Combine("ItemImages",
 newPrefix + "_" + fuPicture.FileName);
 string fullPath = Path.Combine(
 HttpContext.Current.Request.PhysicalApplicationPath,
 localDir);
 fuPicture.SaveAs(fullPath);
 item.Picture = "/" + localDir.Replace("\\", "/");
 }
}

 15. Open your Admin\ItemList.aspx fi le and add the following lines just above the GridView. It
should look like Figure 10-11 when completed.

Updating and/or Inserting Data ❘ 345

c10.indd 12/21/2015 Page 345

<asp:HyperLink runat="server" Text="Add New Item" NavigateUrl="~/Admin/ManageItem" />

FIGURE 10-11: Add New Item link in the Item List page

 16. Add a new directory to your project and name it ItemImages.

 17. Run your application.

 18. Go to \Admin\ManageItem and add a new item.

 19. Got to the item list, select and edit an existing item.

How It Works

When working with the fi rst set of screens in MVC you had to modify several different parts. The fi rst
part was how the application works with the list of hobbies that a UserDemographic may contain.
When the screen was originally built, this list of hobbies was a list of strings. However, that had to be
changed in the last chapter, so you needed to update both the UI and the actions to ensure that the cor-
rect information was being passed to the views.

The fi rst change was adding the hobbyList to the ViewBag. This enabled the hobbies to be available in
the view. You took advantage of that in the view by setting a local fi eld to this list and then later iterat-
ing through the list and assigning the hobby.Name property as the label for a checkbox. This was not as
straightforward of a process as the rest of the binding, as shown in the following code snippet:

<div class="col-md-10">
 @foreach (var hobby in hobbyList)
 {
 string checkedText = Model.Hobbies.Any(x=>x.Id == hobby.Id)
 ? "checked" : string.Empty;

 <input name="HobbyIds" value="@hobby.Id" type="checkbox" @checkedText />
 @hobby.Name

 }
</div>

The preceding code iterates through the list of hobbies and adds a new checkbox to the UI for each
one. Note how the name of the checkbox is “HobbyIds”; and that because this is in a loop, each
checkbox that will be created ends up with the same name. The value assigned is the Id of the hobby.
Figure 10-12 shows the HTML that was created from the preceding code.

mailto:value="@hobby.Id
mailto:@hobby.Name

346 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 346

FIGURE 10-12: HTML created to support the hobby selection

Because all the different checkboxes have the same name, the resulting form value sent by the browser
to the server will be a comma-delimited list of Ids that were selected, with the key/value defi ned as
HobbyIds="3,6,7,8" so that when it is accessed in the action after posting it will be a single list.

The next code snippet shows how saving a new item is handled in the action method. The object is
passed to the action as a bound model, so there is no need for a TryUpdateModel method to be called.

[HttpPost]
public ActionResult Create(UserDemographics obj)
{
 try
 {
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var ids = Request.Form.GetValues("HobbyIds");
 obj.Hobbies = context.Hobbies
 .Where(x => ids.Contains(x.Id.ToString())).ToList();
 context.UserDemographics.Add(obj);
 context.SaveChanges();
 return RedirectToAction("Index");
 }
 }
 catch
 {
 return View();
 }
}

In the preceding method, also note how the application is accessing the Request.Form.Values and
getting the HobbyIds values. In particular, notice that the GetValues method returns an array, so when
there are multiple values (such as when a user selected multiple hobbies) it will be returned as an array
of strings that does not need to be further broken down.

Once the values have been retrieved from the form, the Hobby list on the object is fi lled by pulling out
the hobbies with the matching Ids. You can put a breakpoint after that line to see the results of the call.
When that updating is completed, the last thing that happens is adding the item to the context and
saving the changes.

When working with the Web Forms, you had to take a different approach. Because you were not
able to use any of the built-in methods to manage the mapping, you had to do the mapping yourself.
Most of that mapping was straightforward and is patterned after how work is done with the built-in
UpdateModel method. The system assigns the appropriate values from the controls to the appropriate

c10.indd 12/21/2015 Page 347

A Non-Code First Approach to Database Access ❘ 347

property on the item that was passed into the mapping method. In several places you used the TryParse
method when converting the string value from the request to the item of the appropriate type.

The most unusual part of this mapping method is managing the uploaded picture fi le, as shown here:

if (fuPicture.PostedFile != null && fuPicture.HasFile)
{
 Guid newPrefix = Guid.NewGuid();
 string localDir = Path.Combine("ItemImages",
 newPrefix + "_" + fuPicture.FileName);
 string fullPath =
 Path.Combine(HttpContext.Current.Request.PhysicalApplicationPath,
 localDir);
 fuPicture.SaveAs(fullPath);
 item.Picture = "/" + localDir.Replace("\\", "/");
}

This fi le is passed to the server as an attached item in the body of the request. If the server control has
content, the code fi rst creates a new Globally Unique Id, or GUID, the intent being that this unique
value will become part of the fi lename that’s saved locally. This is necessary because you cannot other-
wise guarantee that the saved fi les will have unique names.

You then use the Path.Combine method. This method takes at least two strings and merges them using
the appropriate character (in this case a “\”). The fi rst combination creates the \ItemImages\FileName
link, while the second links the physical path of the application to the fi rst combination that you just
created. This provides a complete directory structure using the local drive rather than the website,
which enables saving the fi le onto the server itself, so it can be referenced from the website.

The last part of the code is morphing the information used to save the fi le to a version that is necessary
for accessing the uploaded fi le. In this case you are prepending a directory symbol “/” to the local direc-
tory. However, because the path is differentiated differently (web vs. local I/O), you had to replace the
folder separators. Once you had the directory in the appropriate format you were able to save the item.

Once you had the code completed, you tied it all together by putting the “Add New Item” link on to the
page. This allows you to actually use the functionality that you just fi nished.

A NON-CODE FIRST APPROACH TO DATABASE ACCESS

One of the Entity Framework’s primary strengths is that it eliminates the developer’s hassle of
dealing with the database. However, there will still likely be some times when the work that you
are trying to do cannot be effi ciently handled by it. Reporting, for example, may be an instance of
a requirement for which the Entity Framework is not the best solution. Another common task for
which the Entity Framework is not useful is when you are working with multiple applications that
access the same database and you want to ensure that they all use the same approach, especially if
business rules are involved.

The Entity Framework can be considered an abstraction layer over ADO.NET. ADO.NET is a set
of classes that expose data access services for .NET developers. ADO.NET provides a rich set of

348 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 348

components for creating distributed, data-sharing applications. It is an integral part of the .NET
Framework.

Because Entity Framework lies over ADO.NET, all of the functionality that is part of ADO.NET is
available in any application that is already using the Entity Framework. This enables you to take a
“non-code fi rst” approach to getting information in and out of the database, yet still stay within the
confi nes of the Entity Framework, taking advantage of all the power and ease of use that it offers.

Virtually all of the discussion about the EF so far has been related to using the DbSet properties that
were added to the context fi le. However, there is another property that you will be using in this sec-
tion, Database. The Database property can be thought of as a direct line to the database itself, as
it enables you to use various fl exible approaches to getting information into and out of the database.
Some of the more common methods are shown in Table 10-3.

TABLE 10-3: Methods Available on DbContext.Database

METHOD DESCRIPTION

CompatibleWithModel Determines whether the database is compatible with the current code-
fi rst model. It’s not something that you would use very often, but this is
the same method used when the context fi rst starts.

Create Creates a new database on the database server

Delete Deletes the database from the database server

ExecuteSqlCommand Executes the given command against the database. There is no expecta-
tion that items are returned from the execution. It is important to param-
eterize any user input to protect against a SQL injection attack. You can
include parameter placeholders in the SQL query string and then supply
parameter values as additional arguments.

Exists Determines whether the database exists on the server

SqlQuery Creates a SQL query that returns elements of the given type. The
returned type can be any type with properties that match the names of
the columns returned from the query, or it can be a simple primitive type
such as int or string, as the type does not have to be an entity type.
The results of this query are never tracked by the context even if the type
of object returned is an entity type.

It is important to parameterize any user input to protect against a SQL
injection attack. You can include parameter placeholders in the SQL
query string and then supply parameter values as additional arguments.

The key to interacting with the database through the DbContext.Database property is knowing
whether you expect to get data back through the interaction. If you are not expecting anything
other than a success/failure notifi cation, then you should use the ExecuteSqlCommand method.
Conversely, when you want data returned, you must use the ExecuteSql method.

A Non-Code First Approach to Database Access ❘ 349

c10.indd 12/21/2015 Page 349

SQL INJECTION ATTACK

SQL injection is a technique whereby users can inject SQL commands into a SQL
statement, generally through some kind of user-directed input such as a web page.
These injected SQL commands may have a variety of effects on your database,
from deleting tables to changing data. The purpose of a SQL injection attack is to
convince the application to run SQL code that was not intended.

Suppose you had the following simple query that was built using string
concatenation:

string sql = "SELECT username,password FROM sometable WHERE
email='";
sql += emailAddress
sql += "'"

The expectation here is for users to enter their e-mail address into a data entry
fi eld, and for the query that would be built to end up looking something like the
following:

SELECT username,password FROM sometable WHERE email='name@
server.com'

However, with a SQL injection attack, the nefarious user would not enter an e-mail
address but instead something more like this:

 x'; DROP TABLE sometable;--.

This would result in the following fi nal SQL statement:

SELECT username,password FROM sometable WHERE email=' x'; DROP
TABLE sometable;--'.

This would be bad, because when the whole statement is run it will fi rst try to fi nd
the information using “x” as the e-mail, and once that statement has been com-
pleted it will run the next statement, which in this case happens to be a drop table
command that will remove that table from your database.

The most common and powerful way to stop SQL injection is through the use of
parameters. Parameters enable the database server to look at the entire value being
passed in as a single item, rather than as a chain of commands. Using parameters
would have created the following SQL:

string sql = "SELECT username,password FROM sometable WHERE email=@
email";

The process would be called by passing in a parameter with the name of email.
This means that when the select is performed, it would be looking for the x'; DROP
TABLE sometable;-- as the actual value in the column, and more than likely not
fi nding anything.

350 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 350

Regardless of whether you are using the ExecuteSqlCommand or ExecuteSql approach, you need to
ensure that you are using parameters. Both of these methods have a method signature that includes
a string for the SQL command to be run and an array for the parameters. Using one of these
methods would look like

var results = context.Database.ExecuteSql("select * from table where name=@name",
 new SqlParameter("@name", nameToLookFor));

where the value that you are searching for has been parameterized. When you don’t need to pass in
any values, then you do not need to use the parameters; however, you should get into the habit of
parameterizing any information that will be going directly into or against the database, even infor-
mation that the user did not enter. Better safe than sorry!

Using SQL Queries and Stored Procedures
When you are using the ExecuteSql or ExecuteSqlCommand you can run either some designated
SQL or a stored procedure. A stored procedure can be thought of as a set of SQL that is stored on
the server rather than being passed into the server each time a query is requested. Stored procedures
may be slightly more performant than SQL that was generated in your code. In addition, keeping
the query as a stored procedure enables you to change the stored procedure independently from
your application, giving you the capability for different behavior without having to redeploy your
application.

NOTE The next few activities include a lot of SQL code, some of which contain
commands not covered in the chapter. These activities demonstrate why you
might choose to take a stored procedure approach, but they may be slightly
confusing if you do not have any SQL experience. For more information about
how to program directly with the database, get yourself a copy of Beginning
Microsoft SQL Server 2012 Programming, by Paul Atkinson and Robert Vieira
(Wrox, 2012). It provides a deep dive into SQL, stored procedures, database
functions, and other powerful features when working with SQL Server.

The process, and most of the language, when running either a SQL query or a stored procedure is
the same; the only difference is the text that you provide the method. In the next activity you work
with both a SQL query and a stored procedure.

TRY IT OUT Building Reports in Your Sample Application

In this activity you build out several interesting reports that your users can use to get an understanding
of their fellow members. The fi rst report provides information about the hobbies selected by your users.
It includes the following information:

 ➤ Age Range <20, 20-40, 40-60, 60+

 ➤ Hobby

 ➤ Count of the people in that age range who chose that hobby

A Non-Code First Approach to Database Access ❘ 351

c10.indd 12/21/2015 Page 351

The second report provides this information:

 ➤ Age Range <20, 20-40, 40-60, 60+

 ➤ Count of the people in that age range

 ➤ Average length of time in the area

 1. Ensure that Visual Studio is running and that you have opened your RentMyWrox solution.
Right-click on the Model directory and add a new class fi le named HobbyReportItem.

 2. Add the following properties to this new class fi le:

public string Name { get; set; }

public string BirthRange { get; set; }

public int Total { get; set; }

 3. Open your UserDemographicsController and add the following code. When complete it should
look like Figure 10-13.

public ActionResult HobbyReport()
{
 string query = @"select
 h.Name,
 brud.BirthRange,
 Count(*) as Total
 from UserDemographicsHobbies udh
 inner join Hobbies h on h.Id=udh.Hobby_Id
 inner join UserDemographics ud on ud.Id=udh.UserDemographics_Id
 inner join (select Id,
 case
 when Birthdate between DATEADD(YEAR, -20, getdate()) and
 GetDate() then ' < 20 '
 when birthdate between DATEADD(YEAR, -40, getdate()) and
 DATEADD(YEAR, -20, getdate()) then '20-40'
 when birthdate between DATEADD(YEAR, -60, getdate()) and
 DATEADD(YEAR, -40, getdate()) then '40-60'
 else ' >60 '
 end as BirthRange
 from UserDemographics) brud on brud.Id = udh.UserDemographics_Id
 group by brud.BirthRange, h.Name";
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var list = context.Database.SqlQuery<HobbyReportItem>(query).ToList();
 return View(list);
 }
}

352 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 352

FIGURE 10-13: New method in UserDemographicsController

 4. Right-click on the Views\UserDemographics folder. Select the option to add a new view. Name it
“HobbyReport” and use an Empty model as shown in Figure 10-14.

FIGURE 10-14: Add View dialog

 5. Replace the content of the new view fi le with the following code. When complete it should look
like Figure 10-15.

@model IEnumerable<RentMyWrox.Models.HobbyReportItem>
@{
 ViewBag.Title = "Hobby Report";
}
<h2>HobbyReport</h2>
<table class="table">
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.Name)

mailto:@Html.DisplayNameFor

A Non-Code First Approach to Database Access ❘ 353

c10.indd 12/21/2015 Page 353

 </th>
 <th>
 @Html.DisplayNameFor(model => model.BirthRange)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Total)
 </th>
 </tr>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.BirthRange)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Total)
 </td>
 </tr>
}
</table>

FIGURE 10-15: New view code

 6. Run the application and navigate to UserDemographics ➪ HobbyReport. You should see a screen
similar to Figure 10-16. If you need more data, use the UserDemographics ➪ Edit screen that you
created in the previous example.

mailto:@Html.DisplayNameFor
mailto:@Html.DisplayNameFor
mailto:@Html.DisplayFor
mailto:@Html.DisplayFor
mailto:@Html.DisplayFor

354 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 354

FIGURE 10-16: Running HobbyReport

 7. While in Server Explorer and still under the RentMyWrox database, right-click on Stored
Procedures and select Add New Stored Procedure.

 8. When the window appears, delete all the content, replacing it with the following code. When
completed it should look like Figure 10-17.

CREATE PROCEDURE [dbo].[UserDemographicsTimeInArea]
AS
 select BirthRange, count(*) as Total, AVG(MonthsInArea) as AverageMonths
from
 (select
 case
 when Birthdate between DATEADD(YEAR, -20, getdate()) and GetDate()
then ' < 20 '
 when birthdate between DATEADD(YEAR, -40, getdate())
 and DATEADD(YEAR, -20, getdate()) then '20-40'
 when birthdate between DATEADD(YEAR, -60, getdate())
 and DATEADD(YEAR, -40, getdate()) then '40-60'
 else ' >60 '
 end as BirthRange,
 DATEDIFF(month, DateMovedIntoArea, getdate()) as MonthsInArea
 from UserDemographics) details
group by BirthRange

 9. Right-click on the window into which you just entered the code and select Execute. You should get
a message that tells you “Command(s) completed successfully.”

 10. Close the window (no need to save) and expand the Stored Procedures folder. You should see the
new stored procedure.

 11. Create a new model named ResidencyReportItem with the following properties:

public string BirthRange { get; set; }

A Non-Code First Approach to Database Access ❘ 355

c10.indd 12/21/2015 Page 355

public int Total { get; set; }

public int AverageMonths { get; set; }

FIGURE 10-17: Setting up the new stored procedure

 12. Go back into the UserDemographicsController and add the following new action:

public ActionResult ResidencyReport()
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var list = context.Database.SqlQuery<ResidencyReportItem>(
 "exec UserDemographicsTimeInArea").ToList();
 return View(list);
 }
}

 13. Add a new view under the UserDemographics folder named ResidencyReport. Add the following
content:

@model IEnumerable<RentMyWrox.Models.ResidencyReportItem>
@{
 ViewBag.Title = "Residency Report";
}
<h2>Residency Report</h2>
<table class="table">
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.BirthRange)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.Total)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.AverageMonths)
 </th>
 </tr>
@foreach (var item in Model) {
 <tr>

mailto:@Html.DisplayNameFor
mailto:@Html.DisplayNameFor
mailto:@Html.DisplayNameFor

356 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 356

 <td>
 @Html.DisplayFor(modelItem => item.BirthRange)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Total)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.AverageMonths)
 </td>
 </tr>
}
</table>

 14. Run the application and navigate to UserDemographics ➪ ResidencyReport. You should see some-
thing similar to what is shown in Figure 10-18.

FIGURE 10-18: Displaying the residency report

How It Works

The preceding activity added two new pages to your site that will help your users get an understanding
of the community that they have joined. Unfortunately, getting the information necessary to make these
reports using the model-fi rst Entity Framework approach and the dot notation that you have used so far
would be complex and likely poorly performing.

Instead of using the table abstraction provided by the Entity Framework, you instead ran SQL
directly against the database. You used two different approaches—straight SQL and executing a stored
procedure—but they were handled similarly. The key piece of functionality that you were able to use
was the SqlQuery command, with the following:

context.Database.SqlQuery<ResidencyReportItem>("exec UserDemographicsTimeInArea")
 .ToList();

mailto:@Html.DisplayFor
mailto:@Html.DisplayFor
mailto:@Html.DisplayFor

A Non-Code First Approach to Database Access ❘ 357

c10.indd 12/21/2015 Page 357

What makes this method so easy to use is the ability of the query to return a list of known items. When
you run a SqlQuery and assign a class, the Entity Framework populates a list of items of the same
type as the class that you assigned when defi ning the call. The framework then looks at the names of
the columns in the result set returned from the database server and maps the values from the database
to properties on the defi ned object that have the same type and name. This was how you were able to
make a generic call to the database and get back a set of populated objects. If you had extra proper-
ties in either object or the query results, those values would not be mapped; only those that are in both
property lists will be assigned. This mapping facility is a huge functionality booster because you can
use defi ned types without having to worry about manually mapping the database values to properties
on a newly created object.

The SQL that was used for either approach relies on two different features to get you the necessary
information: subqueries and grouping. A subquery is a database query that you create as part of
another database query. This subquery has a set of results that are used in the main query. Both of the
queries that you used to create the reports contained a subquery that looked like the following code:

 (select Id,
 case
 when Birthdate between DATEADD(YEAR, -20, getdate()) and
 GetDate() then ' < 20 '
 when birthdate between DATEADD(YEAR, -40, getdate()) and
 DATEADD(YEAR, -20, getdate()) then '20-40'
 when birthdate between DATEADD(YEAR, -60, getdate()) and
 DATEADD(YEAR, -40, getdate()) then '40-60'
 else ' >60 '
 end as BirthRange
from UserDemographics) brud

That listing is an example of a subquery. It is taking the Id of the table row and then creating a value
called BirthRange by determining which date range the record falls between. The case\when state-
ment is the SQL equivalent to the switch statement in .NET. This statement then wraps the results
from this subquery and gives it a name (in this case “brud”), which enables this result set to be used as
if it were a regular table—allowing joins and other table-like access to the results of this subquery.

The other important feature of these queries is grouping. Grouping gives SQL Server the ability to per-
form aggregate functions. There are several of these aggregate functions in these queries, mainly count
and avg. The count function counts the number of items that were defi ned by the grouping fi elds, while
avg calculates the average value of a fi eld. The grouping fi elds are defi ned in the group by clause.

This group by clause is important, because the items listed in the group by clause, and there can be
more than one, become the defi nitions of the items that are being calculated. The direct SQL code had
two columns in the group by clause, meaning every calculation was based on every unique combina-
tion of those two fi elds. When more than one row has the same values in the group by fi elds, those
rows are all available for inclusion in any aggregate functions.

Although accessing data in an effi cient manner helps to ensure a well-performing application, imag-
ine how much more performant your application might be if the system did not have to access the
data as frequently. That’s the subject of the next section.

358 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 358

CACHING

Caching is a development strategy that helps improve performance and reliability in your web appli-
cation. Some of the ways in which it does this include the following:

 ➤ It reduces the amount of data being sent over the network.

 ➤ It decreases the number of calls to a database.

 ➤ It reduces the amount of code that needs to be run to return an item.

The main feature of caching is that once an item is retrieved, whether it is over the Internet or
from a database, those results are “saved” somewhere local and then returned the next time the item
is requested. This means that the action fi rst taken to retrieve the information does not have to be
run again.

Caching can add some complexity to your application, depending on where and how it is imple-
mented. The most powerful caching approaches generally require the most complex confi guration
and support, but they provide your application with the most overall benefi t in terms of responsive-
ness and reliability. Reliability is critical because any areas of your application that cache informa-
tion from other areas of the application have to ensure that their ability to recover this information
from their cache is at least as reliable as the method used to get the original copy of the information.
It is an unacceptable trade-off to implement a caching system that can negatively impact the perfor-
mance of your system—that would defeat the entire purpose of caching in the fi rst place.

Different Ways to Cache Data in ASP.NET Applications
The fi rst way to add caching to an ASP.NET application is through data caching. Data caching is
when a new caching layer is added between your application and the data access layer. This new
layer then becomes responsible for managing some data outside of the database when that data has
been determined as being cacheable. The Entity Framework provides some support for caching in
long-running applications, but in typical web applications there is no support for caching, and add-
ing a data caching layer is beyond the scope of this project.

The next level of caching is storing page content at the user and browser level. In this case, the
browser stores a local copy of the content with an expiration period set by the server. These expira-
tion periods could be anything from seconds to minutes to days, and are generally based on the kind
of data being cached. A user’s shopping cart, for example, would be a poor piece of information to
cache. Conversely, an “About Us” page might be a good candidate for caching, simply because the
content does not frequently change.

The last level of caching is also within the browser. This approach to caching, called the Application
Cache API (AppCache), is an HTML 5 specifi cation that gives developers access to the local browser
cache. It is different from output caching in that the AppCache is designed to store data that could
be accessed multiple times. AppCache enables the developer to store this information locally on the
client machine, rather than send it from the server to the client multiple times. It is not used for stor-
ing whole pages, but rather to store data for either the life of the connection or simply the lifetime of
a single page. There is no further discussion of the AppCache in this project.

Caching ❘ 359

c10.indd 12/21/2015 Page 359

PROXY SERVERS

A proxy server is a computer that functions as an intermediate system between a
web browser and the Internet. Proxy servers are designed to help improve web per-
formance by storing a copy of frequently used web pages. When a browser requests
a web page stored in the proxy server’s cache, it is provided by the proxy server,
which is faster than going through the web to the server. Proxy servers can also
help improve security by fi ltering out some web content and malicious software.
This is possible because every request between the client and the Internet has to
pass through the proxy server.

Proxy servers are used mostly by networks in public organizations and private com-
panies. Typically, people connecting to the Internet from home will not use a proxy
server. Proxy servers are rarely under the developer’s control, so a developer can never
count on them being part of the request process. This means that the proxy server
will determine, using its own rules, whether or not to send the request to the server or
simply return the cached copy that is held on the server. This means that changes you
make to the output may not be refl ected when you look at the page. You can imagine
how troublesome this could be when you are trying to determine why the page does
not meet your expectations.

Web Forms and MVC handle confi guration of caching differently, just as they handle everything
else differently. When using Web Forms you defi ne the output confi guration at the page level by
adding a new confi guration item below the page defi nition:

<%@ OutputCache Duration="1200" Location="ServerAndClient" %>

In this example the page is going to be cached for 1,200 seconds, or 20 minutes. The second attri-
bute specifi es the location where caching can happen. Table 10-4 defi nes the various locations where
you can confi gure caching.

TABLE 10-4: Caching Locations

LOCATION DESCRIPTION

Any The output cache can be located on the browser client (where the request origi-
nated), on a proxy server (or any other server) participating in the request, or on
the server where the request was processed.

Client The output cache is located on the browser client where the request originated.

Downstream The output cache can be stored in any HTTP 1.1 cache-capable devices other
than the origin server. This includes proxy servers and the client that made the
request.

None The output cache is disabled for the requested page.

continues

360 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 360

LOCATION DESCRIPTION

Server The output cache is located on the web server where the request was processed.

ServerAndClient The output cache can be stored only at the origin server or at the requesting cli-
ent. Proxy servers are not allowed to cache the response.

You can take a similar approach when working with ASP.NET MVC output caching. However,
rather than being at the page level as you just saw with Web Forms, the output from an action is
cached for a predefi ned period. Confi guring caching on an action uses attribution on that method,
as shown here:

[OutputCache(Duration = 1200, Location = OutputCacheLocation.ServerAndClient)]
public ActionResult Details(int id)

The preceding attribute sets caching to the same 20 minutes, with the item being cached using
the ServerAndClient setting. With this setting, checking the Internet Explorer browser cache will
indicate a 20-minute caching period, as shown on the highlighted item in Figure 10-19.

FIGURE 10-19: Directory of cached items

As shown in the fi gure, any request for that particular page before the expiration period will not
require a server call, as the page will instead be returned from the local cache.

In the next activity you implement some caching in several areas of the application and then validate
that the caching is actually working.

TRY IT OUT Add Caching to Your Sample Application

In this activity you implement caching in your sample application. The purpose of this caching is to
increase response time for the user and limit the amount of work that has to be done on the server. The
steps that you will take during this activity are unusual in that there will be a lot of breakpoint setting
in order to track program fl ow.

 1. Ensure that Visual Studio is running and that your RentMyWrox solution is open.

 2. Open the Controller\ItemController fi le. Add the following attribute above the Details action.
When completed it should look like Figure 10-20.

[OutputCache(Duration = 1200, Location = OutputCacheLocation.ServerAndClient)]

TABLE 10-4 (continued)

Caching ❘ 361

c10.indd 12/21/2015 Page 361

FIGURE 10-20: Output caching on the Details action

 3. Insert a breakpoint on the return line inside the action.

 4. Run the application and go to the home page.

 5. Click one of the Full Details links. This should take you to your breakpoint, as shown in
Figure 10-21.

FIGURE 10-21: Breakpoint in the Details action

 6. Click the Continue button to keep running.

 7. After the page has rendered, click the Home link on the left menu.

 8. Click the Full Details link on the same product that you just clicked. You will see the content
render but your breakpoint will not be hit.

 9. Go back to the home page and click a different product. Your breakpoint will be hit.

 10. Open your Admin\ItemList.aspx page. Add the following code immediately below the Page
declaration:

<%@ OutputCache Duration="1200" Location="ServerAndClient" VaryByParam="*" %>

How It Works

Output caching is the capability to confi gure caching duration for a page, whether that page is an
ASP.NET Web Form page or the output from an ASP.NET MVC controller action. Many of the char-
acteristics are the same for both MVC and Web Forms in that you set a duration, in seconds, specifying
how long the page will be cached and what areas can support caching the content.

All of this information is stored within the response headers, the metadata that is returned to the client
from the server. Using the settings that were used in the activity, the response headers will include the
following:

HTTP/1.1 200 OK
Cache-Control: private, max-age=1200
Content-Type: text/html; charset=utf-8

362 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 362

Expires: Sun, 12 Jul 2015 16:57:11 GMT
Last-Modified: Sun, 12 Jul 2015 16:37:11 GMT

There are two lines that directly relate to caching and the confi guration that you used: Cache-Control
and Expires. The Cache-Control line includes the keyword private. In this case, private means that
the content can be cached only on the client and the server, but not any systems in between, such as a
proxy server. A value of public, conversely, allows the request to be cached anywhere in between the
server and client that caching may take place. A third value can be used here as well, no-cache, which
means there is no caching anywhere past the server.

The other value that is part of the Cache-Control is the max-age. This is the same value that you set in
the confi guration, and the value that is used by the browser when determining cache expiration. This
value overrides the Expires line in the header when it is present. If, however, there is no max-age value,
then the value from the Expires line is used. ASP.NET sets both expiration items appropriately.

You discovered a new attribute as part of the Web Forms confi guration, VaryByParams. This is one
of the many additional values that you can use to fi ne-tune the caching defi nition. The VaryByParams
property expects a semicolon-delimited list of query string or form POST parameters that the output
cache uses to vary the cache entry. The setting that you used, *, means that whenever there is any dif-
ference in the parameters, a new request should be sent to the server rather than being retrieved from
cache.

This brings up an interesting point about the difference between using MVC and Web Forms.
Generally, a call to a Web Form page is going to be differentiated by query string values because it
does not generally use the same URL approach used by default in MVC. Each URL for a details page
in MVC, for example, is different, whereas in Web Forms the URL may be the same but the parameter
string is different. You may not have noticed, but VaryByParams was a required fi eld when confi guring
the .aspx page because of these differences.

In those cases where you would like the same experience in Web Forms that you have with MVC,
rather than use the * as the value in the VaryByParams property, you would instead use Id to indicate
that you want the page to be cached using the Id. This ensures that the only time there is a call to the
server is when the Id is different. This would give the exact same experience as the MVC caching expe-
rience that is caused by the difference in URL.

On the face of it, it might seem like you would want to confi gure caching on everything you do in
your site. However, this may not always be the best decision. You have seen a lot of the benefi ts of
caching, but there are also some complications and issues that may make caching problematic in
some situations

Common Pitfalls with Caching Data
 If caching solved every performance problem that a site might have, then it would have been high-
lighted in Chapter 1. Although it can help enhance the perception of speed, it does this at some risk
of getting old, incorrect data. It should be clear that the longer the expiration time, the fewer the
calls made to the server. However, you can probably guess what this might mean on a page whose

Summary ❘ 363

c10.indd 12/21/2015 Page 363

content often changes: Changes will not be picked up until the caches expires, rather than when the
page changes. This results in what is known as stale data.

The most common problem when using caching is ensuring both that the cache period is long
enough to make a difference yet short enough that incorrect information is not displayed to the user.
There is no fi rm number for this; it is instead completely dependent upon the content of that particu-
lar page. For example, consider the sample application and what a typical user would see.

The fi rst page that users would likely visit is the default, the home page. Reviewing the content on
this page reveals that the list of available products may frequently change, conceivably with every
checkout or return of products, and there is no way to foresee when this happens.

What would stale data mean in this case? There are two potential problems if the data is stale. One,
available items are not listed; and two, listed items may no longer be available. Neither of those
options is desirable, as missing items mean someone else cannot check them out, affecting revenue.
If an item is no longer available yet still listed, any user selecting that item will have a negative expe-
rience when they try to add the item to their shopping cart but then fi nd out it isn’t truly available.

One last point to consider with caching is that the cache settings you defi ne on the server output
are not obligatory; they should instead be considered strong recommendations. Users can always set
their local client to follow caching rules that they determine, which may be different from what you
are expecting. The same is true for systems that may be between the server and client, such as proxy
servers. While you may make a recommendation for caching, the intermediate system may make its
own caching decision. This means that you cannot always guarantee the behavior regarding when
and what items are cached. While there is not really anything you can do about these cases, typically
they only apply to those items where caching is turned on. Disabling caching for a page will gener-
ally turn off all caching anywhere.

When would specifi cally turning cache off be a good choice? If you consider a typical e-commerce
application, it is unlikely that you would ever want caching performed on the shopping cart page,
because hopefully every time users visit that page, the information has been updated to accurately
refl ect items added, removed, or purchased.

SUMMARY

Saving data when working with ASP.NET and the Entity Framework is a straightforward process
because the Entity Framework does so much of the work for you. What complicates the process is
the HTTP protocol and how information is transferred from the client to the server, because getting
this information into a format that can be linked to the Entity Framework can be complicated.

Several approaches are available for linking request information to an Entity Framework model for
persistence. The fi rst is through the use of the UpdateModel methods, which help map bound UI
controls to the appropriate model property. MVC gives you the option to simplify this even more
through the use of model binders that populate a model defi ned in the method signature, bypassing
the need to call the TryUpdateModel method in your code.

The second option is a more manual approach whereby the developer manually links the incoming
value from the request to a property in the Entity Framework object. This is especially common

364 ❘ CHAPTER 10 WORKING WITH DATA—ADVANCED TOPICS

c10.indd 12/21/2015 Page 364

when dealing with older approaches or third-party integrations for which you don’t have control
over the form itself, instead just needing to link the values coming in to your own object.

While working with database tables through the Entity Framework has been simplifi ed as much
as possible, there are still times when you need to interact with the database outside of an EF table
object. This is still provided as part of the EF, however, as you can run custom SQL code, stored
procedures, or take any other actions that you need with the database. When you are selecting data
from the database, you even have the option to bind the results to a custom type (class) that maps to
a model you created, thus enabling you to still work directly with code that you defi ned, and avoid-
ing the need to work with any database-specifi c types.

This chapter also described various approaches to adding caching to your project. Caching enables
you to control the frequency of calls made to the server for a page versus being called from the local
browser cache. When a page is retrieved from the local cache it provides a quicker response to the
user, and reduces the amount of load on your servers, a virtual double win. However, too long of a
cache period can result in presenting stale data, not the correct data, to the client, so care needs to
be taken regarding what information is cached and how long it is cached.

EXERCISES

 1. With the setup you currently have after the Try it Out activities, what do you think the default
behavior of the screen would be after caching was added to the ItemList page? What would
happen when you add an item?

 2. What other options do you have for passing the list of hobbies to the view if you did not use
the ViewBag or any of the ViewBag-type approaches (i.e., ViewData, etc.)?

 3. What would be some reasons to use a more direct route to the database, such as
ExecuteQuery rather than using the traditional EF approach?

Summary ❘ 365

c10.indd 12/21/2015 Page 365

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Caching Storing the results of a query or request. Subsequent requests for this
information would retrieve the stored results, rather than fetching the
results from the source. Caching is most common between the client and
the server by having page results cached on the client device.

ExecuteSqlCommand Executing SQL directly upon the database. When using
ExecuteSqlCommand, the assumption is that you are not requesting
data, as there is no result set from this method.

Pagination Breaking down a large list of data into smaller pages and then providing
users with the capability to move between these different pages.

Database parameters A form of passing information into direct-to-database calls. They enable
the system to avoid SQL injection attacks and ensure type compatibility.

Query string to
parameter mapping

Query string to parameter mapping is a feature of ASP.NET MVC
whereby query string values are mapped to values in the action method
signature if the variables names are identical between the text used in
the query string and the variable defi ned in the method signature.

Sorting Putting the results of a list in a particular order. Users typically have some
control over how sorting is managed by selecting either the fi eld to sort
on, the order of sorting (ascending or descending), or both the fi eld and
the order. This order is retained across pages if pagination is also in play.

SQL injection SQL injection is a form of attack whereby the user tries to maliciously
affect either the structure of your database or its data by fi lling out web
entry forms in such a way as to allow access to the database if the incom-
ing strings are not properly handled. The most common way of handling
these incoming values is through the use of database parameters. The
Entity Framework does a lot of this protection for you, so this risk is high-
est when you are building your SQL yourself.

SqlQuery A direct call to the database that may return some data. An override to
SqlQuery allows you to provide a model that the EF will try to fi ll with
the results from the query. If the database call returns a fi eld name that
matches the property name, the mapping will be successful.

Stale data Data that results from too long of a cache expiration period, which
returns incorrect data to the user.

TryUpdateModel A method used when you are using model binding that will automati-
cally populate the values of the object from the various request sources,
including form values, query string values, and attached fi les. If there is a
type mismatch, this approach will simply not set that particular property.

UpdateModel A method like TryUpdateModel, but rather than simply ignoring pre-
sented data that cannot be converted to the required type, this method
will throw an exception.

c11.indd 12/18/2015 Page 367

User Controls and Partial Views
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What an ASP.NET Web Forms user control is, and how to use it in
a website

 ➤ Creating user controls that provide common functionality to
multiple pages

 ➤ Creating an ASP.NET MVC partial view and using it in your web
application

 ➤ Working with controllers that return partial views

 ➤ How user controls and partial views differ

 ➤ Creating ASP.NET MVC templates

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 11
download and individually named according to the names throughout the chapter.

There was a lot of discussion in Chapter 4, “Programming in C# and VB.NET,” about reus-
ing the same code in multiple areas as opposed to rewriting the code multiple times. This is a
useful concept not only when approaching your code design, but also when approaching your
page design. You have seen how reuse is provided through the use of master pages and layout
pages; now you will learn other ways to provide reusable sections in a web application.

A typical example of this could be something like a login window. While you may want the
same functionality on every page, you might prefer that functionality to appear in different
places on the page, based on the visitor’s current location. Because they may be on differ-
ent parts of the page, it’s not possible to put this functionality into the master or layout page

11

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

368 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 368

because that approach assumes that the functionality is in the same place on every page. Instead,
you create either an ASP.NET Web Forms user control or an ASP.NET MVC partial view, and place
that new item wherever you need it.

The user control or partial view acts as a common container for functionality. It combines UI and
processing just as a complete page does, but it is rendered as a set of HTML elements that can be
placed anywhere in your page. You have seen built-in server controls that provide this functionality.
In this chapter you will learn how you can provide the same set of support for both the Web Forms
and the MVC approaches by creating your own user controls and partial views.

INTRODUCTION TO USER CONTROLS

You already know that server controls are the means through which ASP.NET Web Forms bundle
sets of functionality into easy-to-use sets of code. This bundled functionality includes both UI ele-
ments that become rendered HTML, and processing code. The availability of these server controls
is a tremendous effi ciency enhancer, because they enable developers to perform some complicated
tasks through confi guration and simple code, rather than having to do the work themselves.

However, server controls don’t provide every set of functionality that you might need to support
your web application, especially when you want to use specifi c business rules. This is where user
controls come into play. These are developer-created controls that can be used within your appli-
cation just like a standard server control. The only real difference is that you develop the control
rather than having the control provided by the framework or a third party; it is specifi c to your
application.

A user control offers you the same functionality, or support, as a regular Web Form page. This
means that when you develop a user control you can do the following:

 ➤ Create HTML markup.

 ➤ Use code-behind and the complete page life cycle.

 ➤ Consume traditional ASP.NET server controls as well as other user controls.

One of the primary differences is that whereas an ASP.NET Web Forms page has an .aspx exten-
sion, the ASP.NET user control has an .ascx extension. In addition, the fi le is defi ned differently.
The page is defi ned as

<%@ Page Title="" Language="C#"
 CodeBehind="Default.aspx.cs"
 AutoEventWireup="true"
 Inherits="RentMyWrox.Admin.Default" %>

while the control is defi ned as

<%@ Control Language="C#"
 CodeBehind="NewsControl.ascx.cs"
 AutoEventWireup="true"
 Inherits="RentMyWrox.Admin.NewsControl" %>

Introduction to User Controls ❘ 369

c11.indd 12/18/2015 Page 369

The last difference, and probably the most important, is that a user control cannot be called directly
from a client as a requested resource. The user control exists only when it has been created in an
.aspx page or in another user control that is created in an .aspx page.

Creating User Controls
Creating a user control is much like creating anything else in an ASP.NET application in that it uses
the Add New Item dialog. In the next activity, you create a user control that provides special notifi -
cations to users.

TRY IT OUT Creating a User Control That Provides Special Notifi cations

In this activity you create a user control that you can add to Web Form pages. This user control pulls
the most recent notifi cation from the database and displays it on the page.

 1. Ensure that Visual Studio is running and that you have your RentMyWrox solution open.

 2. Create a new folder under your project directory named Controls.

 3. Right-click on the new Controls directory and select Add ➪ New Item. Choose Web Forms User
Control as shown in Figure 11-1 and name the fi le Notifi cationsControl.

FIGURE 11-1: Creating a Web Forms user control

 4. Add the following content to the NotificationsControl.ascx page. When completed it should
look like Figure 11-2.

<asp:Label runat="server" ID="NotificationTitle" CssClass="NotificationTitle" />
<asp:Label runat="server" ID="NotificationDetail" CssClass="NotificationDetail" />

370 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 370

FIGURE 11-2: Editing the markup of your control

 5. Right-click the Models directory and select Add New Item. Select Code, and then Class, as shown
in Figure 11-3, and name it Notifi cation.cs.

FIGURE 11-3: Adding the Notifi cation model

 6. Ensure that the Notification.cs class is open. Add the following using statement at the top of
the fi le:

using System.ComponentModel.DataAnnotations;

 7. Add the following properties and attributes to the Notification.cs class:

[Key]
public int Id { get; set; }

[MaxLength(50)]
public string Title { get; set; }

[MaxLength(750)]
public string Details { get; set; }

public bool IsAdminOnly { get; set; }

public DateTime DisplayStartDate { get; set; }

Introduction to User Controls ❘ 371

c11.indd 12/18/2015 Page 371

public DateTime DisplayEndDate { get; set; }

public DateTime CreateDate { get; set; }

 8. Open the RentMyWroxContext.cs fi le from within the Model directory. Add the following code to
the list of tables within the RentMyWroxContext class:

public virtual DbSet<Notification> Notifications { get; set; }

 9. Open the code-behind page of the control, NotificationsControl.ascx.cs. Add a new using
statement at the top of the page:

using RentMyWrox.Models;

 10. Add the following code to the Page_Load method. It should look like Figure 11-4 when you are
done.

using (RentMyWroxContext context = new RentMyWroxContext())
{
 Notification note = context.Notifications
 .Where(x => x.IsAdminOnly
 && x.DisplayStartDate <= DateTime.Now
 && x.DisplayEndDate >= DateTime.Now)
 .OrderByDescending(y => y.CreateDate)
 .FirstOrDefault();

 if (note != null)
 {
 NotificationTitle.Text = note.Title;
 NotificationDetail.Text = note.Details;
 }
}

FIGURE 11-4: Editing the code-behind of your control

372 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 372

 11. Build the solution to ensure that all the code seems correct. You won’t be able to see the control on
any page until it has been added to a page.

How It Works

Just as with a traditional ASP.NET Web Forms page, a user control has two different sections: the
markup where you add the HTML and server controls, and the code-behind where you perform all the
business logic.

The markup page for a user control typically lacks any of the traditional HTML tags such as <head>
or <body> because a user control is generally used to add output snippets that are shown within the
<body> tag, just like a traditional server control. In your markup page, you added two simple server
controls, labels that are used to display the notifi cation’s title and detail properties. Some styling com-
ponents and other defi ning HTML elements were also added to make the controls look better.

Because you did not yet have a Notification class, you next had to create the class defi nition for the
item that you are going to be displaying. As discussed in Chapter 9, you need an integer Id fi eld in order
to uniquely identify the notifi cation that will be displayed. The other fi elds are all specifi c parts of the
model, and are described in Table 11-1.

TABLE 11-1: Notifi cation Properties

PROPERTY TYPE DBTYPE DESCRIPTION

Title string nvarchar(50) The title of the notifi cation and a brief
description of the content

Details string nvar-

char(750)
The notifi cation details, the full content of
the notifi cation that is displayed to the user

IsAdminOnly bool Bit Defi nes whether the notifi cation is for regu-
lar users or only administrators

DisplayStartDate DateTime Datetime The date when a notifi cation becomes avail-
able for display. This enables you to enter
multiple notifi cations and set them to dis-
play for a day, such as on a holiday, or for-
ever, by choosing a start date in the past.

DisplayEndDate DateTime Datetime The date when a notifi cation is no longer
eligible to be displayed. This enables you
to enter multiple notifi cations and set them
to display for a day, such as on a holiday,
or forever, by choosing an end date in the
future.

CreateDate DateTime Datetime The day when the item was created. When
displaying a list of notifi cations they will be
typically ordered by this property.

Introduction to User Controls ❘ 373

c11.indd 12/18/2015 Page 373

Once the class was added, you then added it to the context fi le. By doing
this, you ensure that the table will be added, if it is not already there,
when the code is run. Once created, the table will look like what is
shown in Figure 11-5.

The code-behind contains the initial logic required to get the notifi ca-
tion that will be displayed. Using the database context you were able to
add a LINQ query that will evaluate the properties of items in the data-
base table to determine which items are as follows:

 ➤ For administrative use only (IsAdminOnly is true)

 ➤ DisplayStartDate is in the past

 ➤ DisplayEndDate is in the future

The resulting list of items is then sorted in descending order by the created date, and the fi rst item
is selected. It is sorted such that the most recently created notifi cation that meets the date criteria is
selected. Once this item is selected, the Title and Details are added to the Text properties of the label
controls you added to the markup page, which ensures that they will be displayed as part of the ren-
dered page.

Adding User Controls
Once you have created your user control, the next step is to add it to your site pages. As with any
default server control, you can add your user control to either master pages or content pages as
necessary.

WHY WOULD YOU PUT A USER CONTROL IN A MASTER PAGE?

You always need to decide where to manage the UI and code when a certain set of
consistent behavior is going to be added to a master page. Should that functionality
just be built into the master page or should you create a separate user control?

When you are asking yourself this question, remember that an ideal software
design should have all of the logic for a set of functionality together, in one place,
and created in such a way that no other logic needs to know about how that func-
tionality works. This approach is known as encapsulation, so adhering to it also
suggests that you create a separate user control to handle the work.

This approach also enables you to manage the control as a discrete entity, and
enables your master pages to be more layout specifi c rather than functionality-
driven, both of which are expected because the master page is a template determin-
ing where content should be placed and how it should look. It should not do a lot of
processing itself.

There are two steps to adding a user control to a page. The fi rst is registering the control with the
page, and the second is placing the control into the page. In the registration step, you are building

FIGURE 11-5: Database view of
the Notifi cations table created
by the application

374 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 374

the link to the control that you are planning to use in your page. The registration looks like the fol-
lowing snippet and is generally added at the top of the markup page, under the Page defi nition:

<%@ Register Src="ControlName.ascx" TagName="ControlName" TagPrefix="rmw" %>

The element tag layout follows the Page defi nition in that it starts with the <%@ character combina-
tion. The attributes, conversely, are different, and are defi ned in Table 11-2.

TABLE 11-2: Attributes for User Control Registration

ATTRIBUTE DESCRIPTION

Src The URL of the control you will be using in your page. Typically, you would use the
tilde approach to defi ning the address, so it would generally look something like
Src="~/PathToControl/ControlName.ascx".

TagName The value you want to use when you refer to the control in your markup. Much like
when you defi ned ContentPlaceholders with an Id and then referred to that Id in
your content page, the TagName defi nes the value that you will use to relate to your
control. Generally, this value is the same as the control name, but it can be anything.

TagPrefix A user-defi ned value that is used in the same way as the asp: prefi x when defi ning a
standard server control. The system will default to using “uc” followed by a counter for
the number of controls that have been defi ned in the page. However, in the previous
code snippet it was defi ned as "rmw". If you are using multiple user controls on the
same page, it would be easier to use the same TagPrefi x so that all of the custom con-
trols show up together in Intellisense.

Once you have the user control registered with the page, the next step is to implement the control on
the page. The following code snippet shows how this is done:

<rmw:ControlName runat="server" />

As you see, the syntax for using a user control in your page is very similar to that of a server control.

As with almost everything in ASP.NET Web Forms, there is another way to register and use your user
controls through the Design window in Visual Studio. The next activity demonstrates how to do this.

TRY IT OUT Adding Your User Control to the Page

Creating the user control is only part of the battle; the rest is implementing your user control on the
page(s) where you want the output from the controls to be displayed and used.

 1. Ensure that Visual Studio is running and that you have your RentMyWrox solution open. Open the
Default.aspx fi le from your Admin directory and add the following code directly underneath
the Page defi nition:

<%@ Register Src="~/Controls/NotificationsControl.ascx"
 TagName="Notifications" TagPrefix="rmw" %>

Introduction to User Controls ❘ 375

c11.indd 12/18/2015 Page 375

 2. While still in the Default.aspx.cs page, locate the Content control with the ID of Content2 and
add the following line between the opening and closing tags. The page should look like Figure 11-6
when completed.

<rmw:Notifications runat="server" ID="BaseId"/>

FIGURE 11-6: Page after registering your user control

 3. Run the application and go to \Admin\. The application will run but you won’t see anything
because there is no data in the database.

 4. Open the SQL Server Object Explorer window. Expand the RentMyWrox database and right-
click on the dbo.Notifi cations table, and select View Data. This opens the Data screen in the main
 window. It should look similar to Figure 11-7.

FIGURE 11-7: Empty Notifi cations table

 5. Enter a row of data in the window, as shown in Figure 11-8. Do not enter a value in the
Id column. You should also ensure that you enter several sentences of data into the Details column.
Finally, ensure that the current date is between the values you enter for DisplayStartDate and
DisplayEndDate. When you are done, press the Enter key.

FIGURE 11-8: Entering data into the Notifi cations table

 6. Run the application and go to \Admin\. You should get a result similar to what is shown in
Figure 11-9 but containing the data that you entered into the database.

376 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 376

FIGURE 11-9: Default page showing the user control

How It Works

The fi rst step in this exercise was registering the control into the page. This creates the link between the
page and the control, and defi nes how the control will be called during instantiation. This was done
through the TagPrefix and TagName attributes in the Register element, both of which are required by
the system.

After defi ning the registration, you were able to determine where you would instantiate the control. After
the registration step, you use the control in the same way that you would use a traditional server control.
Nothing else needs to be done to manage the display of the items.

When you ran the application and went to the page that includes your user control, it didn’t seem to
work because there was no visible information. That’s because although the database table was cor-
rectly created without requiring you to take any actions other than adding the item into your database
context, the system wasn’t able to add any data for you. After you added the data to these new database
tables, the data became visible in your control.

You have just successfully added a user control to a content page. If you look at the page that you
changed, you will see that adding the same control to multiple pages creates a large set of repetitive
code because you add the Register command to every page that will be using the control. This
means the same code has been written multiple times. Typically, good developers try to avoid that as
much as possible. You will see how you can do that in the next section.

Sitewide Registration of a User Control
Replicating code is generally not a good idea, so rather than register your user control in every page
it will be used, ASP.NET gives you the capability to instead register it once in the Web.config fi le.
A default Web.config fi le is shown in Figure 11-10.

Introduction to User Controls ❘ 377

c11.indd 12/18/2015 Page 377

FIGURE 11-10: Default Web.Confi g fi le

Adding sitewide registration for a control requires the addition of a new node in the Controls node
of the Pages element, as shown in line 36 of Figure 11-10. The node that you would add is very
similar to the register command, as shown here:

<add tagPrefix="RMW" tagName="Banner" src="~/Controls/Banner.ascx" />

As you can see, all the attributes are the same as those for the Register command. The next activ-
ity guides you through the process of implementing these changes.

TRY IT OUT Implementing Sitewide User Control Registration

In the last activity you registered and added the same user control to several pages. In this activity, you
will register the control so that it is available to every page in your site, without having to register it on
each page.

 1. Ensure that Visual Studio is running and that your RentMyWrox solution is open.

 2. Open your Web.config fi le and fi nd the <system.web> element.

 3. Locate the <pages> element and fi nd the <controls> sub-element. Within the <controls> ele-
ment, add the following code and save your work. Once added, that section of your confi guration
fi le should be similar to Figure 11-11.

<add tagPrefix="RMW" tagName="NotificationsControl"
 src="~/Admin/NotificationsControl.ascx" />

378 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 378

FIGURE 11-11: Web.confi g after registering your user control

 4. Open the ManageItem.aspx fi le in your Admin directory. Immediately below the Content control
with the ID of Content1, start typing RMW. IntelliSense should highlight the control as shown in
Figure 11-12.

FIGURE 11-12: Adding the user control

 5. Finish entering the line of code as shown here and save the fi le:

<RMW:NotificationsControl runat="server" />

Introduction to User Controls ❘ 379

c11.indd 12/18/2015 Page 379

 6. Run the application and go to Admin/ManageItem. You should get a screen similar to that in
Figure 11-13.

FIGURE 11-13: ManageItem page after the control is successfully added

How It Works

Just as it supports the capability to register a control on a page, ASP.NET supports the registering of a
control sitewide. The sitewide registration does not happen in code, however, but through confi gura-
tion. Once the confi guration has been added, it is possible to add the control to a page just like a server
control—without having to specially register it on a page.

One of the interesting peculiarities of user controls is how they affect the ID of various server con-
trols contained within them.

Managing the IDs of Any Controls
When you work with server controls within your user control you will fi nd that the ASP.NET run-
time takes some liberties with the values that you set. Consider a traditional Label server control.
The following code snippet shows both the code used to create the label in your content page and
the created HTML:

MARKUP PAGE

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <asp:Label runat="server" ID="DefaultLabel" Text="I am a label" />
</asp:Content>

Rendered HTML

I am a label

380 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 380

As you can see, ASP.NET changes the id of your rendered HTML by using the entire nested
chain of controls to create the ID, ensuring that each control’s ID is referenced in the output
HTML. Thus, the label with an ID of DefaultLabel that is contained in a Content control with
an ID of MainContent would output an HTML element with an id of “MainContent_
DefaultLabel” based on the nesting of those controls.

Consider the following situation. Your user control contains a standard server control whose ID you
may want to access, perhaps for styling. The various code snippets look like the following:

MARKUP PAGE

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">
 <rmw:ServerControl ID="BaseId" runat="server"/>
</asp:Content>

CONTROL CONTENT

<asp:Label runat="server" ID="UserControl" Text="I am a control" />

RENDERED HTML

I am a control

As you can imagine, this approach makes it diffi cult to fi nd an item on the client side, especially if
it is nested within other controls, because its HTML id will be based on the relationships between
all of the controls, so predicting the ID can be problematic. This became a big enough issue when
using Web Forms that an attribute was added to all controls (both server and user) by default,
ClientIdMode. ClientIdMode enables the developer to defi ne how client-side Ids will be generated
based on ASP.NET control IDs. The available values are described in Table 11-3.

TABLE 11-3: ClientIdMode Values

NAME DESCRIPTION

AutoId Creates a client-side id that is basically a concatenation of all ids from all controls
in the hierarchy. The output of this approach would be the same as the preceding
 examples. This is also the value from all versions of ASP.NET prior to 3.5.

Static Using this ClientIdMode means there will be no concatenation within the control’s
client id. Thus, any ID that you assign the control will be given to the rendered
 element. However, there is no validation that the ID is unique, even though this is
a requirement of HTML. You have to manage this uniqueness yourself as you build
out your markup.

Introduction to User Controls ❘ 381

c11.indd 12/18/2015 Page 381

NAME DESCRIPTION

Predictable This mode is generally used in databound controls for which you want every item
in the set of output to have an Id that you can predict. This is useful in cases where
you may have a user control that is displayed with each row in a list of items. Using
Predictable and the ClientIDRowSuffix attribute enables you to defi ne the Id
of the output element to include some known value such as the Id of the item in the
list. If you are not using this mode in an area where there are multiple instantiations,
such as a list, the output will be the same as AutoId.

Inherit This value sets the ClientIdMode of a control to the ClientIdMode of its hosting
item—whether it is another control (either user control or server control) or a page.
This is actually the default value of all controls, whereas Predictable is the default
mode for all pages.

At this point, nothing needs the ClientIdMode in the sample application. You will later see how
these different modes can be useful, both on the client side and on the server.

Adding Logic to Your User Controls
You have created a user control that performs a specifi c set of functionality. With this design, how-
ever, if you wanted the control to be able to do something slightly different you would have to cre-
ate another control to perform that slightly different action. Instead of creating a new user control,
wouldn’t it be better to provide additional functionality in this same control? In this section you’ll
learn how you can do that.

You likely remember that the default Web Form server controls are capable of using attributes as
part of control instantiation. You can add the same type of support to your user controls; that is,
you can add properties (which become available as attributes during control creation) to your con-
trol and then make decisions within your code based on those additional values. This enables you to
instantiate your control as follows:

<rmw:SomeKindOfListControl runat="server" SortOrder="Descending" ID="MyUserControl"
 MaxNumberDisplayed="3" />

This code not only instantiates the control, it sets some properties. The changes you have to make
in your control are minimal. Supporting the preceding control just described would require an
approach such as the following:

public enum Sortorder
{
 Ascending,
 Descending,

382 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 382

 None
}

public partial class SomeKindOfListControl : System.Web.UI.UserControl
{
 public int MaxNumberDisplayed { get; set; }

 public Sortorder SortOrder { get; set; }

 protected void Page_Load(object sender, EventArgs e)
 {

 }
}

As shown in the preceding snippet, there are two public properties whose names match the
 attributes in the previous example. During page creation and control instantiation, these values will
be set by the attributes. Because this happens during control instantiation, the values are available
during the Page_Load event handler.

An interesting part of this code sample is the use of the enum. As you may remember, an enum
enables you to defi ne a set of values that are available—in this case, three different sort orders.
Using an enum in this instance enables the user control to have some control over the different kinds
of values that are input, as shown in Figure 11-14.

FIGURE 11-14: Enum values shown in IntelliSense

Along with the capability to have IntelliSense understand enums, because you are working
with a type-safe language, either C# or VB.NET, there is enforcement of type as well. The
MaxNumberDisplayed expects an integer value. If you try to enter a different value, such as a string,
you will get a validation warning, as shown in Figure 11-15.

FIGURE 11-15: Validation when using an incorrect type

Trying to run the application with an incorrect type results in an error, as shown in Figure 11-16.

Introduction to User Controls ❘ 383

c11.indd 12/18/2015 Page 383

FIGURE 11-16: Error when using an incorrect type in a user control

By adding public properties to the user control, you can customize its output. However, you need to
ensure that you code your application so that it can successfully run if it contains attributes that are
not set, such as through the use of default values. The following Try It Out will give you hands-on
experience with adding logic to your user controls, and it demonstrates several approaches to ensur-
ing that your control can work regardless of the attribute that was entered in the calling page.

TRY IT OUT Adding Logic to Your Controls

Our initial server control made some assumptions regarding how items will be managed. In this activ-
ity, you allow the calling page to manage some of those assumptions, making your control more
fl exible and manageable from the page. You do this by allowing two new fi elds, DisplayType and
DateForDisplay, to be set as attributes in the control.

 1. Ensure that Visual Studio is running and that you have your RentMyWrox solution open. Open
Controls\NotificationsControl.aspx.cs.

 2. Add the following code to the page, above the Page_Load method:

public enum DisplayType
{
 AdminOnly,
 NonAdminOnly,
 Both
}

public DisplayType Display { get; set; }

public DateTime? DateForDisplay { get; set; }

384 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 384

 3. Change the Page_Load method to the following:

protected void Page_Load(object sender, EventArgs e)
{
 if (!DateForDisplay.HasValue)
 {
 DateForDisplay = DateTime.Now;
 }
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var notes = context.Notifications
 .Where(x => x.DisplayStartDate <= DateForDisplay.Value
 && x.DisplayEndDate >= DateForDisplay.Value);

 if (Display != null && Display != DisplayType.Both)
 {
 notes = notes.Where(x => x.IsAdminOnly ==
 (Display == DisplayType.AdminOnly));
 }

 Notification note = notes.OrderByDescending(x => x.CreateDate)
 .FirstOrDefault();

 if (note != null)
 {
 NotificationTitle.Text = note.Title;
 NotificationDetail.Text = note.Details;
 }
 }
}

 4. Run the application and go to \Admin to confi rm that everything still works.

 5. Open Admin\Default.aspx. Go into the Notifi cations control that has already been added to the
page and add the new attribute as shown here:

Display=”AdminOnly”

 6. Run the application and go to \Admin to confi rm that everything still works.

How It Works

You made changes to the user control that enable it to support different needs. The original control that
you created had no customization capability; it made some business decisions without input and then
displayed the output. You just changed that, adding several new properties, as shown in Figure 11-17.

Introduction to User Controls ❘ 385

c11.indd 12/18/2015 Page 385

FIGURE 11-17: Adding in user control with additional properties

The fi rst property you added is DateForDisplay, which enables the control to use a date other than the
current date if needed. However, the type that you used, DateTime?, is a nullable type, which means
that you don’t have to set a value.Because this type is being used in the code, you added a few lines
to set the default value to the current date if the property wasn’t passed in. The application will use
this default value because the changes you made to the instantiation of the control did not include this
property.

The next property is Display, a property of type DisplayType. DisplayType is an enum that has three
values: Admin, non-Admin, and Neither. This enables you to use the same control whether you want to
display an admin-only item, a non-admin only item, or you don’t care which one is displayed. Because
there is no requirement that this property be set, you had to add a check to determine whether it had a
value; the code Display != null checks to ensure that the property has been set.

Finally, you changed the database access language to use the values of the various properties. This was
the biggest change because you could no longer use a single line of code, instead having to make a series
of commands whereby you fi ltered down the list step by step.

Now that you have added some logic to your user control, consider a slightly different scenario. You
added attributes to the markup code that set various values in the user control. You can also set
these values programmatically in your code because a user control is as easily accessible in the code-
behind as a standard server control. Suppose you have the following control set as shown:

<rmw:SomeKindOfListControl runat="server" SortOrder="Descending" ID="MyUserControl"
 MaxNumberDisplayed="3" />

386 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 386

You can access this control in your code-behind as shown here and change these values as necessary
while in your code-behind:

protected void Page_Load(object sender, EventArgs e)
{
 MyUserControl.MaxNumberDisplayed = 5;
 MyUserControl.SortOrder = Sortorder.Ascending;
}

Because you have full control in your code-behind, there may be times when you don’t want to set
the values in the control defi nition at all but rather, for a particular page, always set them in code.
This gives you fl exibility based on logic that is happening within your page; for example, the attri-
bute value you use might depend upon the type of information in the page or on actions taken by
the user.

Not setting the properties in the control is straightforward but the implementation may affect the
way your user control is designed. This may happen because of differences in how these properties
are being set. When setting a property through the control’s attribute, you are setting that value
during the control’s instantiation. That means the value is set at the very beginning of the ASP.NET
page life cycle. Setting the values at a different time in the life cycle, such as during the Page_Load
event manager as shown earlier, may mean that the values have not yet been set when the control
does its processing.

The life cycle provides some protection for ensuring that property values are set because it always
runs the hosting page’s event handler before it runs the same event handler on the control. This
means that the process will look like the diagram in Figure 11-18.

Hosting Page

Page Load

Hosted Control

Page PreRender

Page Load

Page PreRender

FIGURE 11-18: Page life cycle with page and hosted control

Thus, you would be able to set values in the Page_Load method of the hosting page and then access
those values in the control’s Page_Load method. However, if you ended up setting those values in
the hosting page’s Page_PreRender event handler (which comes after the Page_Load event handler),
yet expected to be able to access those values in the control’s Page_Load method, then you will get
unexpected behavior because those properties were not set as required. This can be mitigated by not
doing any work in your control until after Page_Load has been called.

Using Partial Views ❘ 387

c11.indd 12/18/2015 Page 387

Another potential problem is one that you ran into earlier in the discussion of server controls: values
being set in code but maintained in ViewState. This may or may not be a problem, depending on
your needs; but if retaining ViewState is necessary, it is possible and fairly simple to achieve. The
following code shows the two different approaches, one in which the values are lost upon submis-
sion and the other in which the values are retained in ViewState:

VIEWSTATE NOT MAINTAINED

public int MaxNumberDisplayed { get; set; }

VIEWSTATE MAINTAINED

public int MaxNumberDisplayed
{
 get { return (int)ViewState["MaxNumberDisplayed"]; }
 set { ViewState["MaxNumberDisplayed"] = value; }
}

With the second approach, you are manually manipulating the information in the ViewState by
actually using the ViewState as the backing fi elds for the variable’s getter and setter. You can do
this for all the properties in the control or just those properties for which remembering the values
between posts is important.

Sharing functionality between pages in an ASP.NET Web Forms site can be managed by creating a
user control to manage the requisite needs. When creating your user control, ensure that you keep it
focused on doing one thing. Adding properties gives you some control over the work happening in
the control, but don’t go overboard and start trying to do too many unrelated things within a single
control. It is better to have multiple well-defi ned controls than a single control that does multiple
different actions. Once you need to start adding if/then statements to determine the work that the
control will do, you should consider adding an additional control instead.

USING PARTIAL VIEWS

Whereas ASP.NET Web Forms support the reuse of functionality through user controls, ASP.NET
MVC does not have the concept of a user control. It supports the same functionality through the
use of partial views. Like a Web Forms user control, a partial view can contain just a view (perhaps
with some Razor processing within the view), or the partial view can be called from within another
view by calling the controller and action, thus taking advantage of business processing and the
inherent separation of concerns.

A partial view is very similar to a regular view, except that it is expected to be placed on another
page, so it looks more like a view that is designed to use a layout page because it will not have any
code created by default unless you use the scaffolding to build it off a particular model. Because a
partial view is intended to be a shared view, it follows some of the same rules as a layout fi le in that
the view fi le belongs in the Shared folder under the Views directory, and the view is traditionally
prefaced with an underscore, “_ViewName.” The Shared folder is where the MVC system looks

388 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 388

for referenced views by default; and while the underscore (_) is not required, it is the standard
convention.

TRY IT OUT Creating a Partial View

You have already created a user control that enables you to create reusable content for use in an ASP
.NET Web Forms page. In this Try It Out you do the same using ASP.NET MVC to create a partial
view, content that is reusable across multiple pages in an ASP.NET MVC application.

 1. Ensure that Visual Studio is running and that you have your RentMyWrox solution open.

 2. Right-click on the Shared subdirectory under the Views folder and select Add ➪ View. Name it
_Notifi cation, use the Details template, select the Notifi cation as the model to use, and ensure that
you are using the RentMyWrox context. Also, ensure that “Create as a partial view” is checked.
Your Add View dialog should match the one shown in Figure 11-19.

FIGURE 11-19: Adding a partial view

 3. Click the Add button to save the view and open it in the main window. Delete all the information
other than the fi rst line. This will leave you a page that looks like the one shown in Figure 11-20.

FIGURE 11-20: Removing scaffolded information

 4. Add the following code and save the fi le. When completed, it should look like Figure 11-21.

@model RentMyWrox.Models.Notification
@if(Model != null)
{

Using Partial Views ❘ 389

c11.indd 12/18/2015 Page 389

 @Model.Title
 @Model.Details
}

FIGURE 11-21: Finished partial view

How It Works

Comparing this example to the activity in which you created the ASP.NET Web Forms user control,
you should see the difference right away between the concept of a partial view and a user control. In
that case, when you were done creating the control, it was fully functional, it just wasn’t shown in any
pages so you didn’t get a chance to see it. That’s not the case with the partial view.

The separation of concerns offered by ASP.NET MVC is something that you have to remember when-
ever you approach the creation of reusable user interface code. All the view knows is that it expects a
type of RentMyWrox.Models.Notification to be “given” to it so that it can display the appropriate
fi elds. The beauty of this approach is that unlike the tightly bound Web Forms approach, it doesn’t mat-
ter to the view how it gets the appropriate information—only that it gets it. You’ll see this demonstrated
in the next few examples.

Adding a Partial View
Once you have the partial view created, the next thing you need to do is add it to the hosting view.
Here is the simplest way:

<div>
 @Html.Partial("_PartialViewName")
</div>

This approach uses an HTML helper that processes the partial view into a string and then inserts
that string into the hosting view. You can also capture the string into a variable where you can work
with it as necessary. Another approach instead parses it directly into the response stream as it is
being created. This approach, using the HTML.RenderPartial extension method, does not allow you
to manipulate the output of the partial view. Because the RenderPartial method does not write out
a string it is more performant than the Partial method.

Four different sets of parameters are available to the Partial and RenderPartial methods, each of
which enables you to pass in different sets of information to the partial view. Table 11-4 describes
these different signatures.

mailto:@Html.Partial("_PartialViewName

390 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 390

TABLE 11-4: Method Signatures for Including Partial Views

SIGNATURE DESCRIPTION

string The string represents the partial view name. Note that no directory
structure or anything else is added in with the name, as the system
assumes that the partial view is in the Views\Shared directory.

string, object The string is the partial view that you want to render. The object
is the model passed into the partial view. If you do not defi ne a
specifi c model to be passed into the partial view, then the system
passes in the same model that the hosting view was given.

string,
ViewDataDictionary

The string is the partial view that you want to render. The
ViewDataDictionary represents the viewData that you want the
partial view to be able to access. You can access viewData by using
constructs such as ViewData["SomeKeyName"].

string, object,
ViewDataDictionary

The string is the partial view that you want to render. The
object is the model that is passed into the partial view. The
ViewDataDictionary represents the viewData that you want the
partial view to be able to access.

When you are rendering a partial view, you have control of the information you pass in to the
view. When you do not specify the model or viewData, then the hosting view’s model and/or
 viewData will be provided to the partial view. When taking this approach, you have to remember
that the hosting view has to provide all of the data to the partial view. That means there is no
 associated controller providing the information, so you have to do it from the calling view. The
 following Try It Out walks you through adding a partial view.

TRY IT OUT Adding a Partial View

You have already created a partial view that enables you to create reusable content for use in an ASP
.NET MVC view. In this exercise you add this partial view to your MVC view.

 1. Ensure that Visual Studio is running and that you have your RentMyWrox solution open. Open
the main layout page, Shared_MVCLayout.cshtml. Locate the end of the menu on the left and
insert the following code below the menu. The page should look like Figure 11-22.

@{
 var model = new Notification {
 Title = "This is a hardcoded title",
 Details = "this is hardcoded details" };
}
@Html.Partial("_Notification", model)

mailto:@Html.Partial("_Notification

Using Partial Views ❘ 391

c11.indd 12/18/2015 Page 391

FIGURE 11-22: Finished partial view

 2. Run the application and go to \UserDemographics. You should get a page similar to that shown in
Figure 11-23.

FIGURE 11-23: Partial view shown in the UI

392 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 392

How It Works

As mentioned in the last activity, the view does not care how it gets the model that it is going to display.
In this case, you created a model using hardcoded strings and then sent this model to the partial view
by passing the model as a parameter in the helper method that instantiated the partial view.

Obviously, this isn’t an ideal way to do this. However, using the Partial method requires that the call-
ing view already contain the information that needs to be passed into the partial view. There are sev-
eral ways that this can work. The fi rst is the route that you took in this example, which is creating the
model manually and sending it into the partial view. This could be done when the values that you want
to have displayed are already part of the model that was sent into the view. They could be other proper-
ties on your model that when combined make up the model that needs to be passed to the partial view,
or your hosting view’s model could have a property that is the same type as the partial view’s model, so
that particular property would simply be passed in as opposed to creating a new model object.

As this code now stands, there is no access to a model in your layout, because this is a layout page that
will serve as a template for multiple pages, each of which may have its own model. However, by default,
the layout has access to the model passed to the content page. Therefore, the page has access to the
model, it just currently has problems being able to predict the type of model that will be passed, espe-
cially given the current approach whereby the model being presented to the view is tightly bound to the
database.

This brings up the concept of a ViewModel, or a model that is specifi cally designed to be passed to a
view. It represents information that is necessary for the view to display correctly, rather than informa-
tion specifi c to a particular item. So far, every view that you have worked with expects a type that is
directly related to a business entity—in this case one that is also directly related to a database table.
That is not always the case, especially in enterprise applications which might have complex UIs that
represent several different models, all of which are gathered together into a single ViewModel that acts
as a container. Future chapters cover a couple of examples of this.

One other way to pass information around is through the ViewBag and ViewData objects. Both of these
are sets of information that are available in both the controller and the view, and serve as a fl exible way
of passing information that does not necessarily need to be created as part of the model. A good exam-
ple is the list of values that would be available in a dropdown. Most likely, the entire set of information
will not be part of the business model because it will only retain information about the selected item,
not all available items, in the dropdown. Getting this information into the view would require either a
ViewModel that contains both the business model information as well as a list of values for the list box
or a different way to pass data from the controller to the view. Also, because the context of the host-
ing page is passed into partial views by default (there are methods where you can pass in objects that
overwrite the default content), the ViewBag and ViewData objects are available for consumption in the
partial view as well.

The ViewData is a dictionary object to which you can add data; it’s a derivative of the
ViewDataDictionary class. This means you would access it using approaches like those demonstrated
in the following code:

ViewData["NotificationModel"] = new Notification();

Notification notificationFromViewData = ViewData["NotificationModel"] as Notification;

Using Partial Views ❘ 393

c11.indd 12/18/2015 Page 393

The ViewBag object is different in that it is a wrapper around the ViewData object that enables you
to create dynamic properties for the ViewBag. This in turn enables you to access them differently, as
shown here:

ViewBag.NotificationModel = new Notification();

Notification notificationFromViewBag = ViewBag.NotificationModel;

Each of these approaches enables you to pass information from the controller to the hosting view, and
from there to the partial view.

As this last activity shows, when using the HTML.Partial approach, you have to provide all the data
to that view from the hosting view. However, there will be times when you don’t want to add this
computation to all of the controllers that will be returning views containing the partial view. Instead
you will want the partial view to be able to do its own processing. Fortunately, you have that capa-
bility as well.

Managing the Controller for a Partial View
With an ASP.NET Web Forms user control, you have the same default functionality provided by a
Web Forms page: the markup and the code-behind. In the last activity you saw how MVC offers you
the capability to create a partial view and call the view directly. However, the implementation that
you just went through does not allow the equivalent of the code-behind, or the capability to do busi-
ness processing outside of the view itself—a capability that would be very useful.

Whereas the Partial and PartialRender commands directly add the partial view into an area
within the page, there is another approach that calls a controller action which then returns the par-
tial view for rendering. This approach enables you to use the complete processing power of a con-
troller to create a specifi c model to provide to the partial view.

Using a controller to perform this work provides several signifi cant advantages. The fi rst is that
you do not have to do any processing in the hosting view. If the partial view needs a specifi c model,
the action responding to the original request does not have to worry about that—it can just ensure
that the non-partial view information is available for consumption by the hosting view. This also
means that you can eliminate the need for that code on each action that provides a view using that
partial view.

By adding a controller to the fl ow, you are also helping enforce the MVC pattern by separating the
different concerns into their appropriate places. This ensures that the various parts of the applica-
tion remains extensible and reusable.

One more reason why using an action to create the partial view is useful is because of caching. By
using a controller-based action, you can cache the output on the server so that different calls over a
short period return the same content, without having to actually rerun the business logic. If the con-
tent changes infrequently, controller-based caching favorably impacts both performance and system
utilization because the work is not redone on each call, only when the cache expires.

394 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 394

SERVER CACHING IN MVC

In its simplest form, caching provides a way to store frequently accessed data and
reuse that data. Caching has some signifi cant advantages:

 ➤ Reduce database server round-trips.

 ➤ Avoid time-consumption for regenerating reusable content.

 ➤ Improve performance.

Note the following points when considering the use of caching in your MVC
application:

 ➤ Use caching for content that is accessed frequently.

 ➤ Avoid caching for content that is unique per user.

 ➤ Avoid caching for content that is accessed infrequently/rarely.

 ➤ For caching of dynamic content that changes frequently, defi ne a short cache–
expiration time, rather than disable caching.

As you can see, there are a lot of advantages to providing server caching in MVC. It
is also easy to add because it is all attribute based, as shown here:

[OutputCache(Duration=300)]
public ActionResult Index()
{
 return View();
}

The preceding snippet will cache the output for 300 seconds, or 5 minutes. If you
consider a call that may happen on every requested page, and you have 10 users
calling one page per minute, over the fi ve-minute caching period you will save 49
calls to the database. If you are working with data that changes only once a day,
imagine the savings in performance and system utilization that you would have by
extending the caching period to several hours. However, make sure that you do not
set the caching period to several hours if the data changes every hour!

The differences between a traditional action that returns a view and an action that returns a partial
view are very subtle, as shown in the following code:

ACTION THAT RETURNS A VIEW

public ActionResult Details(int id)
{
 return View();
}

Using Partial Views ❘ 395

c11.indd 12/18/2015 Page 395

ACTION THAT RETURNS A PARTIAL VIEW

public ActionResult Details(int id)
{
 return PartialView("_NewsList");
}

The only change here is that you are returning a PartialView rather than a View, and returning a
named view. The named view is useful in this case because it makes it easier for the processor to fi nd
the correct partial view to use. The default is still to use a view with a name that matches the action
name, but in this case that could be confusing because it would be easy to think of cases where you
may have multiple “detail” partial views.

Calling the appropriate controller action to get a partial view is not too different from instantiating
a partial view through the Partial and RenderPartial methods. Instead of calling those HTML
extension methods, you instead call a different set of methods, Action and RenderAction, as
shown here:

<div>
 @Html.Action("News","List")
</div>

<div>
 @Html.RenderAction("News","List")
</div>

The differences between the two methods are the same as those between the Partial methods;
the Action method returns a string that you can capture into a variable if desired, while the
RenderAction renders the output directly into the response stream. The parameters being passed
into the method indicate the controller name and the action name that provides the partial view
inserted into the hosting view.

It is important to correctly confi gure the controller and action to ensure that the action is return-
ing a PartialView rather than a View. The system will error out as multiple different items try to
control the response stream. Using the PartialView ensures that the action knows that it is going
to be participating in a response stream that was created by another action, so that it does not try to
directly interact with the response.

In the following Try It Out, you create a full controller-accessed partial view and then add it to
 several pages as necessary.

TRY IT OUT Creating and Calling a Partial View through an Action

You have already created a partial view that enables you to create reusable content for use in an ASP
.NET MVC view. Now you add this partial view to your MVC view.

 1. Ensure that Visual Studio is running and that you have your RentMyWrox solution open.

 2. Right-click on the Controllers directory and select Add ➪ Controller. When the Add Scaffold dia-
log appears, as shown in Figure 11-24, select the MVC 5 Controller - Empty template and click the
Add button.

mailto:@Html.Action
mailto:@Html.RenderAction

396 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 396

FIGURE 11-24: Scaffolding for adding a new controller

 3. Name the controller Notifi cationsController and click the Add button. This creates the fi le and
opens it in your main window. This fi le should look something like Figure 11-25.

FIGURE 11-25: Empty controller

 4. Add a new using statement at the top of the page so that you have access to the classes in the
Models namespace:

using RentMyWrox.Models;

 5. Delete the Index method. Add the following code in its place. When this is done you should have a
page similar to the one shown in Figure 11-26.

Using Partial Views ❘ 397

c11.indd 12/18/2015 Page 397

[OutputCache(Duration = 3600)]
public ActionResult AdminSnippet()
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 Notification note = context.Notifications
 .Where(x => x.DisplayStartDate <= DateTime.Now
 && x.DisplayEndDate >= DateTime.Now
 && x.IsAdminOnly)
 .OrderByDescending(x => x.CreateDate)
 .FirstOrDefault();
 return PartialView("_Notification", note);
 }
}

[OutputCache(Duration = 3600)]
public ActionResult NonAdminSnippet()
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 Notification note = context.Notifications
 .Where(x => x.DisplayStartDate <= DateTime.Now
 && x.DisplayEndDate >= DateTime.Now
 && !x.IsAdminOnly)
 .OrderByDescending(x => x.CreateDate)
 .FirstOrDefault();
 return PartialView("_Notification", note);
 }
}

FIGURE 11-26: Notifi cations controller with actions

398 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 398

 6. Open the layout fi le, Shared_MVCLayout.cshtml. Locate the code that you added earlier and
replace it with the following code. When completed, the content will be as shown in Figure 11-27,
following the change you just made on line 24.

@Html.Action("NonAdminSnippet", "Notifications")

FIGURE 11-27: Updated layout view

 7. Run the application and go to \UserDemographics. You should not be seeing the notifi cation at
this point, which is expected. Open your SQL Server Object Explorer, expand your database, go
into your Tables, and right-click dbo.Notifi cations and select View Data. Add a new row to your
table, ensuring that IsAdminOnly is set to False, that DisplayStartDate is before today, and that
DisplayEndDate is in the future. The result should resemble what is shown in Figure 11-28.

FIGURE 11-28: SQL Table view after adding new item

 8. Run the application and go to \UserDemographics. You should now see the information you just
added to the database, as shown in Figure 11-29.

mailto:@Html.Action

Using Partial Views ❘ 399

c11.indd 12/18/2015 Page 399

FIGURE 11-29: New notifi cation displayed in the UI from a partial view

How It Works

In the previous example, you had to provide a model to the partial view by sending a model in from
the hosting view. With this new approach, however, you changed the application so that the model was
provided to the view by a controller; all the hosting view had to do was call a specifi c controller and
action. This is a huge step, because the controller that creates the model used for populating the host-
ing view doesn’t have to be concerned with performing any business logic for creating a notifi cation,
instead leaving it to an action that knows how to get the appropriate model. This enforces many of the
rules of object-oriented programming regarding encapsulationand separation of concerns.

The process of building the controller is unchanged from creating controllers for a regular ASP.NET
MVC page. The only difference is that the controller returns by calling a PartialView method rather
than a View method. You created two different actions, one to return an Admin notifi cation and the
other to return a non-Admin notifi cation. When you created the Web Forms user control you added a
parameter to the control that allowed a single user control to perform the logic for both, yet here you
created two different actions. Why do you think that is?

Consider what the instantiation would look like if you performed the work in a single method.
Currently, instantiating each version requires the following lines:

@Html.Action("NonAdminSnippet", "Notifications")
@Html.Action("AdminSnippet", "Notifications")

mailto:@Html.Action
mailto:@Html.Action

400 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 400

If you changed it so that there were a URL-based value for the differentiator, you could end up with
something like the following as the calls to instantiate:

@Html.Action("Snippet", "Notifications", new {DisplayType = "NonAdmin"})
@Html.Action("Snippet", "Notifications", new {DisplayType = "Admin"})

There would have to be logic in the controller similar to that in the code-behind of the user control to
build out the query to get the correct type of notifi cation to be displayed to the user.

Consider what would be needed to take the same approach with ASP.NET Web Form user controls. If
you were not going to use parameters, you would have had to create two controls. However, because
the UI is the same for each approach, you would have had to copy and paste the markup code from
one control to the other, and then you would be able to do the simplifi ed logic in the code-behind that
would have been comparable to the code in each of our actions. However, because the view (Web
Forms markup) and controller (Web Forms code-behind) in MVC is not tightly bound, you were able to
get full reuse of the view.

The separate actions also provide a logical breakdown of responsibilities. They can be tested individu-
ally and you can change one knowing that you will not be affecting the outcome of the other. You
cannot say the same thing with the single user control approach used in the previous Try It Out. Also,
because the logical separation is obvious, instantiating the control is also simpler, because you do not
have to worry about passing in parameter values. Web Forms user controls made it easy to pass in
parameters, even supporting them in IntelliSense, but MVC does not have the same IDE support, nor
does it really need it as much.

TEMPLATES

ASP.NET Web Form user controls and MVC partial views support a lot of the same requirements,
including the capability to create sections of UI and business logic that are reusable and consumable
from within a standard page or view (master pages and layout templates). MVC offers an additional
approach to creating reusable code: templates. You worked with built-in templates in Chapter 6
when you used methods such as EditorFor or DisplayFor. These methods took the properties that
you were using and provided the default template for that type. MVC provides you with the capabil-
ity to create and defi ne your own templates that enable you to use the same approach and render
custom types based on a custom template.

Creating both editor and display templates for a custom type is very similar to what you have
already done when creating partial views; in fact they are partial views that follow strictly defi ned
location and naming conventions. The fi rst part of the convention stipulates that custom tem-
plates must be stored within the appropriate folder in your MVC application: Templates that
respond to DisplayFor need to be placed in the Views/Shared/DisplayTemplates directory, while
those templates that respond to the EditorFor method need to be placed in the Views/Shared/
EditorTemplates directory. The naming convention stipulates that the name of the fi le must match
the name of the type for which the template will be used, such as DateTime or Address.

mailto:@Html.Action
mailto:@Html.Action

Templates ❘ 401

c11.indd 12/18/2015 Page 401

In the next Try It Out, you get a chance to see how these work and how they are instantiated
 differently than traditional partial views.

TRY IT OUT Creating and Using Custom Templates

In this activity, you create Editor and Display templates for a DateTime type. This allows for a standard
implementation across all areas of the site that may display or edit a date.

 1. Ensure that Visual Studio is running and that you have your RentMyWrox solution open. Start
the application and navigate to UserDemographics\Create. You should get a screen similar to that
shown in Figure 11-30.

FIGURE 11-30: Initial screen showing default DateTime management

 2. Create two new directories under the Views\Shared folder, DisplayTemplates and EditorTemplates.
Your Views directory should look like Figure 11-31.

FIGURE 11-31: Views directory after Templates directories are added

402 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 402

 3. Right-click on the DisplayTemplates folder and select Add View. Name the view DateTime and
ensure that the option to create as a partial view is checked, as shown in Figure 11-32.

FIGURE 11-32: Adding DateTime Display template

 4. Add the following two lines to the new view you created and save:

@model DateTime

@Model.ToString("MMMM dd, yyyy")

 5. Open the UserDemographicsController.cs fi le. Change the Index method to look like the fol-
lowing code:

public ActionResult Index()
{
 List<UserDemographics> list = new List<UserDemographics>();
 list.Add(new UserDemographics { Birthdate = new DateTime(2000, 6, 8) });
 return View(list);
}

 6. Run the application and set the browser to go to UserDemographics. You should get a page similar
to the one shown in Figure 11-33. Note that the formatting of the DateTime values match the for-
mat you set in the DisplayTemplate.

FIGURE 11-33: Viewing the DisplayFor template

mailto:@Model.ToString

Templates ❘ 403

c11.indd 12/18/2015 Page 403

 7. Right-click on the EditorTemplates folder and select Add View. Name the view DateTime and
ensure that the option to create as a partial view is checked (refer to Figure 11-32). This is just in a
different directory.

 8. Add the following code:

@model DateTime

@Html.TextBoxFor(model => model, new { @class = "editordatepicker" })

 9. Open your Scripts folder and check whether you have any jquery-ui scripts in it, as shown in
Figure 11-34. If you do, skip to Step 12.

FIGURE 11-34: Content of the project’s Scripts directory

 10. If you did not have the jquery-ui fi les, right click your RentMyWrox project and select Manage
NuGet Packages. This will bring up the Manage NuGet Packages dialog, shown in Figure 11-35.

FIGURE 11-35: Selecting jQuery package in Package Manager

mailto:@Html.TextBoxFor

404 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 404

 11. Select Online ➪ nugget.org on the left side of the dialog, and in the search box at the upper right
of the dialog enter “jquery-ui” and press Enter. This brings up a list of results. Find jQuery UI
(Combined Library) as shown in Figure 11-36 and click the Install button. Once the install has
been completed you should get a green check in place of the Install button.

FIGURE 11-36: Installing the jQuery UI package

 12. Open your layout page, Views\Shared_MVCLayout.cshtml. Add the following code to the
<head> section so that it is similar to Figure 11-37:

<script language="javascript" type="text/javascript"
 src="~/Scripts/jquery-1.10.2.js"></script>
<script language="javascript" type="text/javascript"
 src="~/Scripts/jquery-ui-1.11.4.js"></script>
<link rel="stylesheet"
 href="//code.jquery.com/ui/1.11.4/themes/smoothness/jquery-ui.css">
<script type="text/javascript">
$(document).ready(function () {
 $(".editordatepicker").datepicker();
});
</script>

FIGURE 11-37: Updating the layout page

Templates ❘ 405

c11.indd 12/18/2015 Page 405

 13. Run the application and go to UserDemographics/Create. You should see a screen similar to
Figure 11-38. To get the jQuery calendar picker, click the textbox.

FIGURE 11-38: Finished Editor template

How It Works

Custom Display and Editor templates are very similar to partial views (without controllers) in how they
are created and how they interact within the code. The main difference is that ASP.NET MVC uses a
convention-based approach to understand the roles that these particular template views play because of
their location in the directory structure. These same templates, put in a different directory, could not be
used in an EditorFor or DisplayFor call.

Other than having the templates in special directories, the relationship is defi ned by the name of the fi le
and the data type of the model that the view supports. The default is to give the fi le the same name as
the type, but you also have the capability to create different versions that will support the same type.
Perhaps you have a case where you want a DateTime displayed in one way, and a different case where
you want it displayed in a second format. This is supported through the use of the UIHint attribute,
which enables you to point that particular property to a different defi nition. The following code takes
the property SomeDate, and when used with an EditorFor or DisplayFor call it will fi rst look for a
template named "SpecialDateTime.cshtml" rather than the default DateTime.cshtml :

[UIHint("SpecialDateTime")]
public DateTime SomeDate { get; set; }

.

406 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 406

As the framework parses through the code in the view, it is able to interpret these various template calls
just like it would the Html.Partial and Html.Action methods. In this example, your display template
is only managing the formatting of the date that is displayed; it could do the same thing for a full cus-
tom type whereby the view contains many different labels and other DisplayFors. In the same way,
your editor template could take the same approach.

The custom DisplayFor that you used ensures that dates are displayed in a consistent format. You
have seen the ToString method before, but in this case you are providing it a custom layout structure.
DateTime is an interesting type because there are so many different ways that it can be displayed. While
it is a pretty simple concept, displaying the type can be complicated. There are cultural and language
differences as well as a size impact (spelling out the month versus using the integer representative, two-
digit years vs. four-digit years, etc.).

Table 11-5 lists the most commonly used formatting identifi ers for DateTimes.

TABLE 11-5: DateTime Formatting

FORMAT DESCRIPTION EXAMPLE

d Day of the month 1–31 January 7, 2015 -> 1

dd Day of the month, 01–31 (2-digit) January 7, 2015 -> 01

ddd Abbreviated day of the week January 7, 2015 -> Wed

dddd Compete day of the week January 7, 2015 -> Wednesday

h Hour, using 12-hour clock, 1–12 2:08 PM -> 2

hh Hour, using 12-hour clock, 01–12 (2-digit) 2:08 PM -> 02

H Hour, using a 24-hour clock, 0 to 23 2:08 PM -> 14

HH Hour, using a 24-hour clock, 00 to 23 (2-digit) 2:08 PM -> 14

m Minute, 0–59 2:08 PM -> 8

mm Minute, 00–59 (2-digit) 2:08 PM -> 08

M Month, 1–12 January 7, 2015 -> 1

MM Month, 01–12 (2-digit) January 7, 2015 -> 01

MMM Abbreviated name of month January 7, 2015 -> Jan

MMMM Complete name of month January 7, 2015 -> January0

t First letter of AM/PM designator 2:08 PM -> P

tt Complete AM/PM designator 2:08 PM -> PM

y Year, 0–99 January 7, 2015 -> 15

Templates ❘ 407

c11.indd 12/18/2015 Page 407

FORMAT DESCRIPTION EXAMPLE

yy Year, 00–99 (2-digit) January 7, 2015 -> 15

yyy Year, three digits January 7, 2015 -> 015

yyyy Year, four digits January 7, 2015 -> 2015

The DisplayFor template that you created used the formatting string of ("MMMM dd, yyyy"). Looking
at Table 11-5, you can determine that this will be displayed as the full month name, the two-digit day,
and the four-digit year, or January 07, 2015.

Your EditorFor template was simple as well; you didn’t really need to do anything in the template
itself other than add an override so that the class attribute of the text box is set to "editordate
picker". This was the beginning of a series of changes you then made to do some special work with
this specifi c class name. All of these changes were made so that you would be able to confi gure the
jQuery UI DatePicker to be the default method for editing values of type DateTime.

jQuery UI is a set of user interface interactions, effects, widgets, and themes built on top of the jQuery
JavaScript Library. To take advantage of one of these widgets, the DatePicker, you had to install the
jQuery UI NuGet package.

NuGet is an open-source package management system that is built into Visual Studio. It enables develop-
ers to add sets of functionality, in this case the JavaScript fi les that are necessary to provide the client-side
functionality. Using NuGet enables you to work with the various scripts and other fi les as a set, rather
than having to worry about managing the scripts separately in a more manual fashion.

After adding the jQuery JavaScript fi les to your project, the last thing you did was ensure that your web
pages would be able to use them. Adding the script links to the header of the layout fi le ensured that
they would be available to every page that uses the layout. This is important because the EditorFor
for the DateTime could be called anywhere. The only way to ensure that the necessary JavaScript code
was available was to put it into either the layout page or the template itself. However, putting it into
the template itself would lead to redundant calls because, as in the example, the DateTime might be
used multiple times on a page. Therefore, this code would be downloaded as many times as there are
DateTimes, which could lead to performance issues as well as make the JavaScript code more diffi cult
to work with—what happens when the same method is loaded multiple times?

The jQuery function that was added to the layout page is shown here for easy reference:

$(document).ready(function () {
 $(".editordatepicker").datepicker();
});

There’s a whole chapter (Chapter 14) on jQuery coming up, so you’ll learn more details later, but at this
point you should just understand what the function is doing. Once the document is loaded, clicking
any HTML element with a class of editordatepicker will run the datepicker function. This
 datepicker function is what opens the UI element with the calendar and supports the movement of
information between the calendar and the textbox.

408 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 408

You also added a link to a stylesheet fi le from the jQuery site. This fi le could just as easily be copied to
your local application and referenced there; and if any styling changes were required, the stylesheet fi le
would have to be copied locally so that it could be changed. However, the default behavior is acceptable
at this time, so you took advantage of the jQuery site hosting the fi le and used their version.

SUMMARY

User controls and partial views enable you to build reusable components to manage interaction
with the client. The purpose of both is to fulfi ll a specifi c subset of functionality and each control
is responsible for gathering all the necessary information and displaying it to the user. This is espe-
cially true with ASP.NET Web Form user controls because they always have code-behind that sup-
ports the entire page life cycle, just like a traditional Web Form.

As shown in the example, the MVC partial view gives you a little more fl exibility. It can be used
to display an item that is passed into the view using the Html.Partial method from a view; or
through the Html.Action method, which doesn’t call a partial view but instead calls an action on a
controller that returns the partial view. Because the controller is involved, you have the capability to
do business logic behind the scenes to create the model given to the view. Thus, the same MVC par-
tial view can be called from a view and passed in a model or it can be returned from an action with
a model. Because of the decoupled nature between the two, it doesn’t matter from where the view
gets its model—only that it has it.

Before user controls can be used they need to be registered, which can be done at the page level or
the application level. Once they have been registered, you can drop them onto the markup page just
like any other server control. When you are using partial views, registering them is not necessary;
simply determine how you want to reference the view (partial vs. action) and the system takes it
from there.

You can take partial views a little further by designating them as templates. A template is sim-
ply a partial view that is put it into a special folder. By its presence in the EditorTemplate or
DisplayTemplate directory of the Shared directory under Views, the system knows to use it for the
appropriate model type.

MVC also allows you to use property attribution to defi ne the relationship between a specifi c imple-
mentation of a type and a template. This enables you to create multiple templates and then deter-
mine according to the model property itself which template should be used as necessary.

User controls and partial views enable you to take specifi c parts of the page output and separate
them into different objects that can be called from other pages. If a piece of functionality is only
going to be used on one page, then it may not make sense to break it into user controls or partial
views; but if the functionality is, or might be, replicated on other pages, then you should always pull
it out into its own control or partial view. That way you can reuse it as much as desired.

Summary ❘ 409

c11.indd 12/18/2015 Page 409

EXERCISES

 1. The ASP.NET MVC template displays a model in a certain format. Is it possible to do the same
thing in an ASP.NET Web Forms application?

 2. When you want to get a partial view that has been processed on the server, when do you not
have to pass the controller into the Html.Action method?

 3. When you are working with ASP.NET Web User Controls, what would happen if you have a
property that is a string and you pass an integer into it though an attribute? What happens if
the property is an integer and you pass a string into it?

410 ❘ CHAPTER 11 USER CONTROLS AND PARTIAL VIEWS

c11.indd 12/18/2015 Page 410

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Action An HTML extension method that runs an action on a controller. The output
from the action should be a partial view. When you call the method, you
 typically pass in an action name, which assumes that the action is on the
same controller that rendered the current view; otherwise, you need to pass
in the controller name as well. Taking this approach results in a string value
that can be written directly into the markup or assigned to a variable and
further worked with.

AutoId An approach that creates a client-side ID that is basically a concatenation of
all ids from all controls in the hierarchy. The output of this approach is the
same as the examples in this chapters examples. This is also the value from
all versions of ASP.NET prior to 3.5.

Display Template An MVC partial view that is used to display a specifi c type. In order for
a partial view to act as a display template, it needs to be located in the
DisplayTemplates directory under the Views\Shared directory.

Editor Template An MVC partial view that is used to display a specifi c type. In order for
a partial view to act as a display template, it needs to be located in the
EditorTemplates directory under the Views\Shared directory.

Inherit
ClientIdMode

This value sets the ClientIdMode of a control to the ClientIdMode of its host-
ing item, whether it is another control (either user control or server control)
or a page. This is actually the default value of all controls, while Predictable is
the default mode for all pages.

Partial This extension method on HTML is used to reference a partial view that
should be displayed. It is generally called with the name of the view and the
model that is needed by the partial view. Taking this approach results in a
string value that can either be written directly into the markup or assigned to
a variable and further worked with.

Predictable
ClientIdMode

This mode is generally used in databound controls for which you want every
item in the set of output to have an ID that you can predict. This is useful in
cases where you may have a user control that is displayed with each row in
a list of items. Using Predictable and the ClientIDRowSuffix attribute
enables you to defi ne the Id of the output element to include some known
value, such as the Id of the item in the list. If you are not using this mode in
an area where there are multiple instantiations, such as a list, the output will
be the same as AutoId.

Register A command used to build the link to a Web Form user control. As part of
the Register, you set both the TagName and TagPrefix that are used in the
page to identify and instantiate the user control.

Summary ❘ 411

c11.indd 12/18/2015 Page 411

RenderAction This is the same as the Action extension method, except that it does not
return a string. Instead, it writes the output directly into the response stream.
Take this action if you do not expect to use the output of the action call,
because it increases performance by removing that overhead.

RenderPartial This is the same as the Partial extension method, except that it does not
return a string. Instead, it writes the output directly into the response stream.
Take this action if you do not expect to use the output of the partial call, as it
increases performance by removing that overhead.

Server Caching Server caching is confi gurable on an action, whose output is retained on
the server for a specifi c duration of time. This is especially useful for those
actions that return output which rarely changes.

Sitewide
Registration

Sitewide registration of a Web Forms user control replaces the page-by-
page registration process using Register with a single registration using the
Web.confi g fi le. As with the regular Register, sitewide registration requires
that you identify the TagName and TagPrefix that are used to instantiate
the control.

Static
ClientIdMode

Using this means there will be no concatenation within the control’s client
ID. Thus, any ID that you assign the control will be given to the rendered ele-
ment. However, there is no validation that the ID is unique even though this
is a requirement of HTML. You have to manage this uniqueness yourself as
you build out your markup.

TagName This is set when you register an ASP.NET Web Forms user control. This
value, along with the TagPrefix, is used to defi ne the relationship between
the control being referenced in the markup and the particular control that is
being referenced. This has to be unique for each control being registered.

TagPrefix This is set when you register your ASP.NET user control and is used to help
defi ne the relationship between the item placed on the page and the user
control that is going to be used on the page.

c12.indd 12/18/2015 Page 413

Validating User Input
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How client-side and server-side validation of input data differs

 ➤ Changing your model classes to help support validation

 ➤ Using validation controls to validate input in ASP.NET Web Form
pages

 ➤ Enforcing validation in ASP.NET MVC views and controllers

 ➤ Working with controllers that return partial views

 ➤ Some tips for implementing validation

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 12
download and individually named according to the names throughout the chapter.

There is an old saying, “garbage in, garbage out” (GIGO). The implication is clear: When
you allow bad data (garbage) into your application, you will have problems from then on out
because your application will give you garbage back. The best way to ensure that your applica-
tion does not have garbage data is to validate as much of the incoming information as possible
to ensure that it fi ts some known criteria, such as ensuring that a phone number includes all
digits, that an e-mail address has the correct format, or a quantity is an integer; for all sorts of
user-entered pieces of information, you can, and should, defi ne some expectations regarding
how that data should appear.

Both MVC and Web Forms provide support to help you keep your application as garbage-free
as possible. In this chapter, you will examine some of the more common validation needs, and
work with them in both MVC and Web Forms.

12

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

414 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 414

GATHERING DATA FROM THE USER

Gathering information from visitors to your site is key to your success. Because this information is
so important to your business, you have to help ensure its validity and correctness. Obviously you
can’t always ensure the correctness of the input data; if George Smith enters his name as Janet Jones,
there is no way to determine that. However, you can ensure that the user has entered a fi rst name
and a last name and that they are actual names—for example, such as not including numbers or
symbols.

When you approach validation, you want to look for a couple of things on each piece of data
received by the user:

 ➤ Required fi elds: There are some values that a user must provide in order for your system to
work. Is this particular property one of them?

 ➤ Data type: Any data that is input must be of a particular type. A value entered in a quantity
box needs to be numeric at least, most likely an integer.

 ➤ Data size: Just as you may need to have data fi t a specifi c type, you may also need the data to
fi t some particular ranges of sizes. The most common of these is a maximum size, or length.
This is necessary because each column in a relational database table was defi ned with a size
in characters. Trying to insert a value larger than that value will either lose data or cause an
exception.

 ➤ Format validation: A piece of data that represents, for example, an e-mail address, needs to
follow some kind of standard template: name@server.domain. Phone numbers have their
own rules, credit card numbers have their own rules, and so on.

 ➤ Range validation: Some data must fall between a realistic range. Entering a birth date of
January 1, 1756, for example, should raise some red fl ags.

 ➤ Comparison validation: Sometimes an entry in one fi eld implies a set of values in another
fi eld. For example, selecting a gender of female implies a title of Ms. but not Mr. Another
example is comparing the two values in a date range to ensure that the “from value” is less
than the “to value.”

 ➤ Others: Custom validations may be necessary as well—those that fall outside the scope of the
other validation approaches already listed. These will be completely dependent upon your
application needs.

Ideally, all this validation would work on the client side, so if the user enters invalid data then the
form cannot be submitted. This gives users a more immediate update when information is incom-
plete or incorrect. However, as a responsible developer, you cannot rely on the client to do all of

mailto:name@server.domain

Validating User Input in Web Forms ❘ 415

c12.indd 12/18/2015 Page 415

your validation, as the user may have turned that functionality off. Thus, you have to ensure that
the information that comes across the network to your server is correct as well, so server-side valida-
tion is also a requirement. In fact, if you had to choose between supporting only one of the valida-
tion approaches, client-side or server-side, you should always choose server-side because you want
full control over the information being validated.

When you review all of the preceding considerations, the ideal form of validation is one that you
could use on both server and client. Another useful function would be defi ning the requirements
as close to the model as possible, ideally even on the model itself. This means when you look at the
class fi le you would be able to understand, right there, the data expectations.

Keep all of this in mind as you take your journey through validation. As you have likely already sur-
mised, MVC and Web Forms each manage the requirement of validation differently.

VALIDATING USER INPUT IN WEB FORMS

There is a special set of server controls designed to perform validation. Briefl y mentioned earlier in
the book, these are the aptly named validation server controls, and they are available in the Visual
Studio Toolbox, as shown in Figure 12-1.

FIGURE 12-1: Validation controls in Visual Studio Toolbox

Each of these ASP.NET Web Form validation controls supports one or more of the necessary valida-
tions. Table 12-1 describes each one in detail.

416 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 416

TABLE 12-1: Validation Server Controls

CONTROL DESCRIPTION

CompareValidator Use the CompareValidator control to compare the value
entered by the user in an input control, such as a TextBox con-
trol, with the value entered in another input control or a con-
stant value. The CompareValidator control passes validation
if the input control’s value matches the criteria specifi ed by the
Operator, ValueToCompare, and/or ControlToCompare
properties.

You can also use the CompareValidator control to indicate
whether the value entered in an input control can be converted
to the data type specifi ed by the Type property.

When compared to the list of validation needs from the list in
the previous section, this control fi lls both the “DataType” and
“Compare” needs.

CustomValidator The CustomValidator control applies a user-defi ned validation
function against a control. When using this control, the developer
fi rst creates the JavaScript functionality to ensure that the values
entered into the control are correct. This control enables you to
perform any validation you need, as long as you can fi gure out
how to write the JavaScript to support it.

However, the JavaScript portion is only the client-side validation.
You also need to write server-side logic to validate on the server.
The combination of these two approaches ensures full validation.

When compared to the list of validation needs, this control can
fulfi ll any type, as it is completely customizable.

RangeValidator The RangeValidator control tests whether the value of an input
control is within a specifi ed range. You supply a minimum value
and a maximum value, and the type of the item being compared.

RegularExpressionValidator The RegularExpressionValidator control checks whether
the value of an input control matches a pattern defi ned by a
regular expression. This type of validation enables you to check
for predictable sequences of characters, such as those in e-mail
addresses, telephone numbers, and postal codes.

This control provides formatting validation and can also be used
to provide minimum and maximum length validation.

Validating User Input in Web Forms ❘ 417

c12.indd 12/18/2015 Page 417

CONTROL DESCRIPTION

RequiredFieldValidator Use this control to make an input control a required fi eld. The
input control fails validation if its value was not changed from the
InitialValue property upon losing focus.

This control supports the required fi eld’s validation, likely the
most common scenario; it only validates that there is data rather
than anything about that data.

ValidationSummary The ValidationSummary control is used on a page to display
all the validation errors that have occurred. Generally at the top
of the form, it displays the validations as well as a link that takes
the user to the fi eld that failed validation.

Because each of the controls typically does a specifi c validation, you have the capability to link mul-
tiple validation controls to an input fi eld, thus performing multiple different validations. For exam-
ple, if Date of Birth were both required and expected to be between a set of values, you could hook
up both a RequiredFieldValidator and a RangeValidator to the same input item, as shown here:

<div class="dataentry">
 <asp:Label runat="server" Text="Date of Birth" AssociatedControlID="tbDOB" />
 <asp:TextBox runat="server" ID="tbDOB" />
 <asp:RequiredFieldValidator ID="tbDOB_Req" ControlToValidate="tbDOB"
 runat="server" Display="Dynamic"
 ErrorMessage="Please enter a Date of Birth" />
 <asp:RangeValidator ID="tvDOB_Range" ControlToValidate="tbDOB" runat="server"
 Display="Dynamic" ErrorMessage="Please enter a valid Date of Birth"
 Type="Date" MinimumValue="1/1/1915" MaximumValue="12/31/2010" />
</div>

The preceding code snippet includes four different server controls:

 ➤ A Label control

 ➤ A TextBox control

 ➤ A RequiredFieldValidator

 ➤ A RangeValidator

All the controls are related in that the two validators and the label are all associated with the
TextBox control. Neither the Label control nor the TextBox control are new, but this is the fi rst
time you have seen the validator in action.

Many validators share some common properties. Table 12-2 lists these common properties, as well
as other attributes.

418 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 418

TABLE 12-2: Validator Properties

PROPERTY DESCRIPTION

ControlToCompare The input control to compare with the input control being validated. This
property is valid only on the CompareValidator.

ControlToValidate This property is available on every validation control. The
ControlToValidate property defi nes the input control that is being
validated. A validator that does not have this value set is not doing any
validation.

Display Another common property, the Display property defi nes how the mes-
sage will be displayed. There are three options: Dynamic, None, and
Static. When Display is set to Static, the area taken up by the error
message being displayed is always blocked out, regardless of whether it
is actually visible. In the preceding example, if the two Display proper-
ties were set to Static, there would be a space between the textbox and
the second error message, assuming it were the RangeValidator that
failed. Because they are dynamic, the space taken up by the fi rst error
message is not reserved and the error message from the second control
can be displayed as if the fi rst validation control is not there. Choosing
None means the error message is never displayed inline, rather only in a
ValidationSummary control. Static is the default value.

EnableClientScript This property is available on all validation controls. Use the
EnableClientScript property to specify whether client-side validation
is enabled. Server-side validation is always enabled, but you can turn off
client-side validation if desired. The default value is true.

ErrorMessage Available on all validation controls, this property defi nes the message
that’s displayed in a ValidationSummary control when the validator
determines that the content in the input box fails validation. It will also
display inline if the Text property is not set.

MaximumValue This property is available on the RangeValidator and is used to set the
upper end of the range being used for the comparison.

MinimumValue This property is available on the RangeValidator and is used to set the
lower end of the range being used for the comparison.

Validating User Input in Web Forms ❘ 419

c12.indd 12/18/2015 Page 419

PROPERTY DESCRIPTION

Operator Available on the CompareValidator, the Operator attribute defi nes the
type of comparison to be done. The options are as follows:

Equal: A comparison for equality between the values of the input control
being validated and another control, or a constant value.

NotEqual: A comparison for inequality between the values of the input
control being validated and another control, or a constant value. This is
the same as !=.

GreaterThan: A comparison for greater than between the values of the
input control being validated and another control, or a constant value.
This is the same as >.

GreaterThanEqual: A comparison for greater than or equal to between
the values of the input control being validated and another control, or a
constant value. This equates to !=.

LessThan: A comparison for less than between the values of the input
control being validated and another control, or a constant value. This is
the same as <.

LessThanEqual: A comparison for less than or equal to between the
values of the input control being validated and another control, or a
constant value. This is the same as <=.

DataTypeCheck: A data type comparison of the value entered in the
input control being validated and the data type specifi ed by the Type
property. Validation will fail if the value cannot be converted to the
specifi ed data type.

Text A common property, the value assigned to Text will display inline when
the validation fails.

Type The data type to which the values being compared are converted to
before the comparison is made. The options are String, Integer, Double,
Date, and Currency. The Type property is available in the RangeValidator
and the CompareValidator. The default value is String.

ValidationExpression The regular expression that determines the pattern used to validate a
fi eld

continues

420 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 420

PROPERTY DESCRIPTION

ValidationGroup A special property that is available on all validators. What makes it special
is that it is also available on other controls as well, such as Buttons and
other controls that support posting to the server.

The ValidationGroup enables you to group validators and various post-
back mechanisms so that only a subset of validation is run when a post-
back to the server happens. This enables you to have different sections of
the page doing different actions without having to worry about an action
taken in one area causing validation to occur in another area.

In this next Try It Out, you start to put various controls together to validate the input of a data
entry form.

TRY IT OUT Adding Web Forms validation

In this activity you update the ManageItem form that you created earlier in the book to ensure that the
values input by the user meet a certain set of criteria.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open. Open your Admin ➪
ManageItem.aspx page.

 2. Add the following code above the fi rst line of the form. You can do this by either typing the infor-
mation directly in or dragging and dropping the control from the Toolbox. It should look some-
thing like Figure 12-2.

<div>
 <asp:ValidationSummary ID="ValidationSummary1" runat="server" ForeColor="Red" />
</div>

FIGURE 12-2: Adding the ValidationSummary control

 3. Add a RequiredFieldValidator to tbName. You can do this by either typing in the information
directly, as shown below or dragging and dropping the control from the Toolbox and fi lling in the
required properties:

<asp:RequiredFieldValidator ID="rfName" ControlToValidate="tbName" runat="server"
 ErrorMessage="Name is Required" Text="*" Display="Dynamic"/>

TABLE 12-2 (continued)

Validating User Input in Web Forms ❘ 421

c12.indd 12/18/2015 Page 421

 4. Add another one to tbDescription:

<asp:RequiredFieldValidator ID="rfDescription" ControlToValidate="tbDescription"
 runat="server"
 ErrorMessage="Description is Required" Text="*" Display="Dynamic"/>

 5. Add a CompareValidator and a RequiredFieldValidator to tbCost as shown below. When you
are done, your markup should match what is shown in Figure 12-3.

<asp:RequiredFieldValidator ID="rfCost" ControlToValidate="tbCost" runat="server"
 ErrorMessage="Cost is Required" Text="*" Display="Dynamic"/>
<asp:CompareValidator ID="cCost" ControlToValidate="tbCost" runat="server"
 ErrorMessage="Cost does not appear to be the correct format" Text="*"
 Type="Currency" Operator="DataTypeCheck"/>

FIGURE 12-3: Adding some validation controls

 6. Add a RequiredFieldValidator to the Item Number.

 7. Add a RequiredFieldValidator and a CompareValidator to Acquired Date. When you are
done, your markup should match what is shown in Figure 12-4.

<asp:RequiredFieldValidator ID="rfAcquiredDate" ControlToValidate="tbAcquiredDate"
 runat="server" ErrorMessage="Acquired Date is Required" Text="*"
Display="Dynamic"/>
<asp:CompareValidator ID="cAcquiredDate" ControlToValidate="tbAcquiredDate"
 runat="server"
 ErrorMessage="Acquired Date does not appear to be the correct format" Text="*"
 Type="Date" Operator="DataTypeCheck"/>

FIGURE 12-4: Additional validation controls

422 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 422

 8. Run the application and select Admin ➪ ManageItem. Click the Submit button without entering
any information. You should see a screen like Figure 12-5.

FIGURE 12-5: Validation displayed

 9. Open the code-behind by selecting Admin ➪ ManageItem.aspx.cs. Update the SaveItem_Clicked
method by adding the code that is highlighted in the below snippet:

protected void SaveItem_Clicked(object sender, EventArgs e)
{
 if (IsValid)
 {
 Item item;
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 if (itemId == 0)
 {
 item = new Item();
 UpdateItem(item);
 context.Items.Add(item);
 }
 else
 {
 item = context.Items.FirstOrDefault(x => x.Id == itemId);
 UpdateItem(item);
 }
 context.SaveChanges();
 }
 Response.Redirect("~/admin/ItemList");
 }
}

How It Works

In this exercise you added two different types of validators, the RequiredFieldValidator and the
CompareValidator, to the data entry form that you built earlier for the Item. Because every item in the
form other than the picture is required, you had to add multiple RequiredFieldValidators. The code
for one of them is displayed here:

<asp:RequiredFieldValidator ID="rfName" ControlToValidate="tbName" runat="server"
 ErrorMessage="Name is Required" Text="*" Display="Dynamic"/>

Validating User Input in Web Forms ❘ 423

c12.indd 12/18/2015 Page 423

The attributes all help defi ne the rules that defi ne the control’s behavior. The most important property
is ControlToValidate, which defi nes the input control that this validator is going to evaluate. In this
case, the control is evaluating a control with the ID of "tbName". Both the Text and ErrorMessage
properties are set. Because the Text property is the one that displays inline (where the control itself
is located), you would expect to see an asterisk next to the input fi eld where validation failed. The
ErrorMessage is the text that displays in the ValidationSummary control. Reviewing Figure 12-5
shows how both of these are working. The ErrorMessage is displayed in the bulleted list at the top of
the page that was created by the ValidationSummary control, while each of the text boxes has an aster-
isk next to it that was defi ned by the value in the Text property.

On two of the controls you also added a CompareValidator. Both of these validators are shown here:

<asp:CompareValidator ID="cCost" ControlToValidate="tbCost" runat="server"
 ErrorMessage="Cost does not appear to be the correct format" Text="*"
 Type="Currency" Operator="DataTypeCheck"/>
<asp:CompareValidator ID="cAcquiredDate" ControlToValidate="tbAcquiredDate"
 runat="server"
 ErrorMessage="Acquired Date does not appear to be the correct format" Text="*"
 Type="Date" Operator="DataTypeCheck"/>

These validators are not comparing the input value to another control, but are instead ensuring that the
value being input can be converted to a specifi c type—in these cases a date and to a numeric value that
represents a valid currency amount. You can have this control handle both because of the Type param-
eter, which defi nes the parsing that the control will try against the input value.

Refer back to Figure 12-5 and pay special attention to those controls that have two different validators
applied to them. Note that only one message is being displayed in both the ValidationSummary and
inline, and that is the validation for RequiredField. The reason why this occurs is because the default
behavior for all non-RequiredFieldValidators is that they only work when the input value isn’t null.
Thus, leaving the value of the fi eld blank ensures that those other validators don’t. This is why they had
to be combined with a RequiredFieldValidator. The RequiredFieldValidator ensures that a value
is entered, and then the CompareValidator ensures that the value entered can be converted to the cor-
rect type.

This client-side validation is all handled by JavaScript because that is the only language that you can be
confi dent that the browser supports. Fortunately, you didn’t have to write any of that JavaScript your-
self; it was all generated from the control. Viewing the source of the rendered HTML shows how this
happens. Figure 12-6 illustrates a section of the created HTML.

FIGURE 12-6: Validation displayed

If you review the HTML that was created, you will see that there are script references that you did not
put into the code—mainly those that reference a WebResource.axd. WebResource.axd is a handler that

424 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 424

enables control and page developers to download resources that are embedded in a server-side assembly
to the end user. The code that is visible in Figure 12-6 requests a certain set of JavaScript to be down-
loaded to the client. If you went directly to that resource you would be able to download a fi le that is
actually pure JavaScript—the JavaScript that is then used to perform the validation.

When the validation fails, the submission to the server is stopped and the error messages and error text
are displayed as requested. Each time there is an attempt to post information to the server, the pro-
cess repeats itself until all items pass validation. Only when that occurs is the submission to the server
completed.

If you played with any of the fi elds that failed validation, you may have noticed one more interesting
fact. Whenever you enter and then leave a fi eld, the validation is again run against that input item.
This means that if you make a change to a failing fi eld, you will get an almost immediate update as to
whether you pass that fi eld’s expected validation. This only affects the inline warning, however; the
ValidationSummary only updates when the process attempts to post to the server, and you will not see
the summary control change when you leave the individual fi eld.

Whereas the changes that you had to make in the markup to provide validation support were relatively
signifi cant, the change you had to make in the code-behind was very simple. The Page class, from
which all Web Form pages inherit, contains a property that is populated when the request is received at
the server. Server-side validation happens automatically. You can choose to disregard it by not looking
at the IsValid property, but it will always be populated correctly based on the confi gured rules and the
data that was input in the Web Form.

As you can see, ASP.NET server controls have provided an easy and effi cient way to get work done,
this time by providing validation services on one or more input controls. As a bonus, this validation
happens on both the client side, through the use of JavaScript, and on the server side during normal
page processing. Although only two validation controls were demonstrated, most of the others work
in much the same way.

Understanding Request Validation
Another type of validation occurring on ASP.NET Web Form pages that you probably have not even
seen yet is request validation, and it is always enabled by default. Request validation is a feature in
ASP.NET that examines an HTTP request to determine whether it contains potentially dangerous
content. In this context, potentially dangerous content is any HTML markup or JavaScript code
in the body, header, query string, or cookies of the request. ASP.NET performs this check because
markup or code in the URL query string, cookies, or posted form values might have been added for
malicious purposes.

For example, if your site has a form on which users enter comments, a malicious user could enter
JavaScript code in a script element. When you display the comments page to other users, the

Validating User Input in Web Forms ❘ 425

c12.indd 12/18/2015 Page 425

browser executes the JavaScript code as if the code had been generated by your website. Request
validation helps prevent this kind of attack. If ASP.NET detects any markup or code in a request,
it throws a “potentially dangerous value was detected” error and stops page processing, as shown
in Figure 12-7.

FIGURE 12-7: Error thrown during request validation

You can see this happen yourself by simply entering some HTML type elements into the form page
that you were just working with.

As mentioned earlier, this validation is enabled by default but you can turn it off as needed, such as
when users are expected to enter information that may contain HTML or JavaScript elements. You
can control the settings by adding ValidateRequest="False" to the Page directive. This will turn
off request validation for that page.

There may be times when you don’t want to turn off request validation for a whole page, but instead
perform the validation on only a set of the controls on the page. This would be common in those

426 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 426

instances where capturing HTML is allowed, such as the screen where you can enter the description
of the Item class. In this case, you can enable or disable the check on a control level through the
use of the ValidateRequestMode property:

<asp:TextBox ValidateRequestMode="Enabled" runat="server" ID="tbDescription" />

With the preceding code, the content placed in the tbDescription will always go through request
validation, even if it is turned off at the page level.

VALIDATING USER INPUT IN MVC

You may have noticed that your validation expectations are defi ned as part of the UI construction
in ASP.NET Web Forms. This means that any pages that might be accepting the same type of infor-
mation in the page have to implement this validation independently. Thus, changing a validation
requirement requires you to make the changes in multiple pages. ASP.NET MVC takes a more cen-
tralized approach, putting control of the validation where it really belongs: on the model itself.

Model Attribution
Putting the validation on the model itself was a logical next step, as there is no place in the applica-
tion that should better understand what values are valid or invalid. Putting these validation rules on
the model also enables validation to become part of the database management process as well, by
putting some of the model validation rules, such as the fi eld’s maximum length or whether a fi eld is
required at the database level too. Lastly, putting the validation at the model level ensures any data
that doesn’t fi t the rule is not persisted. This same level of security isn’t present when working with
the ASP.NET Web Form validation controls—those only ensure that the values sent with the request
are valid, but it does nothing to ensure that the data being persisted is valid. The validation controls
are only for submission validation. However, you can also add attributes to models that are being
used from Web Forms and still take advantage of the built-in validation functionality.

Adding validation to a model is done by using attribution. Provided with the Entity Framework is a
large set of validation attributes that ASP.NET MVC can take advantage of when interpreting the
validation requirements. Some of the available attributes are listed in Table 12-3.

TABLE 12-3: Data Attributes Used in Validation

ATTRIBUTE DESCRIPTION

CreditCard Ensures that the value of the property is compatible with well-known
CreditCard number templates

[CreditCard(ErrorMessage = "{0} is not a valid credit card

number")]

Validating User Input in MVC ❘ 427

c12.indd 12/18/2015 Page 427

ATTRIBUTE DESCRIPTION

DataType Use the DataType attribute to specify the type of data that is expected
for the property beyond the data type of the property. Following are the
values of the supported types:
CreditCard: Represents a credit card number
Currency: Represents a currency value
Custom: Represents a custom data type
Date: Represents a date value
DateTime: Represents an instant in time, expressed as a date and
time of day
Duration: Represents a continuous time during which an object exists
EmailAddress: Represents an e-mail address
Html: Represents an HTML fi le
ImageUrl: Represents a URL to an image
MultilineText: Represents multi-line text
Password: Represents a password value
PhoneNumber: Represents a phone number value
PostalCode: Represents a postal code
Text: Represents text that is displayed
Time: Represents a time value
Upload: Represents fi le upload data type
Url: Represents a URL value

[DataType(DataType.Date)]

Display The Display attribute is not really a validation attribute, but rather the
value that is displayed in the UI whenever that property is referenced. This
fi eld will affect the @Html.LabelFor values used in the view and is also
used in the ErrorMessages when the property name is being displayed.

[Display(Name="Marital status")]

EMailAddress Ensures that the value of the property is compatible with well-known
phone number templates

[EmailAddress(ErrorMessage = "{0} is not a valid email

address")]

FileExtensions Ensures that the value of the property ends with the appropriate values
listed within the Extensions property. Note that you do not add the “.”;
the validation framework does that for you. You can display the string of
fi ltered extensions as part of the ErrorMessage.

[FileExtensions(Extensions = "jpg,jpeg", ErrorMessage =

"{0} is not a valid extension - {1}")]

continues

mailto:@Html.LabelFor

428 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 428

ATTRIBUTE DESCRIPTION

MaxLength Ensures that the property’s value does not exceed the number of charac-
ters defi ned in the attribute. This attribute becomes part of the database
defi nition, as the column in the table is set with this same value as its
width. The ErrorMessage enables you to add the value that you set as
the maximum length.

[MinLength(5, ErrorMessage="{0} needs to be at least {1}

character")]

MinLength Ensures that the property’s value does not have fewer characters than the
attribute defi nes. The ErrorMessage enables you to add the value that
you set as the minimum length.

[MinLength(5, ErrorMessage="{0} needs to be at least {1}

character")]

Phone Ensures that the value of the property is compatible with well-known
phone number templates

[Phone(ErrorMessage = "{0} is not a valid phone number")]

Range Ensures that the value of the property is within a known range of values.
When using this validator you fi rst defi ne the data type and then defi ne
the string version of the range from lowest to highest. When you create
the ErrorMessage that will be displayed to the user (or thrown as part
of an exception), it uses the string.Format notation: {0} = the display
name of the fi eld, {1} = the bottom of the range, and {2} = the top of
the range.

[Range(typeof(DateTime), "1/1/1900", "12/31/2020",

ErrorMessage = "{0} must be between {1} and {2}")]

RegularExpression Enables you to use a RegularExpression to validate the data that is
being stored

RegularExpression(@"^[a-zA-Z''-'\s]{1,40}$", ErrorMessage =

"Characters are not allowed.")]

Required Defi nes a fi eld as mandatory. This means some value must be entered into
the property. The Required attribute also interacts with the database when
using the code fi rst approach because it ensures that the table being con-
structed defi nes the mapped column as not being able to support a null
value.

[Required(ErrorMessage = "Please tell us how many in your

home")]

TABLE 12-3 (continued)

Validating User Input in MVC ❘ 429

c12.indd 12/18/2015 Page 429

ATTRIBUTE DESCRIPTION

StringLength This attribute can be used to set both the minimum and maximum length
of a property that is a string. The main difference between StringLength
and MinValue/MaxValue is that StringLength enables you to set both
maximum and minimum values and it can only be used on properties that
are of type string.

[StringLength(15, MinimumLength = 2, ErrorMessage = "{0}

must be between {2} and {1} characters")]

Url Ensures that the value of the property is compatible with a URL format

[Url(ErrorMessage = "{0} is not a valid URL")]

In this next activity you update a data model to use data attribution and validation.

TRY IT OUT Adding Data Annotation

In this activity you will be updating the UserDemographics class to use data annotation. Because some
of this annotation will affect the database table, you also have to update the database to support the
changes.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open.

 2. Open your UserDemograhics model class. Add the following annotations to the Birthdate prop-
erty. When completed, this property should look like Figure 12-8.

[Required(ErrorMessage = "Please tell us your birth date")]
[Range(typeof(DateTime), "1/1/1900", "12/31/2010",
 ErrorMessage = "{0} must be between {1} and {2}")]

FIGURE 12-8: Attributed property

 3. Add the following attributes to the MaritalStatus property:

[Display(Name="Marital status")]
[Required(ErrorMessage = "Please tell us your marital status")]
[StringLength(15, MinimumLength = 2)]

 4. Add the following attributes to the DateMovedIntoArea property:

[Display(Name = "Date you moved into area")]
[Required(ErrorMessage = "Please tell us when you moved into the area")]

430 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 430

[Range(typeof(DateTime), "1/1/1900", "12/31/2020",
 ErrorMessage = "Your response must be between {1} and {2}")]

 5. Add the following attributes to the TotalNumberInHome property. When completed, your class
should look like Figure 12-9.

[Display(Name = "How many people live in your house?")]
[Required(ErrorMessage = "Please tell us how many live in your home")]
[Range(typeof(int), "1", "99", ErrorMessage = "Total must be between {1} and {2}")]

FIGURE 12-9: Fully attributed class

 6. Save the fi le. On the Visual Studio menu, click Tools ➪ NuGet Package Manager ➪ Package
Manager Console. This should open the Package Manager Console, likely in the bottom of your
screen.

 7. Ensure that you are in the Package Manager Console window and type in add-migration "data
annotations". It should look like Figure 12-10.

Validating User Input in MVC ❘ 431

c12.indd 12/18/2015 Page 431

FIGURE 12-10: Package Manager Console

 8. Ensure that the Migrations directory contains a new fi le that has today’s date and “data annota-
tions” as part of the fi lename.

 9. In the Package Manager Console window, type in update-database. The system should process
for a bit and display a message when completed.

How It Works

Four different types of attributes were added to the model: DisplayAttribute, RequiredAttribute,
RangeAttribute, and StringLengthAttribute. Each created different expectations on the data prop-
erty to which they were applied, and each of these expectations could be stacked such that a property
might have to pass multiple types of validation before it could be considered “valid.”

Of the various attributes that you added, the DisplayAttribute had the least to do with the data vali-
dation being performed with the model, but it had the greatest effect in terms of making any validation
failures that might be received easier to understand. When you go back into the view you will also see
how the values set here show up in the UI through the use of the Html.LabelFor method.

The RequiredAttribute is another relatively simple validation attribute. It notifi es the validation
framework that the property being attributed needs to be set, as opposed to being null. When applied
to a type that is non-nullable, such as an integer whose default value is 0 rather than a null, the attri-
bute is less useful. When you want to ensure that an integer is required, a RangeAttribute is generally
used instead.

The RangeAttribute is a very fl exible validation tool in that it can support multiple types. In this
activity you used it in two different ways: to ensure that DateTime properties fell within a useful date
range and that an integer fell within an expected range. An interesting aspect of the RangeAttribute is
that it takes the minimum and maximum values as strings. It is able to understand these strings because
it has both the data type of the property to which it is being applied as well as a type defi ned in the
attribute itself. The framework uses this type to attempt to parse the values that are being passed in and
then uses the built-in comparer to determine whether the property value falls between the starting and
ending values. By passing in a type and the range values as strings, the attribute is fl exible and able to
work with multiple types; otherwise, you would need a different attribute for each data type.

432 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 432

The last attribute used in this example, StringLengthAttribute, sets a minimum and maximum
length of a string property (or a byte array). If this attribute were applied to a different type, such as the
integer Id property, you would get the error shown in Figure 12-11.

FIGURE 12-11: Error caused by StringLength on the integer property

The StringLengthAttribute caused one of the database changes. If you open the migration fi le that
was just created in the Migrations directory you will see a line like the following:

AlterColumn("dbo.UserDemographics", "MaritalStatus",
 c => c.String(nullable: false, maxLength: 15));

This sets the maximum length to 15 characters. The outcome of this line can be seen in the Server
Explorer, where the properties of the MaritalStatus column will show that the column has a length of
15, as shown in Figure 12-12.

FIGURE 12-12: Properties showing 15-character column

It may strike you odd, however, that you don’t see anything in the migration script for the other
required fi elds that were set in this activity, such as DateMovedIntoArea, TotalNumberInHome, and

Validating User Input in MVC ❘ 433

c12.indd 12/18/2015 Page 433

BirthDate. That is because all those items were set as being required in the database from the very
beginning. The reason becomes clear when you think about what these types—DateTime and inte-
ger—mean in .NET as opposed to what they mean in the database. The database is OK having these
fi elds as nullable, but that’s not possible in .NET. Neither DateTime nor integer are allowed to be null;
they will always be set with a default value whenever they are created through a model fi rst class, so
the framework sets the database up to support that need. Therefore, adding this particular attribute to
those properties did not affect the database design, but it will affect the UI and how it handles client-
side validation.

What do you think will happen when the following code is run from within a controller?

using (RentMyWroxContext context = new RentMyWroxContext())
{
 var item = new UserDemographics {
 DateMovedIntoArea = DateTime.Now,
 Birthdate = DateTime.Now,
 TotalNumberInHome = 0,
 MaritalStatus = "A" };
 context.UserDemographics.Add(item);
 context.SaveChanges();
}

It appears that the item would not pass validation because it contains several items that don’t pass vali-
dation—and that is what happens, as shown in Figure 12-13.

FIGURE 12-13: Error when trying to save invalid data in the controller

That the system always validates the information being persisted for that model is very important—
using data annotations literally affects the values of data that can be stored in the database; this is the
defi nition of server-side validation.

434 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 434

Once you have added data validation rules on the server side you need to hook these rules to the UI
so that you can also support client-side validation.

Client-Side Validation
Server-side validation is a required part of any application that is persisting data and may have
expectations about the validity of the data. However, as mentioned earlier in the chapter, having
client-side validation as well provides a much better overall user experience because users can
get much more timely feedback when their validation fails, as the round-trip to the server isn’t
necessary.

When you added client-side validation to the ASP.NET Web Form, all you did was set the rules for
that fi eld in the validation server control that was placed on that page, and that control handled
both server and client-side validation. The control was easy to confi gure and using it was simple.
Fortunately, the MVC framework provides a way to manage client-side validation that is almost as
straightforward, once it has been properly confi gured and set up.

Just as with validation server controls, MVC views rely on JavaScript to manage the client-side vali-
dation of information being submitted through the web browser. However, whereas the Web Forms
validation relies on JavaScript being provided by a WebResource.axd fi le behind the scenes, the vali-
dation used within MVC relies entirely on open-source JavaScript libraries—namely, the jQuery and
jQuery validation libraries.

These libraries know how to interact with the information on the screen through the MVC Html
.ValidationMessageFor helper. This helper takes a Lambda expression of the model fi eld that
is being validated. When the view goes through the rendering event, the validation rules are
translated into a confi guration supported by the validation libraries. The code for the Html
.ValidationMessageFor is shown here:

@Html.ValidationMessageFor(model => model.Birthdate,
 "", new { @class = "text-danger" })

This code snippet tells the engine to create a class to handle the validation for the BirthDate. The
empty string that is being passed in represents the UI override of the validation message, while the
last parameter sets the class of the element containing the validation.

Notice that nothing in the helper defi nes the type of validation that will be occurring; instead, it
just identifi es the property being validated. This is possible because the control being used here
relies on the validation that was defi ned at the model level. Rather than force the developer to cre-
ate an entirely new implementation of validation, it instead simply reads the required validation of
the model that was passed to the view and then builds the UI parts of the validation based on those
characteristics.

In this next Try It Out activity, you explore this relationship further by adding validation to an
MVC view.

mailto:@Html.ValidationMessageFor

Validating User Input in MVC ❘ 435

c12.indd 12/18/2015 Page 435

TRY IT OUT Adding Validation to an MVC View

In this activity, you take advantage of the validation rules that you just added to the UserDemographics
class by tying them to the view so that the same model attribute-based rules provide support for client-
side data validation.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open.

 2. Open the NuGet Package Manager by right-clicking from within the Solution Explorer on the
project name. Select Manage NuGet Packages. This will open a popup window.

 3. Select Online ➪ Microsoft and .NET on the left and search for “validation” as shown in
Figure 12-14.

FIGURE 12-14: Nuget Package Manager Window

 4. You should see multiple results. Find one called jQuery Validation and click the Install button. You
may have to accept some licensing agreements. When the process completes, the item that you ini-
tially selected may have a green check mark on the selection tile.

 5. In this same window, look for Microsoft jQuery Unobtrusive Validation and add this package as
well.

 6. Go to your Solution Explorer window and expand the Scripts directory. The fi les it contains should
be similar to those shown in Figure 12-15.

436 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 436

FIGURE 12-15: Scripts directory after adding new packages

 7. Open your App_Start\BundleConfig.cs fi le. Add the following entries to the RegisterBundles
method. When completed, this fi le should resemble Figure 12-16.

bundles.Add(new ScriptBundle("~/bundles/jquery")
 .Include("~/Scripts/jquery-{version}.js"));

bundles.Add(new ScriptBundle("~/bundles/jqueryval")
 .Include("~/Scripts/jquery.validate*"));

FIGURE 12-16: Content of the BundleConfi g fi le

 8. Open your View\Shared_MVCLayout.cshtml fi le. Find the following lines and delete them:

<script language="javascript" type="text/javascript" src="~/Scripts/jquery-
1.10.2.js"></script>

Validating User Input in MVC ❘ 437

c12.indd 12/18/2015 Page 437

<script language="javascript" type="text/javascript"
 src="~/Scripts/jquery-ui-1.11.4.js"></script>

 9. Add the following line to the same spot:

@Scripts.Render("~/bundles/modernizr")

 10. In this same area of the page, fi nd the following lines and move them closer to the bottom of the
page, right below the @Scripts.Render lines:

<script type="text/javascript">
 $(document).ready(function () {
 $(".editordatepicker").datepicker();
 });
 </script>
 @RenderSection("scripts", required: false)

 11. Open your Views\UserDemographics\Manage.cshtml fi le. Find the ValidationSummary. Change
true to false. When completed, this section of the fi le should look like Figure 12-17.

FIGURE 12-17: New ValidationSummary confi guration

 12. Open your UserDemographicsController. Update your Post version of the Create method to the
code shown here:

[HttpPost]
public ActionResult Create(UserDemographics obj)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var ids = Request.Form.GetValues("HobbyIds");
 if (ids != null)
 {
 obj.Hobbies = context.Hobbies.Where(x => ids.Contains(x.Id.ToString())).
 ToList();
 }
 context.UserDemographics.Add(obj);
 var validationErrors = context.GetValidationErrors();

mailto:@Scripts.Render

438 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 438

 if (validationErrors.Count() == 0)
 {
 context.SaveChanges();
 return RedirectToAction("Index");
 }
 ViewBag.ServerValidationErrors =
 ConvertValidationErrorsToString(validationErrors);
 return View("Manage", obj);
 }
}

 13. Add the following method to your controller:

private string ConvertValidationErrorsToString
 (IEnumerable<DbEntityValidationResult> list)
{
 StringBuilder results = new StringBuilder();
 results.Append("You had the following validation errors: ");
 foreach(var item in list)
 {
 foreach(var failure in item.ValidationErrors)
 {
 results.Append(failure.ErrorMessage);
 results.Append(" ");
 }
 }
 return results.ToString();
}

 14. Update your Post Edit method to the following:

[HttpPost]
public ActionResult Edit(int id, FormCollection collection)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var item = context.UserDemographics.FirstOrDefault(x => x.Id == id);
 TryUpdateModel(item);
 var ids = Request.Form.GetValues("HobbyIds");
 item.Hobbies = context.Hobbies.Where(x => ids.Contains(x.Id.ToString()))
 .ToList();
 var validationErrors = context.GetValidationErrors();
 if (validationErrors.Count() == 0)
 {
 context.SaveChanges();
 return RedirectToAction("Index");
 }
 ViewBag.ServerValidationErrors = ConvertValidationErrorsToString(validationEr
rors);
 return View("Manage", item);
 }
}

Validating User Input in MVC ❘ 439

c12.indd 12/18/2015 Page 439

 15. Back in the Manage.cshtml fi le, add the following line to the top block of code. It should look like
Figure 12-18 when completed.

string serverValidationProblems = ViewBag.ServerValidationErrors;

FIGURE 12-18: Updated code block

 16. Add the following code immediately after the ValidationSummary. When fi nished it should look
similar to Figure 12-19.

@if(!string.IsNullOrWhiteSpace(serverValidationProblems))
{
 <div class="alert">@serverValidationProblems</div>
}

FIGURE 12-19: Changed view page

 17. Run your application and go to \UserDemographics\Create. Without fi lling out any information,
click the Create button. You should get output similar to that shown in Figure 12-20.

mailto:@if(!string.IsNullOrWhiteSpace

440 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 440

FIGURE 12-20: Validation displayed in the browser

 18. Properly fi ll out the data in the screen and click Create. Note that you are returned to the list page
and that the item you just added is in the list.

How It Works

Working with data validation in ASP.NET MVC views is similar to working with validation in Web
Forms since the work required by the developer is mostly getting the validation onto the page. Once the
proper control, whether it is a server control or an HTML helper, is on the page, the ASP.NET page
creation process takes over and builds the appropriate output so that the client browser can understand
the validation requirements.

An MVC view uses a jQuery-based approach to building validation. This means the code that actually
performs the validation is part of the jQuery framework, so all the ASP.NET framework has to do is
ensure that the output of the validation control is what is expected when working with the validation
library.

The following code snippets show the data elements in the view, the model defi nition, and the HTML
output from the page that includes the information created by the validation helper:

View content
<div class="form-group">
 @Html.LabelFor(model => model.DateMovedIntoArea,
 htmlAttributes: new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.DateMovedIntoArea,

mailto:@Html.LabelFor
mailto:@Html.EditorFor

Validating User Input in MVC ❘ 441

c12.indd 12/18/2015 Page 441

 new { htmlAttributes = new { @class = "form-control" } })
 @Html.ValidationMessageFor(model => model.DateMovedIntoArea, "",
 new { @class = "text-danger" })
 </div>
</div>

Model Definition
[Display(Name = "Date you moved into area")]
[Required(ErrorMessage = "Please tell us when you moved into the area")]
[Range(typeof(DateTime), "1/1/1900", "12/31/2020",
 ErrorMessage = "Your response must be between {1} and {2}")]
public DateTime DateMovedIntoArea { get; set; }

HTML Output
<div class="form-group">
 <label class="control-label col-md-2" for="DateMovedIntoArea">
 Date you moved into area
 </label>
 <div class="col-md-10">
 <input class="editordatepicker"
 data-val="true"
 data-val-date="The field Date you moved into area must be a date."
 data-val-range="Your response must be between 1/1/1900 12:00:00 AM
 and 12/31/2020 12:00:00 AM"
 data-val-range-max="12/31/2020 00:00:00"
 data-val-range-min="01/01/1900 00:00:00"
 data-val-required="Please tell us when you moved into the area"
 id="DateMovedIntoArea" name="DateMovedIntoArea" type="text"
 value="1/1/0001 12:00:00 AM" />
 <span class="field-validation-valid text-danger"
 data-valmsg-for="DateMovedIntoArea"
 data-valmsg-replace="true">
 </div>
</div>

Looking at these three sections together shows how an element needs to be confi gured to work within
the jQuery validation framework. The key to success when working within jQuery is the use of custom
attributes on a common HTML element. These custom attributes are found in the input element and all
start with “data-val” to indicate that they are data validation values.

With the inclusion of the jQuery fi les, a method was added that intercepts the form submission. As part
of that interception, the method goes through all the elements that are part of the form submission,
looking for a known set of element attributes. When the jQuery method fi nds these attributes it exam-
ines the values they contain to determine what kind of validation needs to happen.

The fi rst attribute that it looks for is data-val. When that attribute is present and set to true, the
jQuery validation framework then reviews the element to determine the type of validation to perform.
In this case it fi nds three different validations that need to happen: datatype, range, and required. You
can determine this because each of those validation types has a representative attribute. Range has
additional elements because it needs to support a minimum value and a maximum value.

These attributes were added because the Razor view engine understood the relationship between
the EditorFor and ValidationMessageFor items and was able to create the attributes based on the

mailto:@Html.ValidationMessageFor

442 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 442

settings in the model. You can see this relationship because all the values used in the validation are the
same values as those used in the attribution on the model’s property.

You can create these attributes yourself, by hand, and take advantage of the validation framework that
was provided when you added the appropriate NuGet packages. (Please note that multiple JavaScript
and jQuery validation frameworks are available, each of which differs in implementation.) The
Unobtrusive Native jQuery library that you added to the project enables the management of validation
through the data-val approach.

The data-val approach takes advantage of HTML5, which allows custom attributes to be created and
analyzed by the browser. These custom attributes are then available to be analyzed through jQuery just
like the standard attributes on an element. There is a whole chapter, Chapter 14, on using jQuery com-
ing up soon, so that’s all on the subject for now.

You also made some changes in the controller. While not completely necessary, as you know that the
Entity Framework will not allow bad data to be saved to the database, doing some work in the control-
ler helps to create a better user experience, as a thrown exception can result in showing users the infa-
mous ugly yellow exception screen.

The primary change that you made to ensure a positive user experience was adding a validation check
in the controller before the SaveChanges method is called. You may wonder why you made this effort
because you also put all the validation in the view. The answer goes back to the concept of always
ensuring that you try to avoid throwing exceptions—understanding that an exception will be thrown if
you actually make the call enables you to avoid having the framework throw an exception.

You can make this determination through the GetValidationErrors method on the context. Running
this method causes the context to evaluate all the changed items against their validation rules. If there
are any instances where the item fails validation, then that item is added to the list of failed valida-
tion items. One DbEntityValidationResult is returned for each item that fails validation. This is per
object, not per property on the object that failed validation; the specifi c property that failed is listed in
the ValidationErrors collection on the DbEntityValidationResult.

The GetValidationErrors method runs only on items that have been added to the context, so typi-
cally it would generally be run right before the SaveChanges method is processed. However, in larger
applications in which the same data context may be passed from method to method, it is considered
good form to run GetValidationErrors because the method that added the bad data is the best
method to handle management of the invalid data.

When you run the GetValidationErrors method, you get a list of the validation issues. You added a
method to the controller to translate this collection of validation errors to a string that you added to the
ViewBag so that you could report back to the user any specifi c problems that were discovered.

As you can probably surmise, there are other routes to validating your data. The Controller class has
a method, ValidateModel, that validates the information returned from the request to ensure that the
incoming item passes validation. This approach is good because you can do it before actually instanti-
ating the data context, thus saving processing on the server. Using this method in the controller could
look like the following:

ValidateModel(obj);
if (ModelState.IsValid)

Validating User Input in MVC ❘ 443

c12.indd 12/18/2015 Page 443

{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 context.UserDemographics.Add(obj);
 context.SaveChanges();
 return RedirectToAction("Index");
 }
}

Accessing the failed items is a little more complicated using this approach, however, as you have to iter-
ate through each of the values in the ModelState, with each value in the ModelState corresponding to
a property on the model, and then evaluate the Errors collection that was attached to that ModelState
value, something like the code snippet shown here:

foreach(var value in ModelState.Values)
{
 if (value.Errors.Count > 0)
 {
 // do something with the error
 }
}

Parsing through the properties of the model to fi nd those with errors is more complex code, which
is why the code was written using the GetValidationErrors method; it is easier to understand and
maintain. However, just like virtually all work that needs to be done in ASP.NET, there are multiple
ways of solving a problem, each having its own sets of strengths and weaknesses.

The information that is input by the user is validated against the rules that were defi ned for the
model class. There is one more set of validation that is performed by the server when a controller
handles a request.

Request Validation in ASP.NET MVC
Like ASP.NET Web Forms, MVC enables you to perform request validation. Request validation is
a check whether a form fi eld contains HTML elements or other potential scripting items when that
fi eld is submitted to an MVC application. As a matter of fact, request validation is occurring in
every submittal unless you decide to turn it off because request validation is turned on by default.

In ASP.NET Web Forms, you control request validation for the entire page. Because MVC does not
really have the concept of a page, you control the settings from an attribute that can be used on a
controller or on an individual action, as shown here:

[ValidateInput(false)]
[HttpPost]
public ActionResult Create(UserDemographics obj)

In the preceding snippet you can see the attribute that determines whether or not the input is vali-
dated, ValidateInput. When you do not manually set the attribute, the system treats every request

444 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 444

as if it were attributed with ValidateInput(true). To turn off request validation, simply set the
attribute to false.

When the attribute is set to false, the action will not validate any of the information coming to the
server. In some cases this may be acceptable, but if you have a large form with multiple fi elds you
may not be willing to have every fi eld open to accept HTML (the default when validation is turned
off for a controller).

The developers of ASP.NET MVC recognized this need and added a special type of attribute that
you put on a model class, System.Web.Mvc.AllowHtml. When used on a typical model property it
could look like the following code:

[AllowHtml]
[Display(Name="Description")]
[Required(ErrorMessage = "Please enter a Description")]
[StringLength(150, MinimumLength = 2)]
public string Description { get; set; }

 By attributing only those properties where you expect HTML, you can keep input validation on—
only allowing HTML to be used on specifi c properties and not across the entire request.

VALIDATION TIPS

The following list provides practical tips on validating data:

 ➤ Always validate all user input. Whenever you have a public website on the Internet, you lose
the ability to control its users. To stop malicious users from entering bogus or malicious data
into your system, always validate your users’ input using the ASP.NET validation controls.

 ➤ All data being passed in from the client should go through some type of validation; it is easy
to accidentally enter invalid data, such as using the capital “O” instead of the number 0, or a
letter “l” instead of the number 1.

 ➤ Always provide useful error messages in your validation controls. Either assign the error mes-
sage to the ErrorMessage property and leave the Text empty, or use a ValidationSummary
control to show a list of error messages. The more details you can give users about a prob-
lem, the easier it will be for them to resolve the issue.

 ➤ Whenever possible, point to the problem data that the user is working with rather than trying
to describe it through text. The most common approach is to put the validation message right
next to the input that is being validated.

 ➤ If you have to make a choice between client-side validation or server-side validation, always
choose server-side validation. Client-side validation can be voided by a malicious user.

Summary ❘ 445

c12.indd 12/18/2015 Page 445

SUMMARY

Validation is the process of ensuring that the information provided by a user fi ts a certain set of cri-
teria. When validating data, approaches may vary depending on where you will be performing the
validation and how you will be checking the data.

Where you will be performing the validation is pretty straightforward because you only have two
options for this: the server and the client. You should never consider it optional to do validation on
the server because only there can you be sure that the validation is applied to the information being
persisted; client-side validation can be turned off or gone around. Client-side validation provides a
better user experience and can eliminate unnecessary round-trips to the server, but server-side vali-
dation is responsible for checking data immediately before persistence.

When you consider validation, you need to ensure not only that your system is protected from bad
data, but that you provide the appropriate feedback to users should they need to fi x the data. This
messaging back to users tends to work best with client-side validation because they can get immedi-
ate response to problems.

Because of this need for both client and server validation, ASP.NET Web Form controls provide
both. They enable you to defi ne validation rules that will be used to check the input values and then
provide both JavaScript that the browser uses to validate information before submission as well as
server-side code that can be checked to ensure that values are valid. Various validation controls are
available, each of which supports a different approach to validating the data that is entered into the
particular fi eld with which it is linked.

Validation in MVC is different, but you can perform validation on both sides based on rules that are
created on the model. The view has a helper that takes advantage of the rules from the model and
confi gures the input element in such a way that a jQuery library automatically performs validation
upon submission of the form. When the data gets back to the server, the same validation can be run
against the request to ensure that it is valid before making use of the information.

Both Web Forms and MVC provide support to validate data on both the client and the server. They
take different approaches but they both solve the same need, helping you ensure the best data pos-
sible is added to your system.

EXERCISES

 1. What would be the expected behavior of the server when a user puts HTML code only into
the Title fi eld of a view that is linked with the following code? What happens if HTML code is
put only in the Description fi eld?

[ValidateInput(true)]
public class TestController : Controller
{
 [HttpPost]

446 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 446

 public ActionResult Create(MyModel model)
 {
 return View();
 }

 public ActionResult Create()
 {
 return View();
 }
}

public class MyModel
{
 [Required]
 [StringLength(50)]
 public string Title { get; set; }

 [Required]
 [AllowHtml]
 [StringLength(5000)]
 public string Description { get; set; }
}

 2. Imagine you are working with an ASP.NET Web Forms page and you place a RangeValidator
above a RequiredValidator when they are both validating the same control. What would be
the difference in behavior if you switched the order of the validation controls?

 3. Is it possible to put validation on a model in such a way that a model can never be valid?

Summary ❘ 447

c12.indd 12/18/2015 Page 447

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Client-Side Validation Client-side validation is the process of ensuring that information
entered by a user fi ts a defi ned template. It is called client-side
because all the checking happens within the browser, before the
form is submitted to the server. If validation fails, then the form
information is never submitted to the server; instead, a message
displaying the validation errors is generally shown to the user.

Compare Validation When you are doing a compare validation you are comparing the
value in one fi eld with another value. This other value could be
another fi eld, a constant value, or some sort of calculation. The
primary consideration is that the value in an element is compared
against another.

Data Length Validation The process of determining whether the entered information is
of the appropriate length, or amount of characters. This type of
validation is generally performed only on strings. It consists of a
minimum length, defaulting to 0, and a maximum length.

Data Type Validation A determination made against the value in a submitted element
as to whether that value can be cast or parsed into a defi ned
type

ModelState A construct that contains information regarding, surprisingly
enough, the state of the model. After the ValidateModel
method is run, the IsValid property provides information as to
whether all validation rules passed successfully.

Page.IsValid This is a code-behind check, in ASP.NET Web Forms, as to
whether the content of the page successfully passes all the vali-
dation rules defi ned in the various validation controls. It is the
server-side verifi cation that the information is valid.

Range Validation Determines whether the value of an element falls between a
specifi c set of two values. Generally used for numeric types and
dates, in range validation the fi rst check is to confi rm whether the
value is parseable to the appropriate type, and the second check
confi rms whether it is between the minimum and maximum val-
ues set for the range.

Regular Expression Validation Compares the value of an element against a regular expression.
If the value fi ts the template established by the regular expres-
sion, then the validation is successful.

448 ❘ CHAPTER 12 VALIDATING USER INPUT

c12.indd 12/18/2015 Page 448

Request Validation A process that determines whether the data being submitted by
the client contains anything that is formatted in such a way that
it poses some risk when displayed directly to another user (such
as JavaScript to download viruses, etc.). Request validation is
typically enabled by default, which means information containing
HTML-looking tags will not be allowed to be processed on the
server.

Required Field Ensures that an element has a value. Having a value is typically
defi ned as being set with a value other than the default, e.g.,
a string defaults to NULL, so any value, even an empty string,
would be considered a value for this purpose.

Server-side Validation

This is the most important validation because it is the fi nal check
on the server that the data the system received from the user
matches all necessary requirements.

Unobtrusive Validation Unobtrusive validation is the jQuery approach to validation that
is used with ASP.NET MVC. It enables the developer to use pre-
defi ned (by the JavaScript library) custom attributes on an input
element to provide validation information to the validation sub-
system. The values in these attributes help the subsystem deter-
mine what rules need to be checked as well as provide feedback
to the user about the state of the process.

ValidateModel A method on the controller that validates the model against
the data annotations in the model. Typically used with the
ModelState that contains various sets of information about the
model, including whether the validation was successful.

c13.indd 12/18/2015 Page 449

ASP.NET AJAX
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How AJAX fi ts into the ASP.NET Framework

 ➤ Taking advantage of Web Forms controls to make AJAX calls

 ➤ Using a Web Forms control to show status to the user

 ➤ Creating REST web services to support AJAX

 ➤ Using jQuery to support AJAX in MVC

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 13
download and individually named according to the names throughout the chapter.

When you are talking about web development and you hear the term AJAX, it is very rarely
referring to the hero from Greek mythology. Instead, it refers to a web communications
approach that started to become popular in 2005 and 2006, Asynchronous JavaScript and
XML. The primary purpose of AJAX is to enable communications between the user’s browser
and the server without having to do a full page refresh.

This communication is not outside the HTTP protocol, but instead uses HTTP to commu-
nicate smaller pieces of information within sections of the web page, rather than the default
“whole page” approach. This is becoming increasingly common, as it provides an experience
that seems more desktop-like because pieces of information on the page are refreshed based on
some condition (timing, user action, and so on) without having to go through the whole page
fetch that prevents users from being able to work in the browser while the request is managed.

AJAX has evolved considerably, but the main changes are related to how the JavaScript
calls are managed and how the information is formatted for transfer. You will be working

13

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

450 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 450

with these new changes throughout the next couple of chapters as you use jQuery to handle the
JavaScript, and JavaScript Object Notation (JSON) to defi ne the format for data transference, rather
than XML. In other words, you won’t be really doing AJAX; instead you will be doing something
like JQJN (jQuery with JSON, but since that does not really roll off the tongue we will respect tra-
dition and keep calling it AJAX.

INTRODUCING THE CONCEPT OF AJAX

The whole point of AJAX is to support asynchronous communication. The traditional web page
approach that you have worked with to this point has been synchronous in that once the request
to the server was sent, the browser tends to stop what it is doing and wait for the server to respond
with the next set of content. With the synchronous approach, once you click the submit button you
are sitting there waiting for a response.

The waiting for a response cannot be mitigated. The whole point of a web application is com-
munication between clients and servers that are physically separated—almost always on different
networks and possibly even different continents. However, what can be controlled is the stoppage
of other work while you are waiting for the server to respond. This is where asynchronous commu-
nication comes into play. Clearly, if a more asynchronous approach to communication is possible,
then it’s also possible for users to avoid waiting for the server to respond and can instead continue
working on the client side while the communications with the server happen in the background.
Admittedly, this provides a more complicated communications model, as shown in Figure 13-1, but
it provides a more fl uid and positive experience for the user.

Classical Synchronous
Model

Request Response

Ajax Asynchronous
Model

Browser

Server

Browser

HTML Page

Server

Web Browser

jQuery

FIGURE 13-1: Classic and asynchronous models

Figure 13-1 demonstrates some of the differences between the two models. There are defi nitely some
parts in common, such as page transitions in both approaches whereby the entire page is replaced
with another page. However, some extra communication is going on from the web page, through
jQuery, to the server, which then responds back to the jQuery call, with jQuery taking the response

Introducing the Concept of AJAX ❘ 451

c13.indd 12/18/2015 Page 451

and updating the UI. This represents the asynchronous part of this communication—the request
sent to the server that enables the user to continue working while the processing happens behind
the scenes.

There are differences between the responses provided by the server. As you have seen, in some cases
the response to a request is the HTML for an entire page. You have also worked with user controls
and partial views that create and manage smaller sets of HTML that can be inserted into the over-
all page. Calling such a section again—only this section and not the rest of the page—is one form
of AJAX whereby the service returns an HTML snippet that replaces another set of HTML that is
already present in the web page.

A third type of response, and a second AJAX approach, is returning a single object to the page,
much like you pass a model to an MVC view, and then the JavaScript takes that model and parses
it into the HTML elements that hold each value. This approach is common in functionality such as
a stock ticker, whereby an object that contains all the information being displayed is downloaded
as needed and the old values are simply replaced with the new values. The HTML elements are not
replaced during the call; the JavaScript functionality instead replaces the values within the element.

SINGLE-PAGE APPLICATION

There is an approach to building a web application, called single-page application
(SPA), whereby there is one full page refresh on the entire site, and that is when
you fi rst visit the site to download the original content. All subsequent processing
is handled as AJAX, whereby resources, including HTML, data, CSS, and other
items, are downloaded and displayed as necessary.

A single-page application provides the closest experience to a desktop application
because there are no page transitions, so the period spent waiting for the request
to complete is removed throughout the site. However, you pay for it by deploying a
much larger set of information at the beginning, because not only do users have to
download the traditional “fi rst page,” they also have to download the libraries to
manage all the transitional work, in essence spending extra time at the beginning
to eliminate the time wasted while working on the page.

One of the more complex factors when doing the development work for AJAX is debugging the
process and ensuring that the information you are getting back from the server is correct. All of the
debugging that you have been doing up to now has been in server-side code, or perhaps looking at
the HTML source code that was returned by the server; however, asynchronous communications
bring in a whole different set of complications because the snippets of information that are being
returned by the server do not show up in any of these approaches. You will see some of these com-
plications, and how they can be remediated, in more detail in the next few sections.

F12 Developer Tools
You may not be aware of this, but most of the available web browsers include a set of development
tools that you can use to understand and debug the HTML that was sent to the browser. Google
Chrome’s Developer tools are shown in Figure 13-2.

452 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 452

FIGURE 13-2: Google Chrome Developer tools

These tools with Google Chrome enable you to review the HTML elements, see how the styles are
applied, and allow you to make temporary changes to see how they may affect your site’s layout.
They also provide the capability to obtain useful information, such as total download size, time
for download, and many other pieces of information that gives you a better understanding of the
HTML output from the website and how the browser will interpret that information.

Mozilla Firefox has its own version of developer tools, shown in Figure 13-3. The appearance is
different, but much of the base information is the same, as the information that you are interested
in about a web page is the same, regardless of the browser that you are using to parse and view the
content.

FIGURE 13-3: Mozilla Firefox Developer tools

Introducing the Concept of AJAX ❘ 453

c13.indd 12/18/2015 Page 453

As you work through the next few chapters you’ll be taking advantage of a third set of development
tools, Internet Explorer’s F12 Developer Tools. They are cunningly called F12 Tools because you
can use the F12 function key to access them. If you do not have function keys on your keyboard,
you can use the Tools menu in Internet Explorer. These same tools are available in Microsoft’s
Windows 10 Edge browser, the Windows 10 replacement for Internet Explorer. This next Try It Out
will walk you through using F12 tools using your sample application.

TRY IT OUT Using F12 Development Tools

This Try It Out walks through some of the features of Internet Explorer’s F12 Developer Tools that you
will be using as you work through the various AJAX enhancements you add to your site.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open at the home page.
Start the application in Debug, ensuring that you are using Internet Explorer to view your
application.

 2. Use your F12 key to open the Developer Tools. You can also open the tool by selecting Tools ➪
F12 Developer Tools, as shown in Figure 13-4.

FIGURE 13-4: Opening the F12 Developer Tools through the menu

 3. Verify that you are on the DOM Explorer tab. Select the element that represents one of your prod-
ucts. You may have to expand areas on the left to fi nd them; they will be in the <div> with an id of
“section.” It should look like Figure 13-5 when you have selected the item.

FIGURE 13-5: Dom Explorer and the Styles tab

454 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 454

 4. Click through the Styles, Computed, and Layout tabs in the pane on the right side of the tools and
notice the information that is available in each tab.

 5. Select the Network tab from the right side of the Developer Tools. You should get the screen
shown in Figure 13-6.

FIGURE 13-6: Network tab

 6. Click the green arrow in the tab, and then click the Full Details link of one of the items listed on
the front page. The page should change similarly to what is shown in Figure 13-7.

FIGURE 13-7: Network tab recording requests

How It Works

The F12 Developer tools provide a lot of information about your application and its interaction with
the client’s browser. Not only do you get information about how the browser is interpreting the HTML
that it received, it also provides access to the communications between the client and the user; all the
work that used to happen behind the scenes is now available for your review and study.

Once you opened the tools you went to the DOM Explorer. The DOM, or Document Object Model,
is the HTML document that the browser is displaying. When in the DOM Explorer, you selected an
HTML element and were then able to get information relevant to how that element is displayed. The
fi rst tab in the Dom Explorer is the Styles tab, as shown in Figure 13-8.

Figure 13-8 shows how the styles are being applied to the selected item. In this case it is showing
that the “body” CSS style is being applied as well as the “listtitle” class. If you go to the next tab,

Introducing the Concept of AJAX ❘ 455

c13.indd 12/18/2015 Page 455

Computed, you will see all the styles that are cascading onto that particular element, as shown in
Figure 13-9.

FIGURE 13-8: DOM Explorer tab showing Styles

FIGURE 13-9: DOM Explorer tab showing the Computed tab

An interesting feature of these two areas is how they support changing the values of the various CSS
elements. In the Styles tab you can turn off the feature by removing the check from the checkbox to
the left of the name. You can also change a value by clicking on its display and then typing in the new
value.

The Computed tab displays the information differently in that it shows the entire list of CSS elements
that the browser applies to the highlighted item. If you expand the item you can see from where the
value that is currently being displayed came. You will be able to completely remove the style property
through the checkbox next to the item; however, when you try to edit the value, you will fi nd that you
cannot do so from this default screen. Instead, expand each of the top-level items to see another box
with the same value. This line represents the actual value that is available for editing and supports
changing. When you change the value in the window, the display will immediately update the browser
using the newly changed values.

Adding new values is almost as easy in the Styles tab. Clicking on the row with the opening brace will
bring up a new property for which you can fi ll out the value as desired. You can then see how the dis-
play updates with the change, giving you immediate feedback to any changes that you want to propa-
gate back to the application code.

456 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 456

Switching to the Layout tab gives you a look at the spacing for that element, as shown in Figure 13-10.

FIGURE 13-10: DOM Explorer tab showing the Layout tab

Here you can see how the Layout tab shows the pixel spacing that is being used by every factor of the
element. The area in the center refl ects the height and width of the element itself, in this case 750 pixels
wide and 29.17 pixels high. The visualization in the tab then shows the current values for padding, bor-
der, and margin, all elements that you managed in the CSS. The last item displayed on this screen is the
Offset. The Offset gives you the location of the element as it relates to the screen, based on all the other
CSS that may have been set around the current element. All of this relates to the CSS box model that
was discussed in Chapter 3.

The DOM layout information is very useful in debugging your layout. The other tab that you clicked
through, the Network tab, will be important as you start working with AJAX calls because it tracks
all the requests from the client and all the responses from the server. Clicking the green arrow in the
F12 menu starts the monitoring process, and once the monitoring process has been started all outgo-
ing requests will be captured. The information that is captured and available to review in this section
includes the entire request and the entire response, including body content, headers, and status code.
Figure 13-11 shows what this could look like.

FIGURE 13-11: Network tab showing the Request headers

The lower set of tabs shown in Figure 13-11 are the various parts of the request/response that you
now have visibility into: Request headers, Request body, Response headers, Response body, Cookies,
Initiator, and Timings. The tabs that you will use most often during this process include Response
Body, so that you can see the information returned by the server, and the Request Body and Headers,
so that you can see what information the client asked for.

The other activities in this chapter spend some time in the F12 Developer tool, and these windows in
particular, ensuring that the information you are expecting is what is actually returned.

Introducing the Concept of AJAX ❘ 457

c13.indd 12/18/2015 Page 457

Now that you will be able to evaluate the data that is being transferred back and forth between the
client and server, you can get started adding AJAX into your application.

Using ASP.NET AJAX in Web Forms
The most obvious way to tell when a site and page are not using
AJAX is by the fl ashing, or fl ickering, as a new page loads. AJAX
enables you to avoid that by refreshing only a part of a page.
Implementing AJAX within ASP.NET Web Forms requires
some new server controls. The list of AJAX controls is shown in
Figure 13-12.

The Initial AJAX Experience
The most important of these AJAX-specifi c controls is the UpdatePanel. The UpdatePanel is used
to defi ne the section of the page that will be updated through AJAX, with the items contained
within the control being the refreshed area. While the UpdatePanel may be the most important con-
trol, it cannot work without access to a ScriptManager control on the page as well.

You can have any number of UpdatePanel controls in your page, each containing the area of
the screen that you wish to make asynchronous. Typically there will be information to display
and a way to update the content, such as a button or a dropdown list set to automatically post-
back upon change. No matter how many UpdatePanels you have in the page, you only need one
ScriptManager control because it is designed to hold the scripts for all the panels in that same page.

The only time you do not need a ScriptManager on the same page as the UpdatePanel is when
you have a ScriptManager in the referenced master page. However, while in that case you do
not have to ensure that you include a ScriptManager on that particular page, you do need a
ScriptManagerProxy control so that the local UpdatePanels will be able to work up the line to the
ScriptManager in the hosting page. Figure 13-13 shows the links between all of these controls.

Same Page

Dependence On

UpdatePanel

ScriptManager

Script Manager in Master Page

Dependence On

Dependence On

UpdatePanel

ScriptManagerProxy

ScriptManager

FIGURE 13-13: UpdatePanel and ScriptManager relationship

FIGURE 13-12: AJAX controls
available in Visual Studio

458 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 458

All of the discussion so far has been about having UpdatePanels on a page. You are not limited
to putting them on pages, or in master pages; UpdatePanels can also be added to user controls.
In the next Try It Out, you update the Notifi cations control that you built in Chapter 11 so that
you can see other notifi cations in the same control, through paging, without having to postback
the entire page.

TRY IT OUT Adding AJAX to Support Notifi cation Display

In this exercise you add the capability to move between notifi cations that are visible within the applica-
tion. To do that, you add the necessary AJAX controls to the User Control and change the code-behind
to allow the display of the appropriate notifi cation.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open. Open the Controls\
NotificationsControl.ascx markup page.

 2. Add the following code above the fi rst label:

<asp:ScriptManager Id="smNotifications" runat="server"></asp:ScriptManager>
<asp:UpdatePanel ID="upNotifications" runat="server">
 <ContentTemplate>
 <asp:HiddenField runat="server" ID="hfNumberToSkip" />

 3. Add the following code after the second label. When completed, this markup page should look like
Figure 13-14.

 <div class="paginationline">

 <asp:LinkButton ID="lbPrevious" Text="<<" runat="server"
 ToolTip="Previous Item" OnClick="Previous_Click" />

 <asp:LinkButton ID="lbNext" Text=">>" runat="server"
 ToolTip="Next Item" OnClick="Next_Click" />

 </div>
 </ContentTemplate>
</asp:UpdatePanel>

FIGURE 13-14: Updated notifi cations control markup page

Introducing the Concept of AJAX ❘ 459

c13.indd 12/18/2015 Page 459

 4. Open the code-behind. Add the following method below the Page_Load method. Much of the
using statement is cut and pasted from the Page_Load method, with several additions.

private void DisplayInformation()
{
 hfNumberToSkip.Value = numberToSkip.ToString();

 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var notes = context.Notifications
 .Where(x => x.DisplayStartDate <= DateForDisplay.Value
 && x.DisplayEndDate >= DateForDisplay.Value);

 if (Display != null && Display != DisplayType.Both)
 {
 notes = notes.Where(x => x.IsAdminOnly ==
 (Display == DisplayType.AdminOnly));
 }

 lbPrevious.Visible = numberToSkip > 0;
 lbNext.Visible = numberToSkip != notes.Count() -1;

 Notification note = notes.OrderByDescending(x => x.CreateDate)
 .Skip(numberToSkip).FirstOrDefault();

 if (note != null)
 {
 NotificationTitle.Text = note.Title;
 NotificationDetail.Text = note.Details;
 }
 }
}

 5. Add a private fi eld above the Page_Load method:

private int numberToSkip;

 6. Update the Page_Load method to the following:

protected void Page_Load(object sender, EventArgs e)
{
 if (!DateForDisplay.HasValue)
 {
 DateForDisplay = DateTime.Now;
 }

 if (!IsPostBack)
 {
 numberToSkip = 0;
 DisplayInformation();
 }

460 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 460

 else
 {
 numberToSkip = int.Parse(hfNumberToSkip.Value);
 }
}

 7. Add a new event handler for the Previous button:

protected void Previous_Click(object sender, EventArgs e)
{
 numberToSkip--;
 DisplayInformation();
}

 8. Add a new event handler for the Next button:

protected void Next_Click(object sender, EventArgs e)
{
 numberToSkip++;
 DisplayInformation();
}

 9. Run the application and go to \Admin. You should see a screen similar to the one shown in
Figure 13-15.

FIGURE 13-15: Rendered Notifi cations control

 10. Click the Next link to see the content change without doing a full page refresh.

How It Works

You made two major changes in this activity. The fi rst was setting up the Notifi cations control to sup-
port pagination, and the second was supporting that pagination without doing a full page reload. It was
important to set up the pagination so that there would be some form of interaction that required a post-
back to the server; however, we don’t spend much time going over either the markup or the code-behind
to support the pagination, as these changes should be familiar from Chapter 10.

Introducing the Concept of AJAX ❘ 461

c13.indd 12/18/2015 Page 461

The other change that you added to the markup was the addition of the ScriptManager and the
UpdatePanel. The combination of these two items led to some additional scripts that were linked into
the fi le:

<script src="/ScriptResource.axd?d=zvkqIRNUspAvS1yKeFhMb7BiRxM-
 vLIWoR6Zh8gDvfSPqEd2iSYh_akklB94pGyizBj8bNHY0trAt37sX4L3rqFliPkS36-
 ER9N5HkxM1evYOoqe03rwnLG6EcJN891gORBhKWLDtdelfIsJ7Iqf4Q2&t=ffff
 fffff2209473" type="text/javascript"></script>
<script src="../Scripts/WebForms/MsAJAX/MicrosoftAJAX.js"
 type="text/javascript"></script>
<script type="text/javascript">
//<![CDATA[
if (typeof(Sys) === 'undefined')
 throw new Error('ASP.NET AJAX client-side framework failed to load.');
//]]>
</script>

<script src="../Scripts/WebForms/MsAJAX/MicrosoftAJAXWebForms.js"
 type="text/javascript"></script>

As you can see, these scripts reference “AJAX” (rather than the ScriptResource link), so you can tell
that they were added because of the inclusion of the AJAX server controls.

Additional code was also added at the point where the ScriptManager was added:

<script type="text/javascript">
//<![CDATA[
Sys.WebForms.PageRequestManager.
 _initialize('ctl00$ContentPlaceHolder1$BaseId$smNotifications',
 'form1',
 ['tctl00$ContentPlaceHolder1$BaseId$upNotifications',
 'ContentPlaceHolder1_BaseId_upNotifications'], [], [], 90, 'ctl00');
//]]>
</script>

The code added here makes a little more contextual sense when you look at the HTML that was added
by the UpdatePanel control. Because the UpdatePanel acts as a container, the output from the control
is simply a div wrapper as shown here:

<div id="ContentPlaceHolder1_BaseId_upNotifications">
 ... content here ...
</div>

You can now see how the id of the <div> is referenced in the _initialize method contained within
the <script> tag. This links the output from the UpdatePanel to the JavaScript method that makes
just that area of the page updateable, rather than then requiring a full postback.

462 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 462

This new script changes the complete communications approach between the client and the server. If
all the paginations were present but the UpdatePanel was not, the F12 Developer Tools would show a
network summary like the one shown in Figure 13-16 when going between pages.

FIGURE 13-16: F12 Network tab without the UpdatePanel

As shown in Figure 13-16, each request (where the URL reads http://localhost:1072/Admin/
Default) is also accompanied by seven other items, including the .css fi le, the logo fi le, and multiple
script fi les. The response body shows the entire HTML page, as shown in Figure 13-17. This means that
the entire page was returned with the request, just as you would expect from a full postback.

FIGURE 13-17: F12 Response body without the UpdatePanel

The F12 Network calling view is much different when the UpdatePanel has been added. Figure 13-18
shows what this looks over the course of the initial load and then viewing two additional notifi cation
items (two additional clicks on a page link).

The initial page load is represented by the top 11 lines in the list, which makes sense when you consider
the additional scripts that were added by the UpdatePanel control. However, each click after that had
only two different items downloaded, the POST content to the page and one script fi le. A bigger part
of the story is shown when you go into the response body of one of the secondary POSTs, as shown in
Figure 13-19.

Figure 13-19 shows the stark differences between each approach, as the only content in the response
body is the content for that one panel.

http://localhost:1072/Admin

Introducing the Concept of AJAX ❘ 463

c13.indd 12/18/2015 Page 463

FIGURE 13-18: F12 Network tab with the UpdatePanel

FIGURE 13-19: F12 Response body with UpdatePanel

One thing to understand when working with UpdatePanels is how information is managed in the
browser and why the F12 tools are so important. When you visit a new page and get the full download,
the source of the page is set to the content that was downloaded. If you try to view the source in the
browser, you will get the information that was downloaded. If you then change a section of the page
using an UpdatePanel, however, you will run into a problem, as shown in Figure 13-20.

FIGURE 13-20: Difference between displayed item and view source output

464 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 464

This difference is apparent when the content that is actually being displayed in the browser does not
match the values that you will see when you view the source of the content. This happens because
the partial page changes do not get loaded into the actual downloaded fi le but instead populate the
replaced content in memory and in such a way that they do not become part of the source for the page.
This means getting the details on that particular partial request is best achieved through the F12 tools.

Now that we have talked about the information that is returned when using an UpdatePanel, let’s
examine how the information that is sent as part of the request body differs between a request that
used an UpdatePanel and one that did not use an UpdatePanel. Figure 13-21 shows the request bodies
for each approach.

FIGURE 13-21: Request body differences

As Figure 13-21 shows, there is virtually no difference in the size of the request. This means that the
complete content of the form is sent back with the request, rather than just the information within the
UpdatePanel. This is confi rmed when you notice that the ViewState values are included, as those
values are defi nitely outside the content within the UpdatePanel. That means that you can take advan-
tage of information from outside the UpdatePanel when you are calculating the content for the partial
request.

Now that you know that you can take advantage of values outside the UpdatePanel, does that mean
you can trigger the partial postback from outside of the control as well? Let’s take a more detailed look
at the UpdatePanel control and you will be able to determine that answer.

The most frequently used properties of the UpdatePanel are listed in Table 13-1.

Introducing the Concept of AJAX ❘ 465

c13.indd 12/18/2015 Page 465

TABLE 13-1: Common UpdatePanel Properties

PROPERTY DESCRIPTION

ChildrenAsTriggers Defi nes whether the panel will allow controls that are contained within
the ContentTemplate to cause a refresh of the UpdatePanel. As you
were able to tell from the example, the default for this is true. When this
property is set to false, the system throws an exception if the UpdateMode
is set to Always. If this property is set to false and UpdateMode is set to
Conditional, then the POST request will call the server, but the area of the
panel will not refresh with the updated content—the call happens but you
will not be able to see the results.

ContentTemplate The ContentPanel control is used as the container for all the elements
that make up the panel. This property is the actual wrapper for the content
that is updated.

Id It may seem silly to call out the Id at this point, but you need to ensure
that the Id is set to a unique value. If you think back to the lines that were
added to the HTML content when you added the UpdatePanel, you may
remember that there were references back to the <div> element that was
created. Without the Id, this reference becomes problematic and in many
cases results in a script error. The safest way to ensure that this does not
happen is to provide a value for the Id.

RenderMode This property enables you to determine the type of HTML element that
the UpdatePanel will use to surround the content. The default property
is Block, which causes the control to use a <div> control to contain the
content. If you choose Inline, however, the panel will use a element
instead.

Triggers This property is a collection of different triggers. There are two primary
types of triggers, PostBackTrigger and AsyncPostBackTrigger.
A PostBackTrigger is used to cause a full page refresh, whereas
an AsyncPostBackTrigger is used to hook up the update of the
UpdatePanel to a control that is outside of the body of the control.

UpdateMode This property determines whether the control is going to be refreshed with
every update. The default value is Always, which means that whenever
there is a postback this section will be updated. The other possible value,
Conditional, sets the panel so that the content is only updated under cer-
tain conditions, such as when an item that is attached as a trigger is fi red.

466 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 466

As shown in the property list, it is indeed possible to cause an update of the panel from a control
outside of the panel. If you wanted to do an asynchronous update, it would look something like the
following:

<asp:ScriptManager Id="ScriptManager1" runat="server"></asp:ScriptManager>
<asp:UpdatePanel ID="UpdatePanel1" runat="server" ChildrenAsTriggers="false"
 UpdateMode="Conditional">
 <ContentTemplate>
 ... some content ...
 </ContentTemplate>
 <Triggers>
 <asp:AsyncPostBackTrigger ControlID="bOutsideButton" />
 </Triggers>
</asp:UpdatePanel>
<asp:Button ID="bOutsideButton" runat="server" OnClick="bOutsideButton_Click"/>

Note how the Button control named bOutsideButton is not contained within the UpdatePanel’s
ContentTemplate. However, the addition of the Triggers element with an enclosed
AsyncPostBackTrigger that references the uncontained button through the trigger’s ControlID prop-
erty will provide the connection. This connection ensures that the clicking of that button will refresh
the content within the UpdatePanel.

The default usage of the UpdatePanel should enhance usability of the site through the implementa-
tion of AJAX in the web page. This experience can be enhanced even further.

Enhancing the AJAX Experience
The experience that you have so far with the changes to the Notifi cations control have already
increased usability. There are two more AJAX server controls that you can add that will increase
usability even more. These controls, UpdateProgress and Timer, each take different approaches to
helping enhance the user’s experience when using your web application.

The UpdateProgress control is a communications tool for relaying information to the user; it pro-
vides the capability to notify the user when some work is happening on the page. In the example
that you just worked through, it would be hard to identify a need for this control because every-
thing tended to happen fast, and because the work was simple and everything resides on the same
machine. However, in those cases where processing may take several seconds, it becomes very
important for users to know that something is happening. If they clicked a button and the page just
sat there, many users would click the button again. This could cause problems on the server, such as
double-charging a user’s credit card for an order.

The other control, the Timer, enables you to eliminate the need for user interaction to cause an
update. Instead, you set a value whereby the template updates itself as confi gured, rather than
requiring user input. This enables you to add functionality such as automatically scrolling through a
list of items or replacing images on a regular basis.

In the next activity you will add both of these controls to the UpdatePanel with which you were just
working.

Introducing the Concept of AJAX ❘ 467

c13.indd 12/18/2015 Page 467

TRY IT OUT Adding Controls to the Update Panel

In this activity, you enhance the Notifi cations control to display a message to the user when the content
is being displayed, as well as add a timer to the panel so that the content refreshes itself on a regular
basis.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open. Open the Controls\
NotificationsControl.ascx markup page.

 2. Add the following code above the closing ContentTemplate element:

<asp:Timer runat="server" ID="tmrNotifications" Interval="5000"
 OnTick="Notifications_Tick" />

 3. Open the code-behind page and add the following method:

protected void Notifications_Tick(object sender, EventArgs e)
{
 numberToSkip++;
 DisplayInformation();
}

 4. Add the following lines to the DisplayInformation method, after the code that applies the fi lter
on DisplayType. When added, the method should look like Figure 13-22.

// rolls over the list if it goes past the max number
if (numberToSkip == notes.Count())
{
 numberToSkip = 0;
}

FIGURE 13-22: Updated DisplayInformation method

468 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 468

 5. Run the application and go to \Admin. Note how the content updates every fi ve seconds, starting
over at the beginning of the list when it hits the maximum number.

 6. Go back into the markup page and add the following code after the UpdatePanel. The fi nished
control should look like Figure 13-23.

<asp:UpdateProgress ID="uprogNotifications" DisplayAfter="500" runat="server"
 AssociatedUpdatePanelID="upNotifications">
 <ProgressTemplate>
 <div class="progressnotification">
 Updating...
 </div>
 </ProgressTemplate>
</asp:UpdateProgress>

FIGURE 13-23: Updated control to include UpdateProgress method

 7. Add the following line of code anywhere within the Next_Click method:

System.Threading.Thread.Sleep(5000);

 8. Add the following selector to the RentMyWrox.css fi le:

.progressnotification {
 height: 30px;
 width: 500px;
 background-color: #FDE9EF;
 padding-left: 40px;
 line-height: 32px;
 color: #C40D42;
}

 9. Run the application and go to the \Admin page. Once the page renders, click the Next link under
the notifi cation. You should see a screen similar to Figure 13-24.

Introducing the Concept of AJAX ❘ 469

c13.indd 12/18/2015 Page 469

FIGURE 13-24: Update Progress message visible

 10. Delete the line of code that you added in step 7.

How It Works

The fi rst control that you added was the Timer control. By adding this to the page you have changed
the experience such that users can view the various notifi cations without having to take any action. You
set two key values: the Interval property and the OnTick event handler.

The Interval property sets the time, in milliseconds, before the timer goes off. You can set this inter-
val as necessary, in this case you set it to fi ve seconds. The timer automatically restarts itself after the
previous call completes. This is an interesting item because you can put it inside the panel where it
acts like the LinkButton controls, or you can put it outside of the panel and establish the relationship
through the UpdatePanel Triggers, and restarting of the timer happens automatically, even if the
results from the previous call have not been available on the screen for the set period. Once the timer
has reached the set interval, a partial postback is fi red and a call is made to the event handler for the
OnTick, just like the event handlers were set up for the Previous and Next LinkButtons.

The Timer control added a new JavaScript fi le to the scripts on the page:

<script src="../Scripts/WebForms/MsAjax/MicrosoftAjaxTimer.js"
 type="text/javascript"></script>

It also added a new element in the location where the Timer control was added in the markup:

<span id="ContentPlaceHolder1_BaseId_tmrNotifications"
 style="visibility:hidden;display:none;">

However, this new HTML element is set to not display; it is simply a placeholder for the content. This
element is never actually made visible, it is instead used as a placeholder so that the JavaScript that is
running in the application has a DOM reference.

Using AJAX in MVC
The pattern of different implementation approaches between ASP.NET Web Forms and ASP.NET
MVC continues when you consider bringing AJAX into your application. Web Forms implements

470 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 470

support around the use of various server controls. MVC takes a different approach through the use
of HTML helpers that are designed to support AJAX calls.

The most important of these, and the one that you will be using here, is the @Ajax.ActionLink
helper. This helper is designed to create a link that when clicked, calls a controller, gets a partial
view, and then puts what is returned from that partial view into a particular area on the page.
While it seems complicated, it is pretty easy to work through. The fi rst thing you need is an element
on the page that you want the new content to use as a reference. You can consider this to be some-
thing like the UpdatePanel from Web Forms, but it is simply an HTML element (generally a <div>
or a) that you can uniquely identify, such as the following:

<div id="elementtobeupdated">content to be replaced</div>

Once you know where the content will be going, you can build the Ajax.ActionLink. There are
quite a few different method signatures for this ActionLink, with each needing different sets of
information. The various items that are part of a method signature are listed in Table 13-2.

TABLE 13-2: Potential Items for Populating an Ajax.ActionLink

VARIABLE DESCRIPTION

Action The Action is the method that is to be called when the item is clicked. This action
needs to return a partial view in order for this to work correctly.

AjaxOptions The AjaxOptions object is used to set the expectations for what will happen
when the action is taken. The available properties include the following:

HttpMethod: Indicates the HTTP method (GET or POST) to be used while making
an AJAX request

Confi rm: Used to display a message to the user in a confi rmation dialogue. If the
user selects OK, then the call to the server is made.

OnBegin: Defi nes the name of the JavaScript function that will be called at the
beginning of the request

OnComplete: Specifi es the name of the JavaScript function that will be called
when the request is completed

OnSuccess: Specifi es the name of the JavaScript function that will be called when
the request is successful

OnFailure: Specifi es the name of the JavaScript function that is called if the
request fails

LoadingElementId: While an AJAX request is being made, you can display a prog-
ress message or animation to the end user. The value given to this property identi-
fi es an element in the page. This AJAX helper only displays and hides this element.

UpdateTargetId: Specifi es the ID of a particular DOM element. This particular ele-
ment will be populated with the HTML returned by the action method.

InsertionMode: Defi nes how the new content will be used in the screen when the
call is completed. The possible values are InsertAfter, InsertBefore, and Replace.

mailto:@Ajax.ActionLink

Introducing the Concept of AJAX ❘ 471

c13.indd 12/18/2015 Page 471

VARIABLE DESCRIPTION

Controller The name of the controller containing the action that will be responding to the
request. You do not include the “Controller” part of the string. If the controller is
not provided, the referenced action is on the same controller that created the cur-
rent view.

Route Values The route values are the items that need to be added into the route for use within
the action. These items will be either URL values or query string values, depending
upon your setup and need.

Text to

Display
This item is the text that should be displayed—the words that appear on the
screen such that clicking on them causes the call to the action.

Thus, adding a section for which the content will be replaced as well as the part of the page that
updates the section to be replaced would look like the following code:

<div id="elementtobeupdated">content to be replaced</div>
@AJAX.ActionLink("Click Me",
 "Details",
 "ClickMe",
 new { @Model.Id },
 new AJAXOptions
 {
 UpdateTargetId = " elementtobeupdated",
 InsertionMode = InsertionMode.Replace,
 HttpMethod = "GET"
 })

The <div> element contains the content that will be replaced. Both of these references, the element
with which to interact and what to do with the content (in this case replace), are set within the
AJAXOption class.

If you compare this ActionLink to the Html.ActionLink that you worked with before, you will see
that the only difference is this AJAXOption class; all the other parameters are the same as those you
might use if you were building a simple ActionLink.

All the other work that is going on throughout this whole process is also work that you have done
before; you are just wrapping all of this work into AJAX-based functionality. You will see this all in
the next Try It Out.

TRY IT OUT Add AJAX Calls to Add Items to the Shopping Cart

In this activity you will add AJAX calls that add items to a shopping cart and display an updated
summary of the cart. However, because there is not yet any functionality around the shopping cart,
you will have to add all of the supporting functionality as you add the AJAX functionality. Be aware,
there is a lot of this!

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open. Expand your Models
folder. Add a new class called ShoppingCart. Add the using statements and properties listed here:

using System;
using System.ComponentModel.DataAnnotations;

mailto:@AJAX.ActionLink
mailto:@Model.Id

472 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 472

namespace RentMyWrox.Models
{
 public class ShoppingCart
 {
 [Key]
 public int Id { get; set; }

 [Required]
 public Item Item { get; set; }

 [Required]
 public Guid UserId { get; set; }

 [Required]
 [Range(1,100)]
 public int Quantity { get; set; }

 [Required]
 public DateTime DateAdded { get; set; }
 }
}

 2. Add a new class, ShoppingCartSummary. Add the following properties:

public int Quantity { get; set; }

public double TotalValue { get; set;}

 3. Add a new class, OrderDetail. Add the following properties with attributes:

[Key]
public int Id { get; set; }

[Required]
public Item Item { get; set; }

[Required]
[Range(1, 100)]
public int Quantity { get; set; }

public Double PricePaidEach { get; set; }

 4. Add a new class, Order. Add the following properties and attributes:

[Key]
public int Id { get; set; }

[Required]
public Guid UserId { get; set; }

public DateTime OrderDate { get; set; }

Introducing the Concept of AJAX ❘ 473

c13.indd 12/18/2015 Page 473

public DateTime PickupDate { get; set; }

public string HowPaid { get; set; }

public List<OrderDetail> OrderDetails { get; set; }

public double DiscountAmount { get; set; }

 5. Open the Models\RentMyWroxContext fi le and add the following DbSets. When completed, your
context fi le should look similar to Figure 13-25.

public virtual DbSet<ShoppingCart> ShoppingCarts { get; set; }

public virtual DbSet<Order> Orders { get; set; }

FIGURE 13-25: Updated context fi le

 6. Build the solution (Build ➪ Build Solution). Once complete, select Tools ➪ NuGet Package
Manager ➪ Package Manager Console window. Type in the following line to create the new
database migration and then click Enter:

add-migration "order and shoppingcart"

 7. Type in update-database to process the migration script and click Enter.

 8. Right-click on the Views\Shared directory and add a new view named _ShoppingCartSummary
using the settings shown in Figure 13-26.

474 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 474

FIGURE 13-26: Confi guration for a new partial view

 9. Add the following to the new fi le. It should look like Figure 13-27 when completed.

@model RentMyWrox.Models.ShoppingCartSummary

@if(Model != null && Model.Quantity > 0)
{
 # in Cart: @Model.Quantity
 Value: @Model.TotalValue.ToString("C")
}
else
{
 Your cart is empty
}

FIGURE 13-27: New partial view content

 10. Right-click on the Controllers directory and add a new Empty Controller named
ShoppingCartController.

 11. Add the following using statement at the top of the page you just created.

using RentMyWrox.Models;

 12. Add a new private property inside the ShoppingCartController class as shown in the following
example. This part of your page should look similar to Figure 13-28.

private Guid UserID = Guid.Empty;

mailto:@Model.TotalValue.ToString

Introducing the Concept of AJAX ❘ 475

c13.indd 12/18/2015 Page 475

FIGURE 13-28: New Controller with private variable

 13. Add a new private method:

private ShoppingCartSummary GetShoppingCartSummary(RentMyWroxContext context)
{
 ShoppingCartSummary summary = new ShoppingCartSummary();
 var cartList = context.ShoppingCarts.Where(x => x.UserId == UserID);
 if (cartList != null && cartList.Count() > 0)
 {
 summary.TotalValue = cartList.Sum(x => x.Quantity * x.Item.Cost);
 summary.Quantity = cartList.Sum(x => x.Quantity);
 }
 return summary;
}

 14. Add a new action to the controller, above the method you just added:

public ActionResult Index()
{
 using(RentMyWroxContext context = new RentMyWroxContext())
 {
 ShoppingCartSummary summary = GetShoppingCartSummary(context);
 return PartialView("_ShoppingCartSummary", summary);
 }
}

 15. Add a new method to the controller, above the private method:

public ActionResult AddToCart(int id)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 Item addedItem = context.Items.FirstOrDefault(x => x.Id == id);

 // now that we know it is a valid ID
 if (addedItem != null)
 {
 // Check to see if this item was already added
 var sameItemInShoppingCart = context.ShoppingCarts
 .FirstOrDefault(x => x.Item.Id == id && x.UserId == UserID);
 if (sameItemInShoppingCart == null)

476 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 476

 {
 // if not already in cart then add it
 ShoppingCart sc = new ShoppingCart
 {
 Item = addedItem,
 UserId = UserID,
 Quantity = 1,
 DateAdded = DateTime.Now
 };
 context.ShoppingCarts.Add(sc);
 }
 else
 {
 // increment the quantity of the existing shopping cart item
 sameItemInShoppingCart.Quantity++;
 }
 context.SaveChanges();
 }
 ShoppingCartSummary summary = GetShoppingCartSummary(context);
 return PartialView("_ShoppingCartSummary", summary);
 }
}

 16. Right-click on your RentMyWrox project and select Manage NuGet Packages. Ensure that you are
in the Online and Microsoft and .NET areas of the window and search for “unobtrusive.” Your
results should be similar to those in Figure 13-29.

FIGURE 13-29: Search results in NuGet Package Manager

 17. Click the Install button in the tile named Microsoft jQuery Unobtrusive AJAX and accept any
license agreements that may appear.

Introducing the Concept of AJAX ❘ 477

c13.indd 12/18/2015 Page 477

 18. Once the package installation is complete, open your App_Start\BundleConfig.cs fi le and add
the following line:

bundles.Add(new ScriptBundle("~/bundles/jqueryajax").Include(
 "~/Scripts/jquery.unobtrusive-ajax*"));

 19. Open your Views\Item\Index.cshtml fi le. Find the code <a class="inlinelink"
href="">Add to Cart and replace it with the following:

@Ajax.ActionLink("Add to Cart",
 "AddToCart",
 "ShoppingCart",
 new { @item.Id },
 new AJAXOptions
 {
 UpdateTargetId = "shoppingcartsummary",
 InsertionMode = InsertionMode.Replace,
 HttpMethod = "GET"
 },
 new { @class = "inlinelink" })

 20. Make the same change in the Views\Item\Details.cshtml fi le, but use { @Model.Id } in place
of { @item.Id }. The code should look like:

@Ajax.ActionLink("Add to Cart",
"AddToCart",
"ShoppingCart",
new { @Model.Id },
new AjaxOptions
{
 UpdateTargetId = "shoppingcartsummary",
 InsertionMode = InsertionMode.Replace,
 HttpMethod = "GET",
 OnBegin = "fadeOutShoppingCartSummary",
 OnSuccess = "fadeInShoppingCartSummary"
},
new { @class = "inlinelink" })

 21. Open your Views\Shared_MVCLayout fi le. Locate your header and add the following code
immediately after the logo image:

@Html.Action("Index", "ShoppingCart")

 22. At the bottom of the fi le you will see some @Scripts.Render commands. Add the following to
that same area:

@Scripts.Render("~/bundles/jqueryajax")

 23. Open the Content\RentMyCrox.css fi le and add the following styles:

.moveLeft {
 margin-left: 15px;
}

mailto:@Ajax.ActionLink
mailto:@item.Id
mailto:@Model.Id
mailto:@item.Id
mailto:@Ajax.ActionLink
mailto:@Model.Id
mailto:@Scripts.Render

478 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 478

#shoppingcartsummary {
 vertical-align: middle;
 text-align:right;
 margin-left: 100px;
}

 24. Run the application and navigate to your home page. You should get a screen similar to the one
shown in Figure 13-30.

FIGURE 13-30: Screen with empty shopping cart

 25. Click one of the Add to Cart links. The top part of your page should change without the entire
page refreshing, as shown in Figure 13-31.

How It Works

Many different things happened within this activity. The fi rst few steps were building out the object
model that you need to manage a shopping cart for the user. You built the model classes, attributing
them as necessary, and then added them to the context so that the Entity Framework understands that
there is an expectation that those items will be persisted. Two classes were not directly added to the
context, ShoppingCartSummary and OrderDetail, but they were not added for different reasons.

Introducing the Concept of AJAX ❘ 479

c13.indd 12/18/2015 Page 479

FIGURE 13-31: Screen with updated shopping cart

The ShoppingCartSummary class was not added because it is not intended to be something that is
persisted; it is a class that is designed to pass information, in this case summary information, to the
view. This approach is also known as using a ViewModel. The OrderDetail class was not added to
the context fi le because, while it needs to be persisted, the class has no meaning outside of its parent
Order. If you recall back to Order, that class has an OrderDetails property that contains a collection
of OrderDetail objects. With the approach that you took, you can always access the OrderDetail
from the Order, but you will not be able to access it directly because you don’t have a property in the
context.

The following code is part of the content from the migration script that was created to get these model
changes into the database:

CreateTable(
 "dbo.OrderDetails",
 c => new
 {
 Id = c.Int(nullable: false, identity: true),
 Quantity = c.Int(nullable: false),
 PricePaidEach = c.Double(nullable: false),

480 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 480

 Item_Id = c.Int(nullable: false),
 Order_Id = c.Int(),
 })
 .PrimaryKey(t => t.Id)
 .ForeignKey("dbo.Items", t => t.Item_Id, cascadeDelete: true)
 .ForeignKey("dbo.Orders", t => t.Order_Id)
 .Index(t => t.Item_Id)
 .Index(t => t.Order_Id);

If you compare the content within the new object you will see that there are two items that do not
appear in your model defi nition, the Item_Id and Order_Id properties. These table columns were
added by the Entity Framework to manage the relationship to the Item table and the Order table
respectively, and are what the Entity Framework uses to link to the various objects.

Once the necessary work to get the new models into the application and database was completed, you
were able to start working on the real AJAX implementation. The business need you are solving is the
capability to add an item to the shopping cart and see an area on the page display some information
about the shopping cart, including the number of items in the cart and their total value.

The approach that you took to solve the business need was to use a partial view to manage the display
of the content; the partial view is called directly in the initial page load, and then the HTML from that
initial load of the partial view is replaced by the content of a response from an AJAX call to the server.
This partial view was added to the top of the template page and will be visible on every MVC page in
the application. The code that did this part is shown here:

@Html.Action("Index", "ShoppingCart")

There are two parts to note. The fi rst is the Html.Action method that is calling the partial view that
was output from the Index method in the ShoppingCartController. This was added to ensure that
the content is added to the page as part of the initial page download. The second is that the element
containing the output from the partial view has an id so that it can be identifi ed. This identifi cation
is important so that the browser can fi nd the element that will have its content replaced by the output
from the AJAX call. You’ll learn more about this later.

The initial partial view that was being created is very simple. The controller action that performs the
work is simple as well, and is shown here:

public ActionResult Index()
{
 using(RentMyWroxContext context = new RentMyWroxContext())
 {
 ShoppingCartSummary summary = GetShoppingCartSummary(context);
 return PartialView("_ShoppingCartSummary", summary);
 }
}

private ShoppingCartSummary GetShoppingCartSummary(RentMyWroxContext context)
{
 ShoppingCartSummary summary = new ShoppingCartSummary();
 var cartList = context.ShoppingCarts.Where(x => x.UserId == UserID);
 if (cartList != null && cartList.Count() > 0)
 {
 summary.TotalValue = cartList.Sum(x => x.Quantity * x.Item.Cost);

Introducing the Concept of AJAX ❘ 481

c13.indd 12/18/2015 Page 481

 summary.Quantity = cartList.Sum(x => x.Quantity);
 }
 return summary;
}

The Index method calls another method that fi nds all of the items in the ShoppingCart table for a
particular user and then counts the items and totals the Costs to create a single class with both of those
values, a ShoppingCartSummary. This ShoppingCartSummary is then passed to the partial view as the
model that will be used for display. Using the class like this is why you didn’t have to add it to the con-
text; it is not data that should be directly persisted in the database.

A note about the UserId: You are currently using an empty GUID, or a GUID that has zeroes (0s) in
every position. This means that all of the items that you add to the shopping cart will be entered with
a single value and will thus always be added and available. This is obviously not how you would want
to go into production, but at this point you don’t have users. You will change these when you get to the
chapter on authentication, Chapter 15.

Now that you have your partial view you can add the AJAX that will do all the work of sending infor-
mation to the server, getting a response, and then replacing a part of the downloaded page with that
response. You did not directly add any AJAX code; you instead used an AJAX helper as shown here:

1 @Ajax.ActionLink("Add to Cart",
2 "AddToCart",
3 "ShoppingCart",
4 new { @item.Id },
5 new AJAXOptions
8 {
7 UpdateTargetId = "shoppingcartsummary",
8 InsertionMode = InsertionMode.Replace,
9 HttpMethod = "GET" // <-- HTTP method
10 },
11 new { @class = "inlinelink" })

Lines 1–4 and line 11 of the preceding snippet build the link that becomes visible to the user, with
line 1 adding the text that is being displayed, and lines 2, 3, and 4 adding the action, controller, and Url
variables necessary for building the URL that will be called when the link is clicked. If this link is on an
item with an Id of 10, the URL that will be built is \ShoppingCart\AddToCart\10. Line 11 assigns the
CSS class to the element. All of those lines are common with the Html.ActionLink HTML helper.

Lines 5–10 are what sets this apart from the HTML helper, the AJAXOptions. Table 13-2 included
the defi nitions of the various properties, but in this case you are using only three of them:
UpdateTargetId, InsertionMode, and HttpMethod. The UpdateTargetId property is used to defi ne
the DOM element that is going to be affected by this AJAX call. The string value that is assigned here,
"shoppingcartsummary", is the same as the Id from the element that surrounds the partial view.
The next property, InsertionMode, defi nes what is going to happen with the results from the AJAX
request; in this case it is going to replace the content of the element that was just identifi ed. The other
options are to insert the results either immediately before or immediately after the identifi ed element.
The HttpMethod defi nes the method to be used in the AJAX call back to the server.

The HTML that was created by this control is shown here:

<a class="inlinelink"
 data-ajax="true"

mailto:@Ajax.ActionLink
mailto:@item.Id

482 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 482

 data-ajax-method="GET"
 data-ajax-mode="replace"
 data-ajax-update="#shoppingcartsummary"
 href="/ShoppingCart/AddToCart/5">Add to Cart

If you remember back to the validation that you did in Chapter 12 you will see some commonalities,
especially in the use of custom attributes to change the behavior of the item being clicked. If you removed
all the attributes that are prefaced with data-ajax you would have a simple anchor element that causes a
complete postback and page replacement. However, the addition of the attributes turns the click into an
event that the jQuery Unobtrusive library is able to parse and understand. You can see the attributes in
this element refer almost directly back to the values that you set in the AJAXOptions.

In order to get this functionality you had to add the new NuGet package, to get the JavaScript libraries
that support this approach. You then needed to add the JavaScript libraries that were downloaded into
your Scripts directory to a bundle, which was then added to the page. This ensured that the scripts you
added to the project were downloaded to the client so that they were available for the client to use when
conducting the AJAX calls.

Once the anchor element was created, a click on the visible text would fi re off an asynchronous call to
the server. Unlike the AJAX call that was performed by the Web Forms control, this is a GET call that
contains no request body. This means that the size of the request is minimal. Compare that to the POST
request that contained every form value on the page, including ViewState, that was sent by the Web
Forms control.

Just as with the Web Forms call, the content being returned is minimal, as shown in Figure 13-32.

FIGURE 13-32: F12 Developer Tool showing the response body

The most complicated code that you had to add is the action that responds to this AJAX request. The
process happening within this code is as follows:

 1. The URL is parsed to identify the Id of the item being added to the shopping cart.

 2. The database is queried to ensure that the Id being sent is valid.

 3. The ShoppingCart collection is then queried to determine whether there is already an item in the
shopping cart for this user that has this same Id. If so, this means that the item was already added
to the cart. Rather than add the item again, thus loading two rows into the database with the same
item, when the item is already in the shopping cart the action merely increments the quantity.

 4. If there is not a matching ShoppingCart with that Id, then a new one is created and added to the
context’s collection.

Using Web Services in AJAX Websites ❘ 483

c13.indd 12/18/2015 Page 483

 5. Changes to the database are saved.

 6. A call is made to determine the ShoppingCartSummary.

 7. The ShoppingCartSummary is returned to the same partial view that was used when creating the
initial page load, thus replacing the content with the output from a different action.

 8. The partial view is rendered into HTML and then returned to the client, as shown in Figure 13-32.

In this activity you were able to take advantage of the built in ASP.NET MVC support for AJAX help-
ers that tie into the Unobtrusive JavaScript library to allow the simple coding to support AJAX-based
requests.

In both of the instances that you have worked through in this chapter you have been sending HTML
content back and forth and replacing preexisting content with the new information. There are other
approaches than sending HTML when doing work with AJAX. In the next section, you will exam-
ine one of those other approaches.

USING WEB SERVICES IN AJAX WEBSITES

Sending HTML content through AJAX is a simple approach that requires minimal work on both
the client and the server. However, there is redundancy in the information that is being transmitted
back to the client. In the last activity, you created an AJAX call that returned an abbreviated set of
information, shown here again:

in Cart: 2Value: $50.00

This is a total of almost 70 characters that would be downloaded every time a user added an item to
the shopping cart. However, only six characters are actually important: the number of items (two in
this case) and the value (50.00). You can make a change that will decrease the typical response size
of adding an item to the shopping cart by a signifi cant amount. While this may not seem important
in the context of this application, imagine what this could mean to a company such as Amazon that
handles thousands of these responses a minute; it could lead to a substantial savings in bandwidth
usage, which could directly affect the profi tability of the company.

Making this change requires that rather than download the HTML, you instead download the
values that need to be displayed. This can be done by converting the information that you need, in
this case the ShoppingCartSummary object, into a JSON string and returning that string, which is
shown here in its default format:

{"Quantity":2,"TotalValue":50}

This transfer set is 30 characters, but you can modify it by shortening the property names on
the class being converted to JSON to smaller property names, such as Qty and Val, which would
remove an additional 12 characters from the download. The other change that you have to make
is related to how you handle the item coming down. When using the HTML approach, you simply
replace existing content with a new set of content. Obviously, you cannot take that same approach

484 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 484

here because there is a lot of intermediate content that you will want to maintain, and instead just
replace bits and pieces of the content.

But before getting into how you will manage that information once it gets to the client, fi rst you
will learn how to get an object from the server, rather than HTML snippets. The most common
approach to getting an object from the server is through a web service.

Technically, a web service is generally defi ned as a method of communication between two com-
puters over a network. However, that would mean that everything you have done so far has been
based on web services because you are building a system that enables one computer, the client, to
communicate with another computer, the server. That is why we are using a more specifi c defi nition
whereby a web service is a method of communicating object information between two computers.
This object is not HTML, but rather a serialized version of an object.

SERIALIZATION AND DESERIALIZATION

Serialization is the process of translating an object into a transferrable format. It
is usually understood to mean the translation of an object into a string such that
the string can be converted back into an object at the end of the transference. This
is especially important when you are looking at web communications because the
protocol is based upon sending strings back and forth between the client and the
server.

When an object is serialized, the serializer (the software that does the work)
generally goes through all the properties of the object and converts them into a
series of key/value pairs, where the key is the name of the property and the value
is the string version of the property value. If the property is not a simple type, then
the serializer will serialize the property value into its own set of key/value pairs.
The serializer does this same work for every property on the object, going as deeply
as necessary into the object to get to the base values.

In deserialization the reverse happens. The object is constructed, then the list of
key/value pairs is gone through and the string is parsed as necessary to get the
appropriate type. The same happens with any complex types that are properties on
the object; those auxiliary key/value pairs are gone through and those subordinate
objects are created and the values populated.

In the current .NET environment there are three different ways to create a web service: Windows
Communication Foundation (WCF), ASP.NET Web API, and ASP.NET MVC. Each of these
approaches differs in terms of how it works and what it tends to be used for within a development
project.

WCF is a complete framework for supporting communications between different computers. It
provides a huge set of functionality and it supports many different protocols, including protocols
other than HTTP. It is Microsoft’s enterprise-level area of the .NET Framework that supports com-
munication. As you can guess, there are a lot of different capabilities within WCF, and in some cases
using WCF is mission critical. This is not one of those cases.

Using Web Services in AJAX Websites ❘ 485

c13.indd 12/18/2015 Page 485

The next approach to creating a web service in .NET is through the use of ASP.NET Web API.
Web API is a much slimmer web service management system; it supports only the creation of REST
services, whereas WCF supports the creation of many different types of services. Using Web API
enables developers to build URLs that are very similar to the URLs that you created when working
with ASP.NET MVC.

Speaking of ASP.NET MVC, you can also create web services in MVC through actions on a control-
ler. You can change an MVC action into a web service by changing the return value. Most of the
actions that you have worked with up to this point have returned some type of view, either full or
partial. However, you can just as easily return a serialized object rather than HTML from a View,
as shown here:

public ActionResult Details(int id)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 Item item = context.Items.FirstOrDefault(x => x.Id == id);
 return Json(item, JsonRequestBehavior.AllowGet);
 }
}

This code snippet should be familiar; the only difference is rather than return View(item), the
method instead returns the results of a method that converts an object into JSON. Also, the URL to
get this object would be \Item\Details\5 to get an Item with an Id of 5.

Web API also uses a controller and action process, with routing, just as MVC does. However, the
naming process is different, as the URL and HTTP methods are fully integrated so that the interme-
diate descriptor that you tend to see in MVC URLs is left out. Thus, in a Web API application, the
default URL that you would use is \Item\5 because a GET against that URL means that you want to
see the item. A PUT or a POST to that URL would be either creating or updating an Item object.

Web API is able to avoid this intermediate descriptor because it does not have to worry about cre-
ating HTML. If you look at MVC you will see that this intermediate descriptor is generally more
about the view that you will be using by default (through convention) than it is anything else; thus
the \Item\Details\5 call would, by default, expect to call an Action named Details and return a
view that is also named Details. Web API doesn’t have to worry about that, so it takes a different
approach.

The following snippet shows a complete controller that covers all of the available methods for an
object, in this case an Item:

public class ItemsController : ApiController
{
 // GET api/items
 public IEnumerable<Item> Get()
 {
 using (RentMyWroxContent context = new RentMyWroxContent())
 {
 return context.Items.OrderBy(x => x.Name);
 }
 }

 // GET api/items/5

486 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 486

 public Item Get(int id)
 {
 using (RentMyWroxContent context = new RentMyWroxContent())
 {
 return context.Items.FirstOrDefault(x => x.Id == id);
 }
 }

 // POST api/item
 public void Post(Item item)
 {
 using (RentMyWroxContent context = new RentMyWroxContent())
 {
 var savedItem = context.Items.Add(item);
 context.SaveChanges();
 }
 }

 // PUT api/items/5
 public void Put(int id, [FormValues] values)
 {
 using (RentMyWroxContent context = new RentMyWroxContent())
 {
 var item = context.Items.FirstOrDefault(x => x.Id == id);
 TryUpdateModel(item);
 context.SaveChanges();
 }
 }

 // DELETE api/items/5
 public void Delete(int id)
 {
 using (RentMyWroxContent context = new RentMyWroxContent())
 {
 var item = context.Items.FirstOrDefault(x => x.Id == id);
 if (item != null)
 {
 context.Items.Remove(item);
 context.SaveChanges();
 }
 }
 }
}

One of the Web API default features that should leap out at you is how the names of the Actions
correspond to an HTTP method. If you look at the comments, you can see how each of these meth-
ods relates directly to the typical action that you would take on an object:

 ➤ Get a list of objects.

 ➤ See a particular object.

 ➤ Create a new object.

 ➤ Update an existing object.

 ➤ Delete an object.

Using Web Services in AJAX Websites ❘ 487

c13.indd 12/18/2015 Page 487

Thus, anything you would want to do with an object would be available on that controller.

Another difference between ASP.NET MVC and ASP.NET Web API is that using Web API to man-
age the process allows some fl exibility out of the box. Because Web API is built solely to provide
serialized objects, it handles the serialization process for you. There are multiple formats in which
this object can be returned, with the most common being JSON and XML. When you are building
this in ASP.NET MVC, you defi ne the format of the item being returned. That means if you want
to support both JSON and XML formats so that different requesters will get their preferred for-
mat, you have to code for both approaches. When you do the same in Web API, you don’t need to
worry about serializing into the appropriate format; Web API takes care of that for you based on the
request headers; all you have to worry about is returning the correct object.

While Web API offers additional features that are not supported by default through MVC, most of
those features do not matter in this case. Since you, as the site developer, are the one who is going to
be consuming the services, a lot of the fl exibility offered by Web API (and WCF for that matter) are
not needed; the code that you will be writing on both the client and the server simply need to be able
to talk together. In the next activity, you will be writing a web service that provides information to
your client.

TRY IT OUT Add the Store Hours to Your Application

There is a popular feature on many brick-and-mortar store websites that informs visitors whether the
store is open, and if not when it will next be open. In this activity you create a web service that returns
such information as a serialized JSON object.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open.

 2. Expand your Models folder. Add a new class called StoreOpen. Add the properties shown here:

public bool IsStoreOpenNow { get; set; }

public string Message { get; set; }

 3. Right-click on your Controllers folder and add a new Empty MVC controller named
StoreOpenController.

 4. Fill out the Index action as shown here:

// GET: StoreOpen
public ActionResult Index()
{
 StoreOpen results = new StoreOpen();
 DateTime now = DateTime.Now;
 if (now.DayOfWeek == DayOfWeek.Sunday ||
 (now.DayOfWeek == DayOfWeek.Saturday &&
 now.TimeOfDay > new TimeSpan(18,0,0)))
 {
 results.IsStoreOpenNow = false;
 results.Message = "We open Monday at 9:00 am";
 }
 else if (now.TimeOfDay >= new TimeSpan(9,0,0) &&
 now.TimeOfDay <= new TimeSpan(18,0,0))

488 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 488

 {
 results.IsStoreOpenNow = true;
 TimeSpan difference = new TimeSpan(18,0,0) - now.TimeOfDay;
 results.Message = string.Format("We close in {0} hours and {1} minutes",
 difference.Hours, difference.Minutes);
 }
 else if (now.TimeOfDay <= new TimeSpan(9,0,0))
 {
 results.IsStoreOpenNow = false;
 results.Message = "We will open at 9:00 am";
 }
 else
 {
 results.IsStoreOpenNow = false;
 results.Message = "We will open tomorrow at 9:00 am";
 }
 return Json(results, JsonRequestBehavior.AllowGet);
}

 5. Run the application. Go to \StoreOpen. You should be prompted to download a fi le as shown in
Figure 13-33.

FIGURE 13-33: Downloading the StoreOpen.json fi le

 6. Select Open, and if necessary choose to view the fi le in Notepad. You should get a response similar
to the following snippet (your values may differ based on day and time):

{"IsStoreOpenNow":false,"Message":"We open Monday at 9:00 am"}

How It Works

You created a new model and controller just as you have done multiple times; nothing unusual about
those steps. The Index action that you created in this controller constructs a new StoreOpen object and
then populates the values based on the day and time of the request.

c13.indd 12/18/2015 Page 489

jQuery in AJAX ❘ 489

It is assumed that the store is open Monday through Saturday from 9:00 a.m. to 6:00 p.m. The logic
checks for four different possibilities:

 ➤ After closing time on Saturday and Sunday the user gets a message that the store opens Monday
morning.

 ➤ Between opening and closing times Monday through Saturday the user gets a message displaying
the amount of time until the store closes.

 ➤ If it is after closing time but before midnight, then the user gets a message saying the store opens
tomorrow morning.

 ➤ If it is after midnight but before opening time, then the user gets a message saying the store opens
at 9:00 a.m.

All of this logic is used to populate the StoreOpen object that is returned to the user. The object is
returned through the Json method, which serializes the object that was passed in as a parameter.
The second parameter in the method is a JsonRequestBehavior. There are two potential behaviors,
AllowGet and DenyGet. The default behavior is to disallow the return of a JSON object through a GET
request. The reason why the default turns off the capability to retrieve a JSON object through a GET
is because it is important for the developer to remember that information being passed through this
approach is not secure, as demonstrated by the fact that you were able to download and open a fi le con-
taining the JSON information. This default behavior forces you, as the developer, to consider the data
you are exposing over the HTTP GET method and then make a conscious decision that it is OK to pub-
licize. It is always OK to return JSON data from a POST or PUT method request because those HTTP
verbs always assume that you have created or changed some information.

In this activity you created a controller and an action that returned a JSON-serialized object. What
can you do with this object?

jQUERY IN AJAX

Creating a web service enables you to download information to a client application. However, at
this point, the information is simply a string that represents an object. Using this item to affect the
UI is where the power of jQuery comes into play. The next chapter provides a more in-depth look at
the functionality available with jQuery. This section goes over only those parts that are necessary to
support an object-based AJAX call.

One part in particular is necessary when using jQuery in AJAX, and that is the code that makes
the server call. The jQuery method used to make a GET request that expects to get JSON back is the
getJSON method, shown here:

$.getJSON("url to call")

490 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 490

One of the most important things that delineates jQuery is the $. This isn’t a reference to all the
money you can make if you are good at jQuery; it is similar to a namespace that defi nes the action
that it precedes as being part of the jQuery library.

The $ can be confusing. In the previous example, it is used to represent jQuery mostly as a
namespace. However, it is also used to identify a selection, such as the following:

$("#someDOMelement").html("some content");

In this example the $() represents a way to identify some content in the DOM, in this case an ele-
ment with the id of "someDOMelement". The selector acts just like the selectors in CSS, so in this
case you can tell that it is an id you are trying to match because of the “#” that is part of the selec-
tion identifi er.

The only way to differentiate the usage is whether the $ immediately precedes a set of parentheses
containing a selector or whether it precedes a period. When it precedes the period you know that the
$ refers to a core method, in this case getJSON. What is not clear from the preceding usage is how to
work with the data that is returned from the call.

The getJSON method has several different callbacks that you can use to manage the outcome of the
call. The full defi nition is shown here:

$.getJSON("url to call")
 .done(function (data) {})
 .failure()
 .always();

These all take advantage of jQuery’s Promise Framework (more on that in the next chapter), and
you can actually chain as many of the different callbacks together as you need—whether it is mul-
tiple instances of the same callback, such as done, or one of each as you need it.

The done callback defi nes the work that you want done on the JSON object returned from the call.
This work can be done in an anonymous function or in a well-defi ned function. The failure call-
back is designed to allow the client to manage problems in the request. If the server returned a server
error, for example, the failure callback would be processed, as opposed to the done callback. The
always callback is called every time the request is completed, whether it was a success and went
through the done callback or whether it failed and went through the failure callback.

In this next activity you create jQuery code that will both call the server and manipulate items in the
DOM. This means you will see both approaches that use the $ preface.

TRY IT OUT Calling the Server and Displaying Retrieved Information

In this activity you make the call to the server to get the information regarding store hours that you
built in the last activity. After you download the information you will then display it in the UI.

jQuery in AJAX ❘ 491

c13.indd 12/18/2015 Page 491

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open.

 2. Open your Views\Shared_MVCLayout.cshtml fi le. In the LeftNavigation section, above the
request for "Notifications", add the following line. When you are done this section should look
like Figure 13-34.

<div id="storeHoursMessage"></div>

FIGURE 13-34: Addition of area to display store hours message

 3. Near the bottom of the page are some script elements containing the datepicker. Add the following
within those script elements. When you are done it should look like Figure 13-35.

function getStoreHours() {
 $.getJSON("/StoreOpen")
 .done(function (data) {
 var message = data.Message;
 $("#storeHoursMessage").html(message);
 $("#storeHoursMessage").removeClass();
 if (data.IsStoreOpenNow == false)
 {
 $("#storeHoursMessage").addClass("storeClosed");
 }
 else {
 $("#storeHoursMessage").addClass("storeOpen");
 }
 setTimeout(function () {
 getStoreHours();
 }, 20000);
 });
};

$(document).ready(function () {
 getStoreHours();
});

492 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 492

FIGURE 13-35: JavaScript added to the page

 4. Add the following styles to the RentMyWrox.css fi le:

.storeOpen {
 background-color:green;
 color:white;
 text-align:center;
 font-size: small;
 font-weight: bold;
 width:125px;
}

.storeClosed {
 background-color:#F8B6C9;
 color:red;
 text-align:center;
 font-size: small;
 font-weight: bold;
 width:125px;
}

 5. Run the application and go to the home page. You should see a new addition on the left section
of the screen. The content that you see will vary according to the day and time when you are
running the app. Figure 13-36 shows the output on a Sunday.

jQuery in AJAX ❘ 493

c13.indd 12/18/2015 Page 493

FIGURE 13-36: Running the new changes

How It Works

In this activity you performed two main activities. The fi rst was adding some new HTML, includ-
ing a new element to your left menu and a couple of new styles. The new element will be used to store
content that comes from the server, while the styles will be used to display the message appropriately.
Unlike the previous AJAX approach, however, you did not fi ll the content from the server; these <div>
tags simply act as containers for when you make your independent server calls.

The second activity was to add some JavaScript code. In summary, the JavaScript that you added took
the following steps:

 1. Called the server using the URL for the controller that you added in the last exercise

 2. Took the information that comes back and puts the message into the <div> tags

 3. Evaluated the IsStoreOpenNow property to determine which style to apply to the message: either a
style for when the store is open or a different style if the store is closed

 4. Set a timer to query the server again in 20 seconds so that the value being displayed is frequently
refreshed

494 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 494

Now consider how each step was performed. Two different items were added to the page. The fi rst was
a function, getStoreHours. The second was code that is run as soon as the engine got to the line. This
code is shown again here:

$(document).ready(function () {
 getStoreHours();
});

The $() indicates that the content is a selector. In this case, the selector is the document, or the con-
taining DOM. You are telling the browser that you want to run the anonymous function when the doc-
ument is ready, or was fi nished loading into the browser. This processing occurs simultaneously with
the loading of images and other downloadable items, after the document is processed. The anonymous
function that you are running has one line, a call to the getStoreHours function. In a nutshell, this
code runs the other method as soon as the document is loaded.

The getStoreHours JavaScript function performs the work of making the call to the server and then
updating the UI based on the results. This code is repeated here with line numbers for easier reference:

1 function getStoreHours() {
2 $.getJSON("/StoreOpen")
3 .done(function (data) {
4 var message = data.Message;
5 $("#storeHoursMessage").html(message);
6 $("#storeHoursMessage").removeClass();
7 if (data.IsStoreOpenNow == false)
8 {
9 $("#storeHoursMessage").addClass("storeClosed");
10 }
11 else {
12 $("#storeHoursMessage").addClass("storeOpen");
13 }
14 setTimeout(function () {
15 getStoreHours();
16 }, 20000);
17 });
18 };

Line #1 is the function defi nition. Note that there is no defi ned return type such as you may be used to
with C#; instead this simply delineates a set of code that needs to be run. The contents of the function
is a getJSON method that fetches a set of data from the URL defi ned in line 2.

Once the data is collected, the done callback is used to handle the data, as shown by the anonymous
function defi ned on line 3. The data that is returned from the call is passed into the anonymous func-
tion where it is available as if it were a standard object (which it is, but more on that in the next chap-
ter!). Lines 4 and 5 are getting a specifi c value, the Message property, from the returned data and
setting the html content of the element that has an id of "storeHoursMessage", which coincidentally
enough is the <div> element that you added in the left navigation panel.

After setting the message, line 6 clears the class that is currently assigned to that element. It is done this
way because it is simpler to just remove the class and add a new class than to evaluate the class value to
ensure that it is correct. You cleared the class value because the next few lines of the method are setting

Practical AJAX Tips ❘ 495

c13.indd 12/18/2015 Page 495

the appropriate style based on the value of the IsStoreOpenNow property. If the store is open, the green
background with white text style will be displayed, highlighting that the store is open and indicating
how long before it closes.

The last part of the method, in lines 14−16, uses the setTimeout method that is built into the window,
or browser. This method acts like a timer that sets an amount of milliseconds before it goes off and an
anonymous function that will be run when the timer expires. In this case the anonymous function is
running the getStoreHours function, thus ensuring that every 20 seconds the method is called again
so that the server is queried and the response is redisplayed.

One thing that you need to understand is that while you added this logic to an ASP.NET MVC view,
you could just as easily have added the exact same information to a page that was created from a Web
Forms response—especially because none of the information being displayed was added at the server, it
was all defi ned based on the results of the call to the web service. Adding this same functionality would
require the exact same client-side steps, but in an .aspx (or .ascx) page rather than the .cshtml page.

Hand-coding AJAX calls is certainly more work that using either Web Forms server controls or
MVC AJAX helpers, but the capability to use the jQuery library in your ASP.NET application
makes writing AJAX code in JavaScript very straightforward. Obviously there are more complex
approaches to performing AJAX interactions, such as performing a POST with a populated object
that is being passed into the action, but those are more differences in degree as opposed to signifi -
cantly more work; jQuery makes your job easy, just like the other helpers you used previously.

PRACTICAL AJAX TIPS

The following tips will help you get the most out of using AJAX in your website:

 ➤ UpdatePanels may seem like functionality that you would want to add everywhere, but use
them only when needed and not as a default approach. There is still a lot of communication
going to the server, so using multiple UpdatePanels on a data entry page may be problem-
atic, as every form element is submitted multiple times. It also means that you have to ensure
when you write your code-behind that you do not reference those properties in such a way
that these multiple posts cause a problem, perhaps by saving incomplete information to the
database.

 ➤ When you use an UpdatePanel you should also use an UpdateProgress control as well.
This helps your users understand that something is changing on the screen. It’s especially
important when the change is happening because of a user request. Because the page is not
being posted back to the server, it is more diffi cult to determine when a button click did any-
thing, as all the processing is happening in the background and is not automatically shown in
the UI. This is where UpdateProgress controls help; they provide visual cues to the changes.

 ➤ When working with AJAX in an MVC application, using AJAX helpers is a time-saver. These
helpers demonstrate the use of the Unobtrusive JavaScript libraries in support of AJAX.
While this chapter described how to write AJAX interaction using JavaScript and jQuery,

496 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 496

you could just as easily have added the appropriate attributes onto the element and included
the Unobtrusive JavaScript libraries to get an AJAX experience.

 ➤ When you consider your approach to getting asynchronous information from the server, you
have two real options. The fi rst is bringing down HTML snippets that you can place into var-
ious areas of the UI. This is the solution that is used by both of the built-in AJAX supports.
However, your particular need may steer you away from this approach and toward one in
which it makes more sense to download the elements once and then update the values within
the elements. Both of these are equally valid approaches; you need to weigh the extra effort
of building the second approach against the limitations of the fi rst approach.

SUMMARY

ASP.NET’s support of AJAX makes it much easier to implement AJAX within your application.
Whether you are implementing an AJAX approach in Web Forms or MVC, there is built-in func-
tionality that makes your implementation process much cleaner and simpler. The capability to
customize the AJAX process using jQuery and JavaScript makes the development process more
uniform and supportable.

To use AJAX in Web Forms requires several different server controls. The most important control
is the UpdatePanel, which contains the content that will be replaced during the AJAX call. The
UpdatePanel is unusable unless there is also a ScriptManager server control. The ScriptManager
is used to manage the JavaScript fi les that are downloaded to the client in order to support the
client-side fi ring of the AJAX call.

If you are working in ASP.NET MVC and need to use AJAX then you will likely take advantage of
the AJAX helpers that do the work of formatting the HTML so that the jQuery Unobtrusive AJAX
library will properly work. The helper enables you to determine which HTML element will be
affected by the results of a call. Typically this approach is used to display a partial view.

If the default helpers and server controls do not provide the behavior that you are looking for, you
can still use jQuery and JavaScript to perform any kind of server call for any kind of response type
with which you can pretty much do anything in the browser. This is certainly more effort than using
one of the other approaches, but it is also completely customizable to solve your needs.

EXERCISES

 1. What would you have to do differently if you wanted to put the functionality from the last
activity, for store hours, on an ASP.NET Web Forms page?

 2. What steps would you need to take if you wanted to implement the Unobtrusive AJAX jQuery
library in an ASP.NET Web Form page?

 3. What are some of the challenges with adding a timer to a web page for which the results from
the call update a section of the page?

Summary ❘ 497

c13.indd 12/18/2015 Page 497

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

AJAX AJAX stands for Asynchronous JavaScript and XML and refers to a
design where the browser does not necessarily replace the entire page
every time there is a need for information from the server. The browser
instead replaces a part of the page in such a way that the user can con-
tinue work.

AJAX.ActionLink A helper method in ASP.NET MVC that builds out an element so that it
can take advantage of the Unobtrusive AJAX library. This method helps
the developer easily implement an AJAX approach to replacing HTML
content.

AJAXOptions A class that manages all the confi guration of the AJAX part of the AJAX
.ActionLink. There is a direct relationship between the properties in the
class and the output in the element that is used for Unobtrusive AJAX.

AsyncPostBackTrigger A setting on the UpdatePanel whereby you link a client-side action to
the UpdatePanel and defi ne that action as the one that will cause an
asynchronous postback

ContentTemplate An UpdatePanel does not actually hold the content that is going to be
updated. It instead contains a ContentTemplate, which is the attribute
containing the actual elements that are going to be updated.

Deserialization The process of turning a string value back into the object that it
represents

F12 Developer Tools A toolkit that ships with Microsoft Internet Explorer. It provides develop-
ers with a lot of support, including CSS and styling support, and request
and response information and details, including headers and body, and
the speed of the server response.

getJSON A utility method in jQuery that handles a GET call to a web service. By
defi nition, the response that comes back from the server is expected to
be in JSON format.

Json method A method available on an ASP.NET MVC controller. It takes in an object
and serializes it as it returns the serialized object back to the client.

Mozilla Firefox
Developer Tools

Like the F12 Developer tools that ship with Internet Explorer, the Mozilla
Firefox Developer Tools are available with every Mozilla Firefox installa-
tion. They provide much of the same support as the F12 tools.

PostBackTrigger This is linked to an UpdatePanel, but rather than cause a partial page
callback it instead causes a full page postback, just as if AJAX were not
being used at all.

498 ❘ CHAPTER 13 ASP.NET AJAX

c13.indd 12/18/2015 Page 498

ScriptManager A required part of using AJAX in ASP.NET Web Forms. Necessary
whenever an UpdatePanel is present, it holds the links to the supporting
JavaScript fi les.

ScriptManagerProxy Enables you to put the ScriptManager on a master page and then
handles the linking from an UpdatePanel on the content page to the
ScriptManager on the master page.

Serialization The conversion of an object to a string representation. This is necessary
so that you can transfer the object over the Internet.

Single-Page
Application

A single-page application is an approach to building a website whereby
the user downloads the initial page and all of the JavaScript fi les neces-
sary to manage all interaction between the user and the server. There is
no full page request; all updates happen using AJAX.

Unobtrusive AJAX A JavaScript and jQuery library that allows for the management of AJAX
requirements through attribution on the affected elements. It eliminates
much of the custom scripting that generally has to be done when using
AJAX.

UpdatePanel An ASP.NET Web Forms server control that defi nes a particular set of
content as being available for replacement through an AJAX call. The
content to be replaced is stored in the ContentTemplate.

UpdateProgress This server control provides user feedback when an AJAX call is being
processed. This is especially important when the user clicks a button
and expects something to happen. If the effect were a full-page fetch,
the user would know something is happening because a new page
would be downloading; but because it is an asynchronous request, the
updateProgress control provides that information.

Web Service An approach in which the server handles a request and sends informa-
tion back to the client. Technically a web service is just a way to allow
two computers to communicate over the network, but we have modifi ed
that defi nition to mean the transmission of an object over the network.

c14.indd 12/18/2015 Page 499

jQuery
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The history of jQuery and why it is so important

 ➤ Features available in jQuery

 ➤ Using jQuery to work within your page

 ➤ Deeper integration of the jQuery framework

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 14
download and individually named according to the names throughout the chapter.

Earlier in the book, you were concentrating on other areas of the application that were not
specifi c to jQuery, but you have come across some mentions of it in bits and pieces. There have
been examples using jQuery to support client-side validation as well as support AJAX calls
and displaying the results on the page. A jQuery UI widget was also pulled into the applica-
tion so that you could invoke a date picker. This should give you an idea of how jQuery ends
up being intertwined throughout the client side of a website. This chapter clarifi es why jQuery
is so prevalent in modern web development, and provides more exposure to the functionality
that is available within the jQuery libraries.

AN INTRODUCTION TO jQUERY

jQuery is a JavaScript library that best estimates say is now used in about two out of three
websites on the Internet. It is called a JavaScript library because it is completely written
in JavaScript. This enables jQuery to be used within a JavaScript method just like a core

14

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

500 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 500

JavaScript method; it is simply an additional set of objects and methods that are made available in
JavaScript, much like how the Entity Framework adds a separate set of functionality to .NET. In
order to understand the history of jQuery, you need to understand the evolution of JavaScript.

Early JavaScript
Now on version 6, released in June 2015, JavaScript was fi rst included in Netscape Navigator 2,
shipped in late 1995. By 1996, Microsoft started including JavaScript in Internet Explorer, starting
with IE 3. At this point, both implementations were different, which made it diffi cult to provide a
dynamic experience across both browsers. This differentiation lead to those dreaded phrases such as
“best viewed in Internet Explorer” or “best viewed in Netscape.”

Even though the language itself was standardized in 1997 when Ecma International (an interna-
tional standards organization) published ECMAScript, which was based on JavaScript, that did not
mean that the same scripts would work the same way with different browsers. By itself, a JavaScript
method is pointless; it only becomes useful when it is somehow interacting with the user. This
was another major problem—each of the major browser companies had built its own enhance-
ments to the DOM, and these enhancements were what JavaScript had to interact with, so different
approaches to defi ning the DOM meant different code to interact with each. These DOM defi nitions
were not part of the Ecma standardizations; they were defi ned in a separate standardization effort
by the W3C. HTML 5, the newest version of HTML, was updated to better defi ne the DOM and
its interaction points, and it marks the best attempt to offer standardization across DOM elements
so that the JavaScript standards will be able to consistently, and in a standard fashion, identify and
interact with DOM elements regardless of the browser being used.

Even as browsers moved toward implementing both JavaScript and the DOM in a standardized fash-
ion, there were some problems with the universal adoption of JavaScript.

 ➤ The language is suffi ciently different from other common development languages that it’s
necessary to learn a second language when working with web applications.

 ➤ Because JavaScript typically relies on a runtime environment, such as the web browser, its
behavior is still not completely 100% consistent between each environment.

 ➤ It is necessary to include some processing code (JavaScript) within the display code (HTML)
to ensure that they work together.

The mixing of processing code and display code is the same problem that led to ASP.NET being cre-
ated to replace classic ASP. Whereas ASP.NET Web Forms are a much cleaner approach than Classic
ASP, they still had their own sets of problems related to the linking of processing and display, which
led to the development of ASP.NET MVC. JavaScript has the same problem. In order for JavaScript
to be the most effi cient, it had to be bound to HTML elements so that events from the element
would lead to running a set of JavaScript. This means that not only does the JavaScript implementa-
tion have to understand the DOM, the DOM has to understand the JavaScript method(s).

jQuery’s Role
Released in 2006, jQuery is a library that was introduced to solve all three of the aforementioned
problems. While at its core jQuery is a DOM-manipulation library, it also provides a completely

An Introduction to jQuery ❘ 501

c14.indd 12/18/2015 Page 501

new way to manage events and event handling by providing event assignment and event callback
defi nition in a single step in a single location. That means that using the jQuery library makes it
easy to add event handlers to the DOM by using JavaScript, rather than adding HTML event attri-
butes throughout the page to call JavaScript functions. This completely eliminates the need for the
circular reference, instead allowing the display code to be ignorant of the processing code.

Another advantage of jQuery is the level of abstraction that it offers compared to JavaScript.
Much of the code that developers were writing on the client side was related to selecting a part of
the screen and doing something with that area. jQuery provides a way to do the same thing while
enabling the developer to avoid JavaScript for much of the work—instead, for example, using a one-
line jQuery command to take the place of 15 lines of JavaScript. This means that developers do not
necessarily have to become experts in JavaScript to be effective UI developers; understanding a few
different commands in jQuery enables them to get much of their work done.

The last problem mentioned regarding JavaScript usage in the browser involves cross-browser
incompatibilities. jQuery understands that the various JavaScript engines from the major brows-
ers can be different, so as part of the abstraction just mentioned, the jQuery library handles all of
these incompatibilities when it builds out its interfaces. This means that the functionality offered by
jQuery is standardized across browsers in a way that straight JavaScript code is not.

The core jQuery library supports a lot of features:

 ➤ DOM element selection

 ➤ DOM element manipulation

 ➤ AJAX

 ➤ Events

 ➤ Animations and other effects

 ➤ Asynchronous processing (separate from AJAX)

 ➤ Data, especially JSON, parsing

 ➤ Additional plugins, extensibility

Some of the additional plugins have grown into signifi cant libraries of their own. A selection of the
more important libraries is listed in Table 14-1.

TABLE 14-1: Additional jQuery Modules

MODULE DESCRIPTION

jQuery UI A set of user interface components. These components include user interactions,
effects, themes, and widgets. An example of a jQuery widget is the date picker
that you added in Chapter 11.

jQuery Mobile The growth of mobile devices being used to access the Internet has led to the
need for HTML5- based UI systems that are both extremely small (data transfer to
a mobile device can be expensive) and fl exible—especially in terms of determining
viewable space and scripting support.

continues

502 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 502

MODULE DESCRIPTION

QUnit A JavaScript unit testing framework. While not based on jQuery itself, it is used by
the jQuery, jQuery UI, and jQuery Mobile projects for testing. QUnit is capable of
testing any JavaScript code, not just jQuery. T can also be used to test itself.

jQuery
Validation

This framework supports client-side validation. It makes standard validation trivial
while also offering numerous options for customization. It includes multiple valida-
tion methods that validate against different types of data, including e-mail address
or URL, as well as the capability to write your own validation methods.

Globalize Content on the Internet is accessible to visitors anywhere in the world as long as they
have an Internet connection. This has made globalization and internationalization
increasingly important, as enterprises want to provide access and communication to
people who don’t speak the native language of the website.

jQuery Mouse
Wheel Plugin

This is a very specialized library, but it solves a surprisingly complex problem: inter-
acting with specialized hardware on the client that was not even imagined when
JavaScript came out but soon became a standard piece of hardware.

Because jQuery is open source, you have also seen other implementations that take advantage of the
functionality it provides. Microsoft, for example, provides the capability to install (as a package)
many different parts of the jQuery framework as well as some customizations to it that are now
built in to output generated in a project, such as Web Forms AJAX and validation. The scripts that
are used by Microsoft in these cases use parts of the jQuery framework as well.

OPEN SOURCE

The term open source is generally used to refer to a set of functionality, either an
application or a library, whereby the source code is available for download and
usage by developer. Each set of functionality generally has a licensing agreement
that instructs users as to what they can and cannot do with the project’s source
code. Some of the licenses are very open, allowing users to do almost anything they
want, while other agreements are much more restrictive and limit how the applica-
tion or library may be used.

Some of these licenses include the following:

 ➤ MIT license: Permits reuse within proprietary software provided that all copies
of the licensed software include a copy of the MIT License terms and the
copyright notice. jQuery uses an MIT license.

TABLE 14-1 (continued)

An Introduction to jQuery ❘ 503

c14.indd 12/18/2015 Page 503

 ➤ GNU General Public license: In a GPL situation, users have the right to freely
distribute copies and modifi ed versions of a work with the stipulation that
the same rights be preserved in derivative works. This means that a developer
cannot sell a non–open source version of a product that uses a GPL licensed
product or library.

 ➤ Apache license: This type of license gives users of the software the freedom to
use the software for any purpose, to distribute it, to modify it, and to distrib-
ute modifi ed versions of the software, under the terms of the license, without
concern for royalties. This is the license under which ASP.NET is available.

Each of the different jQuery libraries is available for use within your ASP.NET application, be it
Web Forms or MVC. Including these items in your application depends upon the library that you
will be using, where it will be used, and other considerations regarding its usage. However, the
mechanics of interacting with the libraries are the same across all the jQuery libraries, even the stan-
dard library.

Including the jQuery Library
Once you determine that the best way to fulfi ll a set of business requirements in your application is
through the use of jQuery, you have to determine which jQuery parts you want and how you will
make them available in your application. Because you are working within Visual Studio, the default
way to add third-party libraries is through the use of NuGet packages, and indeed you have already
added several jQuery packages using that approach. The items with the checkmark in Figure 14-1
are the jQuery items that are already installed in your sample application.

At this point you have installed the jQuery core libraries, the jQuery UI package, and the jQuery
Validation framework, as well as several Microsoft-specifi c Unobtrusive jQuery libraries. As you
discovered in earlier chapters, the Microsoft libraries are necessary so that the various ASP.NET
helpers are available to handle creation of the appropriate HTML elements with the appropriate
attributes. The attributes enable the JavaScript library to be called “unobtrusive.”

These libraries are slightly misnamed in that they make it seem as if jQuery and unobtrusive are dif-
ferent. Unobtrusive is simply an approach to using JavaScript whereby the separation of functional-
ity from the presentation layer is enforced. Using this defi nition means that jQuery is unobtrusive as
well because that is one of the points of the jQuery library.

Although it has been mentioned several times, it may not be completely clear how JavaScript and
the DOM can be mixed together and what this problem looks like. An example of this mixed-up
approach is shown here:

<input type="text" name="date" onchange="validateThisDate()" />

504 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 504

FIGURE 14-1: Installed jQuery packages

The onchange attribute is where the mix-up happens—where the code calls a JavaScript function
from within the HTML element, forever linking these two items together. The unobtrusive solution
is to perform the linking in code so that the HTML\ DOM content does not reference the JavaScript;
instead, all references are from JavaScript to the DOM element. The unobtrusive approach enables
any JavaScript changes, such as changing the name of a function, to be limited to occurring within
JavaScript, without having to change any HTML.

This change in approach means that the linking would happen as follows:

HTML

<input type="text" name="date" id="date" />

JAVASCRIPT

window.onload = function() {
 document.getElementById('date').onchange = validateDate;
};

An Introduction to jQuery ❘ 505

c14.indd 12/18/2015 Page 505

In short, all the default jQuery packages that you need are already attached to your solution.
Therefore, your real concern is ensuring that the jQuery library fi les are available for download to
the client’s machine and that they are available to use within your UI code. There are a couple of
different ways to ensure that the web page knows to download the script; either adding a reference
directly to the page or using bundles to group multiple scripts together into a single reference.

The fi rst approach is to add a reference directly to your page. This is the approach you took when
you added the initial jQuery UI script to support the date picker. This code is an HTML script ele-
ment whereby you set the src attribute to download the script fi le as shown here:

<script src="/Scripts/jquery-2.0.3.min.js" type="text/javascript"></script>

This simple approach ensures that the necessary script is downloaded. As you need other scripts you
just add another reference link. Doing this in the head element of your page ensures that it is avail-
able for all the JavaScript and jQuery code that follows. If you are using a master or layout page,
then you can add these references to the template page so they are available to all the content pages.
This can result in the browser downloading fi les that won’t be used during the visit, but because
the browser caches these fi les locally, the user is only taking that initial hit in downloading the
extra fi le(s); for the rest of the visit, and perhaps any subsequent visits, that fi le will not have to be
downloaded.

There are several problems with this approach, however. The fi rst is version management. The
preceding code snippet references version 2.0.3 of the jQuery library. This means that when 2.0.4
comes out and you want to reference it in your website, you will have to manually change the code.
Ideally, you would like a solution whereby the browser can get the script fi les without having to
worry about the version. You could do this manually by changing the default fi lename, but this will
cause all sorts of confusion with NuGet upgrades because fi les that it expects to be available no lon-
ger are.

Another problem is the number of separate fi les that may end up being downloaded. As you add
different libraries to your site to support various pieces of functionality, you continue to add script
references. As you start writing your own JavaScript libraries and including them in different fi les to
support your custom business needs, the list gets even longer. The result is a lot of fi les being down-
loaded, many of which may end up unused.

You also have to be very careful about function naming conventions, as the more scripts that the
browser runs through, the more likely it is that a confl ict will result. Thus, while in general the hit
of downloading an unused library may be acceptable, downloading many unused libraries that are
all referenced together may not be.

Fortunately, ASP.NET has a way to solve these problems: adding an abstraction layer to the script
download. This abstraction enables you to defi ne the fi les that the abstraction references through
wildcards or other replacement values. This way, you can set the abstraction to ignore the version
number of the jQuery fi le, for example, and simply download whatever version of that fi le is in the
directory. This abstraction also enables you to add scripts as a group, so if you have several scripts
that have a dependency you can ensure that all those fi les are downloaded together, along with the
fi le(s) on which they may be dependent. These abstractions, which are a part of the ASP.NET frame-
work, are called bundles.

506 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 506

Bundles
Bundles provide support for grouping different fi les together. These fi les can be JavaScript or CSS,
and the result of creating a bundle is the capability to merge different fi les into a single fi le for easy
reference. In addition, modern browsers limit the number of simultaneous connections that they
support to the same domain. Therefore, reducing the number of fi les to be downloaded enables the
available connections to do less connecting and disconnecting from the server and instead spend
that time on downloading larger fi les. Usually this causes an overall decrease in time spent down-
loading fi les. One additional side effect of bundling is that it incrementally decreases the amount of
time spent looking for JavaScript functions across all the available scripts because there is a much
greater chance that the needed function is included in the same fi le, or the same area of memory.
Obviously this isn’t going to save you seconds of response time, but every millisecond helps!

You can add bundling in the App_Start\BundleConfig.cs fi le. A good example of how bundling is
built is demonstrated within the NuGet package you added:

// Order is very important for these files to work,
// they have explicit dependencies
bundles.Add(new ScriptBundle("~/bundles/MsAjaxJs").Include(
 "~/Scripts/WebForms/MsAjax/MicrosoftAjax.js",
 "~/Scripts/WebForms/MsAjax/MicrosoftAjaxApplicationServices.js",
 "~/Scripts/WebForms/MsAjax/MicrosoftAjaxTimer.js",
 "~/Scripts/WebForms/MsAjax/MicrosoftAjaxWebForms.js"));

The preceding snippet creates a bundle named MsAjaxJs that appears to be placed within the
bundles directory. However, there is no actual “bundles” directory; instead, the framework reads
that as a special routing call which responds with a single fi le that concatenates all the included fi les.
You don’t have to do anything special to reference the bundle, as the normal script reference would
work as shown here:

<script src="/bundles/MsAjaxJs" type="text/javascript"></script>

When you are working within an ASP.NET view, you also have the additional capability to add the
reference through a scripts helper:

@Scripts.Render("~/bundles/MsAjaxJs")

This is a shortcut, because the output from this command is the script reference tag listed previously.

In this next Try It Out, you adjust some of the scripts that have already been added and ensure that
they are bundled, and called, correctly.

TRY IT OUT Bundling JavaScript Files

In this activity you make some changes to previously added jQuery functions by adding them into
external sheets and referencing them as appropriate. You also ensure that your jQuery link is correct
and without version problems.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open. Open the Views\
Shared_MVCLayout.cshtml fi le. Scrolling down to the bottom of the fi le displays a section simi-
lar to what is shown in Figure 14-2.

An Introduction to jQuery ❘ 507

c14.indd 12/18/2015 Page 507

FIGURE 14-2: Bottom of the _MVCLayout.cshtml page

 2. Delete line 41, which references “bootstrap.”

 3. In the Solution Explorer, right-click on the Scripts directory and add a new item, a JavaScript fi le
(found under Web) named MainPageManagement.js, as shown in Figure 14-3.

 4. Cut the getStoreHours function and the ready method that calls the getStoreHours method
and paste them into the new JavaScript fi le you just created. It should look like Figure 14-4 when
completed.

 5. Delete the script element that included jquery-ui, as well as the two @Scripts.Render lines. Add
a new line in their place as shown in the following example. When completed, this area of the page
should look like Figure 14-5.

@Scripts.Render("~/bundles/common")

mailto:@Scripts.Render

508 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 508

FIGURE 14-3: Adding a new JavaScript fi le

FIGURE 14-4: After moving some JavaScript from the layout fi le

An Introduction to jQuery ❘ 509

c14.indd 12/18/2015 Page 509

FIGURE 14-5: The updated layout fi le

 6. Open the App_Start\BundleConfig.cs fi le and add the following lines:

bundles.Add(new ScriptBundle("~/bundles/common").Include(
 "~/Scripts/jquery-{version}.js",
 "~/Scripts/jquery-ui-{version}.js",
 "~/Scripts/jquery.unobtrusive-ajax*",
 "~/Scripts/MainPageManagement.js"
));

 7. Run the application. Note that it all still works the same.

How It Works

During this exercise you cleaned up your layout page by removing some of the JavaScript that was
entered directly into the page, instead creating a separate JavaScript fi le that is labeled appropriately to
show the work going on within the script. Once the fi le was moved, however, you had to ensure that
you still linked the script in to the page so that the store hours code was still able to function.

Rather than add a new link into the fi le, you instead created a single bundle that would take care of
downloading all the confi gured scripts. The purpose of creating a single bundle is to enable the down-
loading of various scripts needed throughout your site in one fell swoop. In other words, if you viewed
the source for the fi le, you should see a single link. The source that was created is shown in Figure 14-6.

As you can see, however, it appears that where there should only be one fi le, it instead looks like all the
script fi les referenced in the bundle were referenced in the source. While that may not be quite what you
anticipated, it’s actually a good thing because you are running the application in debug mode, which
means the bundle manager copied each script separately; that way, if necessary, you could debug a par-
ticular script, rather than the bundled script.

To make bundling happen as it would in production, you need to run the application in a non-debug
fashion. This does not mean that you can simply run it in release mode and you will see the changes.
You must instead set the compilation mode in the web.config fi le because it will currently be set to
true, as shown in line 26 of Figure 14-7.

510 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 510

FIGURE 14-6: The newly created source

FIGURE 14-7: Web.confi g fi le content

Setting the debug attribute to false enables you to see the rendered values for the bundled scripts; but
once you set this debug value to false, you will see the warning dialog shown in Figure 14-8. This dia-
log appears when you turn debug off but run the application in debug mode.

An Introduction to jQuery ❘ 511

c14.indd 12/18/2015 Page 511

FIGURE 14-8: Debugging Not Enabled dialog

When you get this warning and you want to see the bundling, you need to select the second radio but-
ton, “Run without debugging.” With this option you won’t be able to hit any breakpoints or perform
any debugging, but you will be able to see what happens when the bundle is rendered, as shown in
Figure 14-9.

FIGURE 14-9: Source code with bundling

The src attribute that is set for the single script element includes the name that you set for bundle. It
also contains a query string key\value pair, where the key is “v” and stands for version. The value used
here, a long string, sets the version of the JavaScript scripts that it is referencing. If you don’t change the
script fi les, then this number will not change. However, changing the script fi les causes a new version
number to be issued. This version is important because it enables the browser to download the script
fi le locally and cache it. When the version string changes, the browser recognizes that a change has
occurred and calls for the new fi les, rather than continuing to access the old, cached value. The version
is necessary because the script fi lename itself has not changed; it still matches the name you originally
confi gured.

If you examine the new JavaScript fi le you will see that it contains all the different script fi les. Note also
that all the white space has been removed from the fi le, as shown in Figure 14-10.

512 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 512

FIGURE 14-10: Bundled JavaScript output

The fi rst line is the script that you created in the exercise. However, as you can see, all the line breaks
and white space have been completely removed. This does not affect usage at all, it simply removes the
extra spaces and makes the download a little bit smaller.

Getting the scripts into your page makes them available for use in the browser. In the next section
you will learn more details about how to use jQuery and JavaScript to customize the user experi-
ence—in other words, to build more scripts that you could add to new bundles!

jQUERY SYNTAX

jQuery is a JavaScript object that you can reference through the $ function. The $ is not a direct
reference to the object itself, as you are familiar with when you new a class in C#, but is instead a
factory method. A factory method is a software design approach, or pattern, whereby you can cre-
ate an object without specifying the exact class of the object that you are creating. This means you
do not create a copy of the object yourself, but instead call a method on the factory class, which
creates the object for you. This way, your code doesn’t have to understand how to build an item; it
can instead call some code that knows how the object should be built. This approach abstracts away
the actual jQuery object and enables it to be referenced with a single character. You have used the $
function when you were building the jQuery selectors.

The other approach that you have used is the $. approach, or the utility functions. These items
do not act upon the jQuery object directly but instead provide other supporting functionality. In
Chapter 13 you used the $.getJSON method to make a call to the server and get back a JSON
object. Both of these approaches to using jQuery features are part of the jQuery Core.

jQuery Syntax ❘ 513

c14.indd 12/18/2015 Page 513

jQuery Core
The jQuery Core is the traditional set of jQuery functionality. It is the base on which all the other
libraries and plugins build. A couple of requirements are part of making jQuery work within your
application. First, you need to ensure that you have referenced the jQuery code before you reference
any method that takes advantage of jQuery. Failure to provide the scripts in the appropriate order
will result in JavaScript errors, because the code is trying to take advantage of an object that has not
yet been substantiated.

Second, you need to ensure that all your scripts run only after the DOM has fi nished loading. Unless
told otherwise, the browser will run JavaScript as soon as it comes upon it while parsing the down-
loaded document. If you don’t make the scripts wait until the DOM has loaded before running, then
you run the risk of the DOM object not being loaded at the time the script is run. As a result, you
might get a JavaScript error, at worst. At best, the behavior that you are hoping for won’t take place
because it will not be rerun when the DOM fi nishes with its loading process.

You have already used the check that ensures the DOM has completed loading in a previous chapter,
so it should not be completely new. Adding a check to ensure that the DOM is loaded looks like this:

$(document).ready(function() {
 // The work you want performed when the document is ready
});

You can also use the following shortcut to perform the same action:

$(function() {
 // The work you want performed when the document is ready
});

In this case you have the exact same outcome, but rather than having to defi ne the DOM element
that you want to wait for, you instead use the function that you want run as the parameter. jQuery
then knows to assign that function just as if you directly used the ready method.

jQuery also has the capability to queue up work. This enables you to easily create many different
ready methods as needed, and each time the browser comes across a method it adds the function
callback to the queue for that element. When the state of the element changes, such as when the
document is loaded, the browser runs through the queue of callbacks for that change until all the
expected actions have been taken. This enables you, as the developer, to maintain smaller, more dis-
crete sets of functionality rather than having to maintain one large monolithic function, such as you
would have to do if the queueing structure were not supported.

Before getting too deep into the selecting and changing of DOM elements using jQuery, you should
fi rst learn some of the various utility methods available from within the jQuery object that are
designed to help provide support for manipulation.

514 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 514

Working with the jQuery Utility Methods
Some of these jQuery utility methods can be performed in lieu of using a selector approach, and you
get the same outcome. Other methods provide true utility functionality by providing helpers that
enable developers to build robust sets of functionality for the client side.

Many other different utility functions are available, as shown in Table 14-2. Each of these methods
provides a useful set of functionality by abstracting out the JavaScript code that you would have to
otherwise write in order to perform these common tasks.

TABLE 14-2: Useful jQuery Utility Methods

METHOD DESCRIPTION

contains Determines whether one DOM element is a descendent of another DOM element.
Returns true if the contained element is within the container element, no matter how
deep the nesting. Only element nodes are supported; if the second argument is a
text or comment node, the function always returns false.
$.contains(container, contained)

data Enables you to attach data of any type to DOM elements. This same functionality can
be achieved by using the selector approach, but if you don’t necessarily have selec-
tor information the data method still gives you access to the DOM element.
$.data(element, key, value)

each A generic iterator function that enables you to go through the different elements in
an array or array-like object and perform work on each item as it is iterated.
$.each(object, callback)

extend Merges two or more objects into one. Goes through the properties of the target
object and replaces the values of the target from the source property’s value. If the
target doesn’t have the property then it is added to the object. The deep variable is
a Boolean, which indicates whether the replacement should be recursive or simple.
$.extend([deep], target [, object1] [, objectN])

inArray Determines whether a value is in the array, returning the index if it is contained or a
–1 if the array does not contain the value.
$.inArray(value, array [, fromIndex])

jQuery Syntax ❘ 515

c14.indd 12/18/2015 Page 515

METHOD DESCRIPTION

is There are many different is functions that determine the type of variable that it is
given. This is necessary because JavaScript is dynamically typed, meaning the same
variable can contain values of many different types, one after the other. Thus, if you
need to do something specifi c to that type with the value, then you fi rst need to con-
fi rm that it is appropriate. The is functions include the following:
$.isArray(value)

$.isEmptyObject(value)

$.isFunction(value)

$.isNumeric(value)

$.isPlainObject(value)

$.isWindow(value)

merge Merges two different arrays together into the fi rst array:
$.merge(first, second)

parseHTML Parses a string into a set of DOM nodes. A string representation of HTML, such as
that returned from a controller action that returns a partial view, would need to be
parsed into DOM elements before it can be properly inserted into an actual element.
$.parseHTML(data [, context] [, keepScripts])

trim Removes the whitespace from the beginning and the end of a string:
$.trim(str)

queue Shows or manipulates the queue of functions to be executed on the matched ele-
ments; it provides a look into the actual code that is going to be run on a particular
element.
$.queue([queueName])

Looking at the items in this table, you will see that there are several different types of utilities. The
fi rst is code-based, in that these methods provide support for processing. Whether this processing
results in a change to a DOM element is irrelevant; this set of methods are helpers that provide sup-
port such as joining or enumerating through arrays, or evaluating the type of a variable, or even
merging two objects into a single, new object.

The second type of utility method are those methods that scan the entire document body. These are
the methods that can check whether one element contains another, or set any value on any attribute

516 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 516

on any elements. Most of these can also be done with selectors and then interact with the element
attributes at that point, but the utility methods give you another approach to solving the problem.

Selecting Items Using jQuery
The last chapter contained a brief explanation of jQuery selection, or using jQuery to fi nd one or
more DOM elements based on one or more characteristics of that element. As demonstrated in the
previous chapter, the most common approach to selection within jQuery is to use the same selector
pattern and approach that’s supported in CSS selectors. However, there are some subtle differences
in some of the selectors, and other, more fl exible selectors that are available for use within jQuery.
Table 14-3 lists some of the approaches to element selection that are available in jQuery.

TABLE 14-3: jQuery Selectors

NAME DESCRIPTION

Attribute Contains
Prefi x Selector

Selects elements that have the specifi ed attribute with a value either equal to
the provided string or starting with that string followed by a hyphen (-).
<input name="the-news"> SELECTED

<input name="the"> SELECTED

<input name="thenews"> SELECTED

<script>

$("input[name|='the']").css("border", "3px");

</script>

Attribute Contains
Word Selector

Selects elements that have the specifi ed attribute with a value containing a
given word, delimited by spaces. This expects a space on either (at least one)
end of the string.
<input name="the-news">

<input name="the news"> SELECTED

<input name="thenews">

<script>

$("input[name~='the']").val("");

</script>

Attribute Ends With
Selector

Selects elements that have the specifi ed attribute with a value ending exactly,
case sensitive, with a given string.
<input name="the-news"> SELECTED

<input name="the news"> SELECTED

<input name="thenews"> SELECTED

<script>

$("input[name$='news']").val("");

</script>

jQuery Syntax ❘ 517

c14.indd 12/18/2015 Page 517

NAME DESCRIPTION

Attribute Equals
Selector

Selects elements that have the specifi ed attribute with a value exactly equal
to a certain value, including case.
<input name="the-news">

<input name="the news">

<input name="thenews"> SELECTED

<script>

$("input[name='thenews']").val("");

</script>

Attribute Not Equal
ToSelector

Selects elements that either don’t have the specifi ed attribute or do have the
specifi ed attribute but not with a certain value.
<input name="the-news"> SELECTED

<input name="the news"> SELECTED

<input name="thenews">

<script>

$("input[name!='thenews']").val("");

</script>

Class Selector Selects elements that are labeled with this particular class, regardless of the
type of element.

Even Selector Selects even elements, zero-indexed.
<input name="the-news"> SELECTED

<input name="the news">

<input name="thenews"> SELECTED

<script>

$("input:even").val("");

</script>

Greater Than
Selector

Selects all elements at an index greater than the index within the matched set.
<input name="the-news">

<input name="the news">

<input name="thenews"> SELECTED

<script>

$("input:gt(1)").val("");

</script>

Id Selector Selects all elements where the “id” attribute of an HTML element matches the
provided value.

continues

518 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 518

NAME DESCRIPTION

Less Than Selector Selects all elements at an index less than the index within the matched set.
<input name="the-news"> SELECTED

<input name="the news">

<input name="thenews">

<script>

$("input:lt(1)]").val("");

</script>

Odd Selector Selects odd elements, zero-indexed.
<input name="the-news">

<input name="the news"> SELECTED

<input name="thenews">

<script>

$("input:odd").val("");

</script>

Only Child Selector Selects all elements that are the only child of their parent.
<div>

 <input name="the-news"> SELECTED

</div>

<div>

 <input name="the news">

 <input name="thenews">

</div>

<script>

$("div input:only-child").val("");

</script>

Only Of Type
Selector

Selects all elements that have no siblings with the same element name.
<div>

 <input name="the-news"> SELECTED

</div>

<div>

 <input name="the news">

 <input name="thenews">

</div>

<script>

$("input:only-of-type").val("");

</script>

TABLE 14-3 (continued)

Modifying the DOM with jQuery ❘ 519

c14.indd 12/18/2015 Page 519

NAME DESCRIPTION

Parent Selector Selects all elements that have no siblings with the same element name.

Universal Selector Selects all elements.

Determining the best approach to creating the selectors that you will use in your jQuery is going to
depend on what you are trying to do. Each separate requirement may need a different selector. An
element can be targeted by multiple selectors, based on different criteria that may match that par-
ticular element, including class, element type, id, and any of the other items that were discussed in
the preceding table.

MODIFYING THE DOM WITH jQUERY

Once you have one or more elements selected, there are many different things that you can do with
them. You can perform calculations or perform submissions with their values; you can ignore their
values and change their appearance and display. After selecting the DOM element, you can perform
any action supported by JavaScript on that element, its attributes, and its value.

Changing Appearance with jQuery
Changing the display of a DOM element using jQuery goes far beyond making the text bold or
changing the background color, though you can certainly do those changes as well. Probably one
of the fi rst things you think of when someone mentions appearance and HTML pages is CSS, and
jQuery supports a set of functions for manipulating the CSS on elements. Some of these methods are
shown in Table 14-4.

TABLE 14-4: CSS Methods in jQuery

METHOD DESCRIPTION

addClass Adds the specifi ed class(es) to each element in the set of matched elements.
$("p").addClass("myClass yourClass");

css Gets the value of a style property for the fi rst element in the set of matched ele-
ments or sets one or more CSS properties for every matched element.
var color = $("p").css("background-color");

hasClass Determines whether any of the matched elements are assigned the given class.
$("p").hasClass("myClass");

height Gets the current computed height for the fi rst element in the set of matched ele-
ments or sets the height of every matched element. It returns a value in pixels, but
without the attached unit, i.e., 400 instead of 400px.
$("p").height() = 100;

continues

520 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 520

METHOD DESCRIPTION

position Gets the current coordinates of the fi rst element in the set of matched elements,
relative to the offset parent. You cannot set these values, you can only get them as
needed. These elements must be visible and the results do not account for borders,
margins, or padding.
var selectedElement = $("p:last");

var position = selectedElement.position();

$("p:first").val = position.left + position.top;

removeClass Removes a single class, multiple classes, or all classes from each element in the set
of matched elements.
$("p").removeClass("myClass yourClass")

toggleClass Adds or removes one or more classes from each element in the set of matched ele-
ments, depending on the presence of the class. If the class exists, it is removed. If
the class is missing, it is added.
 $("p").toggleClass("myClass");

width Gets the current computed width for the fi rst element in the set of matched ele-
ments or sets the width of every matched element. It returns a value in pixels, but
without the attached unit, i.e., 400 instead of 400px.
$("p").width() = 100;

There are other ways to change the appearance of DOM elements after you have selected them. As
just shown, changing the assigned styles is one approach to changing the display. Style changes,
however, are generally static changes. You can also use JavaScript, thus jQuery, to provide simple
animations or other visual effects to DOM elements. Table 14-5 describes the various animation and
other effects methods available in jQuery.

TABLE 14-5: Animation and Other Effects in jQuery

METHOD DESCRIPTION

animate Performs a custom animation of a set of CSS properties. The typical usage is with the
method signature of animate(properties, options).
<input id="someelement">

<input id="anotherelement">

$("#someelement").click(function() {

 $("#anotherelement").animate({

 left: "+=50" // move it left everytime there is a click

 }, 5000, function() {

 // do something when the animation has completed

 });

});

TABLE 14-4 (continued)

Modifying the DOM with jQuery ❘ 521

c14.indd 12/18/2015 Page 521

METHOD DESCRIPTION

delay Sets a timer to delay execution of subsequent items in the queue. This value is usually
chained with other animation items.
<input id="someelement">

<input id="anotherelement">

$("#someelement").click(function() {

 $("#anotherelement").slideUp(300).delay(800).fadeIn(400);

});

fadeIn Displays the matched elements by fading them to opaque. The function takes a dura-
tion in milliseconds, defaulting to 400, or two string values of “slow” or “fast”; or 600
and 500 milliseconds, respectively.
<input id="someelement">

<input id="anotherelement" hidden>

$("#someelement").click(function() {

 $("#anotherelement").fadeIn("slow");

});

fadeOut Hides the matched elements by fading them to transparent. The function takes a
duration in milliseconds, defaulting to 400, or two string values of “slow” or “fast”; or
600 and 500 milliseconds respectively.
<input id="someelement">

<input id="anotherelement" hidden>

$("#someelement").click(function() {

 $("#anotherelement").fadeOut ("slow");

});

fadeToggle Displays or hides the matched elements by animating their opacity. The function
takes a duration in milliseconds, defaulting to 400, or two string values of “slow” or
“fast”; or 600 and 500 milliseconds, respectively.
<input id="someelement">

<input id="anotherelement" hidden>

$("#someelement").click(function() {

 $("#anotherelement").fadeToggle ("slow");

});

continues

522 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 522

METHOD DESCRIPTION

hide Hides the matched elements. There is no animation involved, nor any arguments that
can be passed into the method.
<input id="someelement">

<input id="anotherelement">

$("#someelement").click(function() {

 $("#anotherelement").hide();

});

show Displays the matched elements There is no animation involved, nor any arguments
that can be passed into the method.
<input id="someelement">

<input id="anotherelement" hidden>

$("#someelement").click(function() {

 $("#anotherelement").show();

});

slideDown Displays the matched elements with a sliding motion. This method animates the
height of the matched elements. This causes lower parts of the page to slide down,
making way for the revealed items. The function takes a duration in milliseconds,
defaulting to 400, or two string values of “slow” or “fast”; or 600 and 500
milliseconds, respectively.
<input id="someelement">

<input id="anotherelement" hidden>

$("#someelement").click(function() {

 $("#anotherelement").slideDown(1000);

});

slideTog-

gle
Displays or hides the matched elements with a sliding motion. This method animates
the height of the matched elements, acting as if slideDown were called if the ele-
ment is hidden or slideUp if the element is visible. The function takes a duration in
milliseconds, defaulting to 400, or two string values of “slow” or “fast”; or 600 and
500 milliseconds, respectively.
<input id="someelement">

<input id="anotherelement" hidden>

$("#someelement").click(function() {

 $("#anotherelement").slideToggle(1000);

});

TABLE 14-5 (continued)

Modifying the DOM with jQuery ❘ 523

c14.indd 12/18/2015 Page 523

METHOD DESCRIPTION

slideUp Hides the matched elements with a sliding motion. This method animates the height
of the matched elements. This causes lower parts of the page to slide up as the items
are hidden. The function takes a duration in milliseconds, defaulting to 400, or two
string values of “slow” or “fast”; or 600 and 500 milliseconds, respectively.
<input id="someelement">

<input id="anotherelement">

$("#someelement").click(function() {

 $("#anotherelement").slideUp(1000);

});

toggle Displays or hides the matched elements. This method can be thought of as running
the show method when an item is hidden, or running the hide method if the item is
visible.

<input id="someelement">

<input id="anotherelement">

$("#someelement").click(function() {

 $("#anotherelement").toggle();

});

Animation enables you to move areas of the screen to grab the user’s attention. Using animation,
for example, to slide out old content and slide in new content informs the user that there has been a
change in an area. This becomes more important as you use AJAX approaches whereby information
on the screen can change at any time.

The changing of information is generally the result of a user activity, such as clicking a button or
selecting an item in the drop-down box. However, many other actions can cause a programmatic
reaction. These actions are known as JavaScript and jQuery events.

Handling Events
A lot of different events are occurring within JavaScript that you can take advantage of within
jQuery. These events are different from the events that you interacted with when doing the code-
behinds in ASP.NET Web Form controls and pages, but the concept behind them is the same. An
event provides a way to interact with either the user of the system or the system itself in order to
learn that a state has changed and that something may need to happen because of this change.

Once you recognize that acknowledgment of an action is required—whether it is a button click or
a timer expiring—you need an event handler, or the action to be taken upon that action, which you
can attach to that action. After you have completed the creation of the event handler and the linking
of that event handler to that event, you have created a way to monitor, and react to, that particular
action. You can then do this across all the actions you care about.

524 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 524

As shown in Table 14-6, there are many different potential events that you can interact with as
needed. It’s unlikely that you will need to interact with each, but if you do you have that capability.
There is no limit to the number of events that you can handle; nor is there a limit to how many han-
dlers are attached to an event.

Not only can you use JavaScript and jQuery to assign an event handler to an event so that the event
handler will be called as necessary, you can also use jQuery to call an event on an element, thus
enabling you to programmatically act as the user if necessary. This enables you to use exactly the
same approach regardless of how you want to perform the work, rather than write one set of code
for interacting with the user and a second set of code to support system interaction.

TABLE 14-6: Common JavaScript Events

EVENT DESCRIPTION

change Binds an event handler to the change JavaScript event, or triggers that event on an
element.
<input id="someelement" type="text">

<input id="anotherelement">

$("#someelement").change(function() {

 $("#anotherelement").toggle();

});

click Binds an event handler to the change JavaScript event, or triggers that event on an
element.
<input id="someelement">

<input id="anotherelement">

$("#someelement").click(function() {

 $("#anotherelement").toggle();

});

dblclick Binds an event handler to the dblclick JavaScript event, or triggers that event on
an element. This event is triggered only after this exact series of events:
The mouse button is depressed while the pointer is inside the element.
The mouse button is released while the pointer is inside the element.
The mouse button is depressed again while the pointer is inside the element, within
a time window that is system-dependent.
The mouse button is released while the pointer is inside the element.
<input id="someelement">

<input id="anotherelement">

$("#someelement").dblclick(function() {

 $("#anotherelement").toggle();

});

Modifying the DOM with jQuery ❘ 525

c14.indd 12/18/2015 Page 525

EVENT DESCRIPTION

focus Binds an event handler to the focus JavaScript event, or triggers that event on an
element. Elements with focus are usually highlighted in some way by the browser—
for example, with a dotted line surrounding the element. The focus is used to deter-
mine which element is the fi rst to receive keyboard-related events.
<input id="someelement">

<input id="anotherelement">

$("#someelement").focus(function() {

 $("#anotherelement").toggle();

});

hover Binds two handlers to the matched elements, to be executed when the mouse
pointer enters and leaves the elements. The hover method binds handlers for both
the mouseenter and mouseleave events. You can use it to simply apply behavior to
an element during the time the mouse is within the element.
<input id="someelement">

<input id="anotherelement">

$("#someelement").hover(

 function() {

 $("#anotherelement").show();

 }, function() {

 $("#anotherelement").hide();

});

keypress Binds an event handler to the keypress JavaScript event, or triggers that event on
an element. The keypress event is sent to an element when the browser registers
keyboard input that is not a modifi er or non-printing key such as Shift, Esc, and
Delete.
<input id="someelement">

<input id="anotherelement">

$("#someelement").keypress(function() {

 $("#anotherelement").toggle();

});

mousedown Binds an event handler to the mousedown JavaScript event, or triggers that event on
an element. This event is sent to an element when the mouse pointer is over the ele-
ment, and the mouse button is pressed.
<input id="someelement">

<input id="anotherelement">

$("#someelement").mousedown(function() {

 $("#anotherelement").toggle();

});

continues

526 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 526

EVENT DESCRIPTION

mouseenter Binds an event handler to be fi red when the mouse enters an element, or triggers
that handler on an element. This JavaScript event is proprietary to Internet Explorer;
but because of the event’s general utility, jQuery simulates it so that it can be used
regardless of browser.
<input id="someelement">

<input id="anotherelement">

$("#someelement").mouseenter(function() {

 $("#anotherelement").toggle();

});

mouseleave Binds an event handler to be fi red when the mouse leaves an element, or triggers
that handler on an element. This JavaScript event is proprietary to Internet Explorer,
but because of the event’s general utility, jQuery simulates it so that it can be used
regardless of browser.
<input id="someelement">

<input id="anotherelement">

$("#someelement").mouseenter(function() {

 $("#anotherelement").toggle();

});

mousemove Binds an event handler to the mousemove JavaScript event, or triggers that event on
an element. This event is sent to an element when the mouse pointer moves inside
the element.
<input id="someelement">

<input id="anotherelement">

$("#someelement").mousemove(function() {

 var msg = "Handler for .mousemove() called at ";

 msg += event.pageX + ", " + event.pageY;

 $("#anotherelement").append("<div>" + msg + "</div>");

});

TABLE 14-6 (continued)

Modifying the DOM with jQuery ❘ 527

c14.indd 12/18/2015 Page 527

EVENT DESCRIPTION

mouseout Binds an event handler to the mouseout JavaScript event, or triggers that event
on an element. This event is sent to an element when the mouse pointer leaves
the element.
<input id="someelement">

<input id="anotherelement">

$("#someelement").mouseout(function() {

 $("#anotherelement").toggle();

});

mouseover Binds an event handler to the mouseover JavaScript event, or triggers that event on
an element. This event is sent to an element when the mouse pointer enters the
element.
<input id="someelement">

<input id="anotherelement">

$("#someelement").mouseover(function() {

 $("#anotherelement").toggle();

});

mouseup Binds an event handler to the mouseup JavaScript event, or triggers that event on
an element. This event is sent to an element when the mouse pointer is over the ele-
ment, and the mouse button is released.
<input id="someelement">

<input id="anotherelement">

$("#someelement").mouseup(function() {

 $("#anotherelement").toggle();

});

ready This event is executed when the DOM is fully loaded. It is fi red when the DOM has
been loaded but it doesn’t wait for all the scripts and images to download, so there
may be some confl ict between using large scripts and ready functions. It is one of
the most commonly used jQuery functions, and it can only be applied to the docu-
ment element. This enables you to reference the ready function in multiple ways,
as shown in the following examples. Each line is calling the same function as soon as
the ready event is fi red.
$(document).ready(handler)

$().ready(handler)

$(handler)

continues

528 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 528

EVENT DESCRIPTION

submit Binds an event handler to the submit JavaScript event, or triggers that event on an
element. This event is sent to an element when the user is attempting to submit a
form, and it can only be attached to a form element. The event handler function is
called before the actual submission, so the form submission can be handled by call-
ing the preventDefault method on the event.
<form id="thisForm" action="somePage.aspx">

 <input id="someelement">

 <input id="anotherelement">

</form>

$("#thisForm").submit(function(event) {

 $("#anotherelement").toggle();

 Event.preventDefault();

});

The ready method is so important because of how jQuery links the code and the user interface,
especially when using the unobtrusive approach. The expectation from this approach is that any
relating of code and display would only happen in the code, meaning any time you care about a
change of state in a DOM element, you need to map the relationship in code. Therefore, the most
frequently used concept in jQuery is the capability to select an element; otherwise, how would you
be able to instruct it to manage some specifi c event?

As you can see, there are many different interactions that you can work with on the client side to
capture input, whether it be direct, such as clicking a button or a key, or indirect, such as through
mouse movement. You can then create jQuery and JavaScript functions to respond to those interac-
tions as needed.

In this Try It Out, you put together various selectors, events, and display changes to add interactiv-
ity to your sample application.

TRY IT OUT Adding jQuery to Your Application

In this exercise you use jQuery to enhance the user experience of interacting with your sample
application.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open. Open the
MainPageManagement.js fi le that you created in the last activity.

 2. Add the following functions:

function fadeOutShoppingCartSummary() {
 $("#shoppingcartsummary").fadeOut(250);
}

TABLE 14-6 (continued)

Modifying the DOM with jQuery ❘ 529

c14.indd 12/18/2015 Page 529

function fadeInShoppingCartSummary() {
 $("#shoppingcartsummary").fadeIn(1000);
}

 3. Open the Views\Item\Details.cshtml page. In the AjaxOptions object within the "Add to
Cart" Ajax.ActionLink, add the following properties. It should look like Figure 14-11 when
completed. Ensure that you add a comma at the end of the property that appears before the ones
you are adding.

OnBegin = "fadeOutShoppingCartSummary",
OnSuccess = "fadeInShoppingCartSummary"

FIGURE 14-11: Updated Ajax.ActionLink

 4. Add the following code at the bottom of the page:

@section Scripts {
 <script>
 var isLarge = false;

 $(".textwrap").click(
 function () {
 if (!isLarge) {
 isLarge = true;
 $(this).css('height', '500');
 $(this).attr("title", "Click to shrink");
 }
 else {
 isLarge = false;
 $(this).css('height', '150');
 $(this).attr("title", "Click to expand");
 }
 });
 </script>
}

 5. Open the View\Items\Index.cshtml page. Update the AjaxOptions with the same changes that
you made to the Details.cshtml page as shown here:

OnBegin = "fadeOutShoppingCartSummary",
OnSuccess = "fadeInShoppingCartSummary"

530 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 530

 6. Add the class "listitem" to the <div> element that is within the foreach loop.

 7. As shown in Figure 14-12, add the following at the bottom of the page:

@section Scripts {
 <script>
 $(".listitem").hover(
 function () {
 $(this).css('background-color', '#F8B6C9');
 }, function () {
 $(this).css('background-color', 'white');
 });
 </script>
}

FIGURE 14-12: Updating the Index page

 8. Run the application and go to the home page. Mouse over items in the list and note how the back-
ground changes.

 9. Add an item to the cart and note how the shopping cart area fades out and then fades back in with
the new values.

 10. Go into the details page of an item to which you have added a picture. Click the picture to see how
it grows, and note how clicking on it again shrinks it back to the original size.

Modifying the DOM with jQuery ❘ 531

c14.indd 12/18/2015 Page 531

How It Works

In this activity you made several simple jQuery changes that improve the user’s interaction with your
sample application. One of the fi rst items that you added is shown here:

function fadeOutShoppingCartSummary() {
 $("#shoppingcartsummary").fadeOut(250);
}

When this function is called, it runs a selector for an element with the id of "shoppingcartsummary"
and then performs a fadeout method on it with a duration of .25 seconds. The other method makes
the same selection but performs the opposite fading, a fadein, to change the element from transparent
back to visible.

These new methods were hooked into the UI by the changes you made to the link that adds an item to
the cart. The new AjaxOption that you updated is shown here:

new AjaxOptions
{
 UpdateTargetId = "shoppingcartsummary",
 InsertionMode = InsertionMode.Replace,
 HttpMethod = "GET",
 OnBegin = "fadeOutShoppingCartSummary",
 OnSuccess = "fadeInShoppingCartSummary"
}

The two methods that you created are linked by setting two different properties. The OnBegin prop-
erty on the AjaxOptions object takes a string value that corresponds to the name of a JavaScript
function that is run when that event is fi red. The two that you wired up are OnBegin and OnSuccess.
The OnBegin event is fi red when the Request object is created but before it is sent to the server. The
OnSuccess event is fi red when the call is completed successfully. Two other events can be managed:
OnFailure and OnComplete are fi red if an exception is thrown during the AJAX call and when the
entire experience is completed (even after OnSuccess or OnFailure), respectively.

The next set of jQuery that you added was an event handler for a click event. The selector that you
chose used a class selector that looked for a class of "textwrap". The selector is shown here:

$(".textwrap").click(...

The work going on in the method is dictated by the value of a separate JavaScript variable that is used
to indicate whether the item selected is expanded. This variable was defi ned as var isLarge = false.
Defi nition is different in JavaScript than it is in C# or VB.NET because JavaScript is not a type-safe
language—the var represents a variant, or simply a container that could be of any type.

The function evaluates the value in the isLarge variable and branches based on the result. It then
toggles IsLarge to the updated value. The function then updates the style height to either the large or

532 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 532

the small height, and updates the title attribute, or value shown on hover, as necessary based on the
image’s size. The two lines of code are shown here:

$(this).css('height', '150');
$(this).attr("title", "Click to expand");

One thing to consider is the use of the $(this), which, when used within a selector, refers to the item
that is causing the event to be fi red. Thus, when you use a selector that results in multiple items being
wired up, it demonstrates how the event being called is specifi c to the individual item being affected,
rather than the entire range of items matching that particular selector.

The two items that were run on the selected item are the css and attr functions. The css function
overwrites a particular variable that is available for CSS styling—in this case, the height key. The attr
method enables you to override an attribute on the element—in this case, the title attribute.

You added the last set of jQuery to use the hover event to change the background of an item. This
could have been done just as easily in CSS, as done with the items in the left menu, but for many devel-
opers it’s easy to understand, fi nd, and maintain the simple jQuery code that was added, rather than
manipulate complex CSS.

The capability to use jQuery to manage complex styling is an important consideration. One of the
primary reasons to do this in jQuery instead is because it enables you to debug jQuery processing,
whereas you can’t do that in CSS.

DEBUGGING jQUERY

Debugging in jQuery is a little different from any of the debugging that you have done so far. It is
different because it is pure client-side debugging, whereas the other debugging you have done has
been all server-side. Even when you are debugging within a view, you are still debugging processing
that is being done on the server. When you are debugging jQuery, you are debugging on the client,
in the browser. This results in a completely different experience.

There are two different approaches to client-side debugging: One uses debugging tools in Visual
Studio, whereas the other uses debugging tools that are part of the browser. In the next Try It Out,
you practice each of these techniques for debugging JavaScript and jQuery code.

TRY IT OUT Debugging JavaScript Code

In this exercise you confi gure your local browser to support debugging of your local JavaScript code.
You also practice debugging the jQuery code that you already wrote. After that, you have the oppor-
tunity to add custom debugging code to the jQuery functions and see how that helps to support your
debugging efforts. The following directions assume that you are using Internet Explorer for debugging.

 1. Ensure that Visual Studio is running and your RentMyWrox solution is open. Open Microsoft
Internet Explorer and ensure that it is set up to debug. In IE, select Tools ➪ Internet Options ➪

Advanced. Under the Browsing section, fi nd Disable Script Debugging (Internet Explorer) and
ensure that it is unchecked, as shown in Figure 14-13. Click OK or Apply when you are done.

Debugging jQuery ❘ 533

c14.indd 12/18/2015 Page 533

FIGURE 14-13: Enabling debugging in Internet Explorer

 2. Stop debugging the application. Open the MainPageManagement.js fi le that you created earlier in
the chapter. Add breakpoints to each of the named functions, as shown in Figure 14-14.

FIGURE 14-14: Adding breakpoints in jQuery/JavaScript

534 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 534

 3. Run the application, noting how it stops at the fi rst breakpoint and how the debugger is able to
show the JSON value that was downloaded from the server. It should look like Figure 14-15.

FIGURE 14-15: Hitting a breakpoint in JavaScript

 4. Continue the application past the breakpoint and click the link to add an item. You should see
the debugger stop at your breakpoint in the fadeOutShoppingCartSummary method. Close the
browser and stop debugging the application.

 5. Restart the application by using Ctrl+F5, or start without debugging.

 6. Go to the home page in Internet Explorer and access the F12 Developer tools. From the Debugger
tab, fi nd the hover function at the bottom of the page.

 7. Add a breakpoint as shown in Figure 14-16.

FIGURE 14-16: Setting a breakpoint in the browser tools

Debugging jQuery ❘ 535

c14.indd 12/18/2015 Page 535

 8. Mouse over an item in the list. You should see the breakpoint hit, as shown in Figure 14-17.

FIGURE 14-17: Hitting a breakpoint in the browser tools

 9. Expand the Watches window in the top right-hand corner of the Browser tools. Scroll down
through the items in the window to get an idea of the information that is available to you through
these tools.

 10. Close the browser and stop running the application.

How It Works

When JavaScript tools and jQuery fi rst came out it was diffi cult to debug through the code. However,
as JavaScript and jQuery became increasingly prevalent, development tools such as Visual Studio
started to add more support for debugging client-side code. In Visual Studio 2015, the integration is
complete. Debugging JavaScript and jQuery code in Visual Studio is virtually the same as debugging
your C# code. You can set breakpoints, and when the code is stopped you can evaluate the values of
variables and selections as desired, just as you can with C# and VB.NET code.

The biggest difference is the additional capability to debug in the browser. You have already seen how
the F12 Browser tools enable you to get information about the HTML elements, including styling
and layout affects. Another piece of functionality that is supported is the capability to debug through
JavaScript. As you saw, when you hit a breakpoint, you have visibility into many different items. If you

536 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 536

have selected an element, you can see everything about that element. You can see the values of its attri-
butes, and you can access its value, even child elements. You can then examine those child elements
and their attributes and values, including children, and so forth.

As you work with the F12 debugger, you will notice a few things. First, you cannot run the application
in debug mode and debug within Internet Explorer. If you try to debug in the browser you will get an
error, as shown at the bottom of Figure 14-18.

FIGURE 14-18: Error in browser when trying to debug

The easiest way to debug in the browser and still run the application locally is through the approach
that you used, running the application but without debugging. You can do this by selecting Ctrl+F5 or
the upper menu, using Debug ➪ Start Without Debugging. These approaches start the application with-
out attaching the debugger. This enables the browser debugger to interact with the process.

Debugging is important when working with any programming language, and especially when you
are just starting to work with it. This is particularly true when working with jQuery and JavaScript,
simply because it is different from most of the other languages. This difference can cause you to
make simple errors, such as incorrect selectors (using the hashtag when you should have used the
period) or not setting up the functions correctly so that they are never run. Debugging will help you
gather information about what you may be doing wrong.

PRACTICAL TIPS ON jQUERY

Working in jQuery can be an interesting experience for developers who are used to working in
C# or VB.NET environments. The difference in approaches can be startling, especially the lack of
type-safe variables and working with the results from a selector as opposed to a known, named
variable. Following is a short list of tips that will help you when working with jQuery in your own
applications:

Summary ❘ 537

c14.indd 12/18/2015 Page 537

 ➤ Practice your jQuery, especially something that you will be working with in the future.
Getting the selectors correct, especially with more complex scenarios, can take some time to
get right—especially because many of the differences are a single character.

 ➤ Don’t be afraid to use multiple approaches to help you when debugging your client code.
You may often be able to use the debugger when running locally, but at other times you may
have to use other approaches.

 ➤ Use the jQuery.org website as a resource for understanding how to use jQuery. It contains
full documentation about the various functions as well as multiple source code examples.

 ➤ Search out other jQuery learning tools. It has become so popular across the Internet that
many different sites provide interesting and useful information about implementing jQuery in
your web application.

SUMMARY

jQuery has quietly become the most frequently used client-side framework. It is an open-source
framework that offers abstraction over JavaScript, or ECMAScript, which is available in nearly all
client-side web browsers, be they desktop or mobile devices. Because jQuery is a JavaScript abstrac-
tion, it is “linked” to a web page as is a JavaScript fi le, so you don’t need to do anything complicated
to make it work with your application, just a simple tag.

Linking in jQuery is straightforward, as is the linking in of any custom scripts that you have written
to support your application. However, there is a limit to the number of connections that a browser
supports to a single server, so adding multiple images and script fi les can actually slow down the
loading of your page because opening and closing the connection can be an expensive operation.
ASP.NET provides a capability to help you: bundles.

Bundles are a built-in capacity for combining different JavaScript fi les into a single fi le. This enables
you to create multiple scripts to support whatever work you are doing—even if it means creating a
different script for each complicated function that needs to be performed. Using bundling, you can
create a list of those fi les. Then, upon application startup, a single fi le with the contents from all the
fi les in the list is used.

These fi les contain the code that does all the work, the jQuery code itself. There are two major
approaches when using jQuery. The fi rst uses a jQuery utility function. These functions enable you
to step back from the DOM and take an approach to performing work on the DOM itself. These
utilities also provide other special support, such as enumeration.

Whereas the utility approach enables you to work on the DOM from the outside, the other approach
enables you to work on the DOM from inside, from within an HTML element. The difference
between the two approaches is subtle; with the utility approach you reach into the HTML and
change the value, whereas the selector approach allows you to select an element in the HTML,
assign it as a variable, and then change one of its values. It enforces the selection of an item and the
performance of work on that selected item.

538 ❘ CHAPTER 14 jQUERY

c14.indd 12/18/2015 Page 538

There are many different things that you can do with this item once it is selected. You can change
the value, the style, parts of the style—virtually anything related to the data within an element
and the appearance of the element. You can add new elements, and move or delete existing elements.
All of this is available through jQuery.

EXERCISES

 1. Create the jQuery and HTML changes necessary to change the color of only this particular
<h1> element when your mouse moves over the content of this specifi c <p> element:

<h1>Title</h1>

<p>Content</p>

 2. What are some of the things that you need to take into account when you start considering
adding bundling to your web application?

 3. How do you add special jQuery code when using Ajax.Helpers in an ASP.NET MVC view?

Summary ❘ 539

c14.indd 12/18/2015 Page 539

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

$ The $ is not a direct reference to the object itself but instead a factory method
that, when used with a selector, returns one or more HTML elements that fi t the
criteria stated by the selector.

$. The $. approach represents jQuery utility methods. It provides jQuery support by
providing access to enumeration logic as well as other utility items such as type
checking.

Bundles Bundling is a feature in ASP.NET that makes it easy to combine or bundle mul-
tiple fi les into a single fi le. You can create CSS, JavaScript, and other bundles.
Fewer fi les means fewer HTTP requests, and that can improve fi rst page load
performance. When creating bundles, a good convention to follow is to include
“bundle” as a prefi x in the bundle name. This prevents a possible routing
confl ict.

ECMAScript A scripting language specifi cation. The best-known implementation is JavaScript
that is used for the scripting that happens within a web browser.

jQuery
debugging

Visual Studio enables you to debug in JavaScript with a very similar experience
to debugging your server-side code. You can set breakpoints, step through the
code processing, and inspect the values of variables and other items as needed.
You also have the capability to debug in the web browser, independently of
Visual Studio. This enables you to debug even when you don’t have local copies
of the scripts, such as when linking to scripts hosted on other sites.

jQuery NuGet
Package

This package copies all the necessary and most recent versions of the jQuery
scripts into your scripts directory. If you add the scripts to your application using
bundles, you can ensure that your code is using the most recently installed ver-
sion of jQuery without having to make any changes other than copying in a new
version of the scripts.

Open Source A developmental model that promotes universal access and redistribution of an
end product, generally software. The key aspect of open-source software is that
the source code fi les are available for consumption and modifi cation.

Unobtrusive A general approach to the use of JavaScript in web pages. The key feature is
supporting the separation of functionality from the user interface. jQuery sup-
ports an unobtrusive approach because it enables you to do all your linking of
events or changes apart from the actual HTML. This in turn enables you to keep
your HTML elements completely functionality free, other than providing a defi n-
ing characteristic, such as a name, that enables the jQuery scripts to fi nd the
element.

c15.indd 12/18/2015 Page 541

Security in Your ASP.NET
Website

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The difference between authentication and authorization

 ➤ Implementing security in ASP.NET applications

 ➤ Security and the database

 ➤ How to secure your web application

 ➤ Adding roles into your security

 ➤ Using the user information

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 15
download and individually named according to the names throughout the chapter.

It seems like every week there is a news article about data breaches in online applications.
While your application does not have the same security needs as a major online company that
stores credit card numbers or banking information you do still have to enforce a certain level
of security to keep your users’ information private. Also, because you care about your users as
individuals rather than simply as visitors, you need to have a way for them to uniquely identify
themselves. This is the responsibility of ASP.NET security.

Sometimes, not only do you care about who a user is, you also care about what that user can
do within your application. You can see this in your sample application—you created a place
where a special kind of user can add items and manage other information. Determining what
certain users can do, once you know who they are, is another area that is managed by ASP
.NET security.

15

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

542 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 542

Up until now you have separated some of the functionality so that you can easily control who can
do what, in some cases even adding some unused information about a user. In this chapter, you will
combine these considerations and implement security in your sample application, taking one of the
last steps toward making it a usable system.

INTRODUCING SECURITY

Security is the concept of ensuring that only certain people can take certain actions. Consider, for
example, a bank’s security guard, who allows many different things to happen within the bank
depending upon who is taking the actions. The guard would likely not even look twice if he saw the
bank manager walk into the vault. Conversely, if someone in a clown mask walked into the vault,
the guard would likely take some kind of action.

Your application will generally take the same kind of approach. It identifi es who the user is and
then evaluates what that user wants to do. In the previous example, the guard can identify the bank
manager and understands that he is allowed to enter the vault. If, instead, the guard identifi es some-
one entering the vault as the owner of the coffee cart outside the bank, that is likely to get more of a
reaction, even if the guard recognizes the person. That’s because although the person may be recog-
nized, the act that he is trying to perform may not be expected or allowed.

Because your application is taking the same steps as the bank guard, several items are evaluated
about the user. The fi rst evaluation is determining “who are you?” The second evaluation is making
that user “prove who you are.” The third evaluation is a determination of what that user can do in
the application based on who they are.

Identity: Who Are You?
The whole concept of security in the bank example is to ensure that only the appropriate person can
take an action. If you apply that goal to your application, then the fi rst thing you have to do is rec-
ognize someone who is interacting with your application as an identifi ed user. This establishes the
connection between your application and the person. You have almost certainly done this yourself
on other websites, generally by going to a certain page on the site and “registering.” This provided
the initial introduction between the person visiting, you, and the site.

Your application needs to do the same. If you want an understanding of who the users are, then
you have to provide a way for them to be introduced, a way for them to register with your site. This
registration determines who they are in relationship to your site.

Authentication: How Can Users Prove Who They Are?
After visitors have been introduced to your site, you have an understanding of who and what they
are. However, at some point users are going to leave your site, hopefully to return at another time. If
you still care about who those users are when they next visit, and in conjunction with the introduc-
tion that they previously made, you need a way for them to prove that they are the same person who
was registered earlier. It would be easy to do if they were at the bank: You could simply ask them

Introducing Security ❘ 543

c15.indd 12/18/2015 Page 543

for a picture ID and compare the name and picture to both the person holding the ID and to your
records. If all the information seems correct, you let them proceed with their transaction.

Because it is important for visitors to prove that they are, indeed, a particular user, you have to
provide them with a way to prove the relationship via your web application. Typically this would be
through the use of a username and password that was confi gured during the introduction, or site
registration. The more complex the combination of information, the more likely it is that the person
who provides that same information is that identifi ed user. The concept of verifying that visitors
are who they say they are is called authentication—the user authenticates his or her identity.

Authorization: What Are You Allowed to Do?
In some cases, the actions that different users can take don’t vary. If so, simple identifi cation is all
you need. However, your sample application has to make some determination about what the user
can do. This determination is called authorization. This is why the bank guard would be suspicious
of the coffee cart owner going into the bank vault. Although the guard has identifi ed, or authenti-
cated the cart owner, that person is not authorized to be in the bank vault.

Your application needs to make the same kind of determination. Is this authenticated user allowed
to take a particular set of actions (mainly those that you have until now put into the Admin folder of
your sample application)? If they are authorized to take the actions, then the system lets them pro-
ceed. If they are not allowed to take those actions, then the system stops them.

The most common way to determine authorization is to assign a specifi c role to a user and then
determine whether that role is allowed to take an action. Different roles have different levels of
authorization as needed. Users can have no roles or multiple roles, whatever is appropriate for ensur-
ing that the application is secured correctly. You will be covering roles later in this chapter.

Logging in with ASP.NET
The most recent versions of ASP.NET Web Forms and MVC have made some signifi cant changes
in terms of how identity and security are managed. Web Forms and MVC used to take different
approaches, but this has been changed and now both approaches use the same fundamental system.
This is important because it means that a user can log into a Web Forms login page yet use that
same authentication against MVC routes and views. This was not the case previously.

When working with an ASP.NET scaffold-created project, the initial confi guration and manage-
ment is all done within the Startup.Auth.cs fi le in the App_Start directory. This page is shown in
Figure 15-1.

The fi rst three lines from this method show some features of the ASP.NET login management
process:

app.CreatePerOwinContext(ApplicationDbContext.Create);
app.CreatePerOwinContext<ApplicationUserManager>(
 ApplicationUserManager.Create);
app.CreatePerOwinContext<ApplicationSignInManager>(
 ApplicationSignInManager.Create);

544 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 544

FIGURE 15-1: Startup_Auth page

Here, three items are being created and added to the Owin context. Think of the Owin context as
being the memory space that manages the running application, so loading an item into the Owin
context means you are getting that item ready to be accessed—in this case to support the authentica-
tion process.

OWIN

OWIN, or Open Web Interface for .NET, defi nes a standard interface between
.NET web servers and web applications. The goal of the OWIN interface is to add
a layer of abstraction between the web server and the application. The purpose of
this approach is to end the requirement that ASP.NET applications always have to
be run in Microsoft IIS, enabling them instead to be executable in other OWIN
containers, including Windows Services. Using OWIN you can even run ASP.NET
applications on other operating systems, such as Linux or iOS.

Three different items are being added to the context: the ApplicationDbContext, the
ApplicationUserManager, and the ApplicationSigninManager. Each of these classes manages a
part of the authentication process. The ApplicationDbContext is the connection to the database.
This is especially interesting because it shows how the information necessary for authentication is
stored in the database using the Entity Framework’s Code First approach, just like the rest of your
database application.

The second class that had its Create method called and then added to the Owin context was the
ApplicationUserManager. This class handles the creation and management of the user. It contains

Introducing Security ❘ 545

c15.indd 12/18/2015 Page 545

many different useful methods, including, but not limited to, Create, Find, ChangePassword,
Update, and VerifyPassword—all methods that are necessary when working with users. The
ApplicationUserManager uses the ApplicationDbContext to access the database in order to work
with the user information.

The last item added to the Owin context was the ApplicationSigninManager. As you can prob-
ably tell by the name, this object handles the sign-in, or login, process. It does not have a lot of dif-
ferent methods and properties to it; the main thing it does is evaluate the passed-in information. The
method signature that you will be using is shown here:

public SignInStatus PasswordSignIn(string userName, string password,
 bool isPersistent, bool shouldLockout);

As you can see, four different values are passed into the evaluation method. The fi rst two are the
username and password entered by the user. The third value, isPersistent, tells the framework
whether or not the response sent to the user will set a cookie that remembers the username that was
entered. The last value, shouldLockout, tells the framework whether it should lock the account if
there is a matching username in the system but the password is incorrect.

The item returned from this method is a SignInStatus enum. Table 15-1 describes the different
enum values.

TABLE 15-1: SignInStatus Values

VALUE DESCRIPTION

Success The username and password that were passed in matches the information
stored for the user. The user has been authenticated.

LockedOut The account that matches the username passed in has been locked out. The
account could have been previously locked out or could be locked out if
the results of this call caused it, i.e., the shouldLockout value is true. If the
account is locked then a user cannot login for a defi ned period of time.

RequiresVerifi cation The account that matches the username requires validation. This is based on
a confi guration value that is set on the ApplicationUserManager. The user
is recognized but not authenticated. The user will not be able to log into the
application until he or she is verifi ed.

Failure This value is returned when the system is not able to log in the user. This
could be because the username doesn’t match an account or the pass-
word does not match the expected value for the account that matches the
passed-in username. The framework does not differentiate between these
two because it is not good practice to inform a possible hacker that the
entered username is correct, which provides an advantage to someone try-
ing to break into the system.

546 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 546

You may be wondering how everything is being managed when you only get an enum value back
from a login. This is all hidden from you by the Identity framework, but the framework takes care
of everything. It does this by setting an authentication cookie. The setup for this cookie is also done
in the Startup_Auth fi le. The area that handles this confi guration is shown here:

 // Enable the application to use a cookie
 // to store information for the signed in user
 // and to use a cookie to temporarily store information
 // about a user logging in with a third party login provider
 // Configure the sign in cookie
 app.UseCookieAuthentication(new CookieAuthenticationOptions
 {
 AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
 LoginPath = new PathString("/Account/Login"),
 Provider = new CookieAuthenticationProvider
 {
 OnValidateIdentity = SecurityStampValidator
 .OnValidateIdentity<ApplicationUserManager, ApplicationUser>
 (validateInterval: TimeSpan.FromMinutes(30),
 regenerateIdentity: (manager, user) =>
 user.GenerateUserIdentityAsync(manager))
 }
 });

The system uses a cookie to allow the browser to send token-based information back and forth
between the server and the client so that users do not have to re-enter login credentials on every call.
When the framework processes a successful login attempt, the next step is to add a cookie to the
Response object. This cookie is then available on each subsequent call.

The ASP.NET Identity framework also supports third-party managed logins. The out-of-the-box
experience supports logins from Google, Twitter, Microsoft, and Facebook. In these cases, you set
up a relationship between your application and the authentication provider. Users then log into the
provider, using their familiar and trusted credentials, and the provider sends a token with the user
that the Identity framework knows it can trust. The Identity framework understands that the token
is valid because of the relationship you set up between your application and the provider. Once you
have set up the relationship in the provider’s website, they provide the information (such as the client
id and client secret) that you need to develop the trusting relationship on your side. The following
example shows how to set up one of these relationships:

app.UseMicrosoftAccountAuthentication(
 clientId: "",
 clientSecret: "");

This relationship is a trust relationship. Your user trusts the third-party provider to maintain his or
her authentication information. You trust the third-party provider to authenticate the user properly.
The third-party provider trusts you with the information that the user is known to them. This circle
of trust enables all parties to provide the appropriate level of service to their customers. The rela-
tionship is shown in Figure 15-2.

Introducing Security ❘ 547

c15.indd 12/18/2015 Page 547

Web Application

3. User logins to external service

4. Authentication service returns token

1. User goes to web application

2. Web application redirects user

5. Browser forwards token

6. Web application returns response

User & Browser

External
Authentication

Service

FIGURE 15-2: Interaction with third-party authorizer

While a lot of the authentication functionality is provided by the ASP.NET Identity framework,
it requires a certain amount of confi guration. When you use the project scaffolding to create the
project, as you did, many of those confi guration items are set to a default value, which may or may
not be the values that you need to support your requirements. The next section covers the confi gura-
tion of security in ASP.NET.

Confi guring Your Web Application for Security
Confi guring your web application requires some decisions. The easiest is identifying the database
server in which you are going to save the user information. Some of the more diffi cult decisions are
related to your security expectations, especially the rules that you are going to put into place for
username and passwords, as you have control over those requirements and will be able to evaluate
the trade-off between strong security and user convenience.

In this Try It Out, you set up your sample application to enable users to register with and log into
the site.

TRY IT OUT Adding Registration Capability

Changing your sample application so that it supports user account management require that you update
some of the fi les that were copied in during project creation.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open.

 2. Open your web.config page. Look for the section labeled connection strings (see
Figure 15-3). Copy the connectionString value from the RentMyWroxContext element to the
DefaultConnection value.

548 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 548

FIGURE 15-3: Current Web.Confi g fi le

 3. Open the Site.Master fi le in your root directory. Find the head section and remove the “My ASP
.NET Application” section from the title element. Add the following lines within the head section
(see Figure 15-4):

<link href="~/Content/RentMyWrox.css" rel="stylesheet" type="text/css" />
<script src="/bundles/common"></script>

FIGURE 15-4: Updated head section of the Master page

 4. Find the ScriptManager server control and the ContentPlaceHolder with the Id of
MainContent. Delete everything in between them.

 5. Below the closing tag for the ContentPlaceHolder, delete everything to the closing form element.
It should look like Figure 15-5 when you are done.

 6. Add the following code between the ScriptManager control and the ContentPlaceHolder:

<div id="header">

</div>
<div id="nav">
 <div id="LeftNavigation" style="height:400px;">
 <ul class="level1">
 Home
 Items
 Contact Us
 About Us

 <div id="storeHoursMessage"></div>
 </div>
</div>
<div id="section">

Introducing Security ❘ 549

c15.indd 12/18/2015 Page 549

FIGURE 15-5: Post-deleted section of the Master page

 7. Add a closing </div> tag after the ContentPlaceHolder.

 8. Open the Views\Shared_ShoppingCartSummary.cshtml page. Add the following code into the
area that’s displayed when there is information in the shopping cart. When you are done it should
look like Figure 15-6.

Check Out

FIGURE 15-6: New Shopping cart summary partial view

 9. Open the Content\RentMyWrox.css fi le and add the following style:

.checkout {
 margin-left: 15px;
 color:white;
 font-size: small;
}

 10. Open ShoppingCartController.cs and add a new method:

[Authorize]
[HttpGet]

550 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 550

public ActionResult Checkout()
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 return null;
 }
}

 11. Open the Server Explorer window (View ➪ Server Explorer). In the Data Connections section,
expand your RentMyWrox connection, and expand the Tables section. It should look like
Figure 15-7.

FIGURE 15-7: Initial tables in database

 12. Run the application. If there’s nothing in the shopping cart, add an item so you can see the Check
Out link. Then click the link. You should be transferred to a login screen (see Figure 15-8).

FIGURE 15-8: Login page

Introducing Security ❘ 551

c15.indd 12/18/2015 Page 551

 13. Click the Register as a New User link on the bottom of the page. You will be taken to a Register
page, as shown in Figure 15-9.

FIGURE 15-9: Register page

 14. Enter an e-mail address, such as admin@rentmywrox.com, and a simple password, such as “pass-
word,” in the two password boxes. Clicking the Register button will display the message shown in
Figure 15-10.

FIGURE 15-10: Validation failure page

 15. Enter a password that meets the required criteria, such as “Password1!” and click Register.

 16. You should get a blank page with the URL of “ShoppingCart\Checkout,” as shown in
Figure 15-11.

 17. Go back to Server Explorer and expand the Tables section (see Figure 15-12).

How It Works

In many ways, the actions that you just took were more about editing already existing security mea-
sures, which you created at the beginning of the project, than implementing them. Before this could all
work properly, however, you had to make the appropriate changes so that the registration pieces created
during project creation would visually fi t into the rest of the application. If you didn’t make the changes
to the Site.Master fi le, all the created registration fi les would look out of place.

mailto:admin@rentmywrox.com

552 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 552

FIGURE 15-11: Empty checkout page

FIGURE 15-12: Updated database

After updating the master page so that the account management pages look more like the site, you next
created an additional link on the shopping cart section that takes users to the checkout process. You
then created a simple Checkout method on the ShoppingCartController page. This method is really
just a stub at this point because it doesn’t do anything within the method itself. However, you added an
attribute to this action (that you’ll learn more about later) that tied it to the entire Identity system.

Introducing Security ❘ 553

c15.indd 12/18/2015 Page 553

The Identity system was created during creation of your project. At that time you could make an
authentication selection, and you chose Individual User Account. When selecting that approach,
the project scaffolding is created with several different sets of code. The fi rst is the various set of
models that are found in the IdentityModels fi le within the Models directory. These models are
the same regardless of whether you use an MVC or Web Form project. Within this fi le are two dif-
ferent classes within the Models namespace: ApplicationUser and ApplicationDbContext. Each
of these classes inherits other classes, with ApplicationUser inheriting from IdentityUser, and
ApplicationDbContext inheriting from IdentityDbContext.

That these classes inherit from base classes is important, as it enables you to customize them as desired.
The ApplicationUser, for example, does not have any additional properties other than those provided
by the IdentityUser. These default properties are listed in Table 15-2.

TABLE 15-2: IdentityUser Properties

PROPERTY TYPE DESCRIPTION

AccessFailedCount int Specifi es the current number of failed access
attempts for lockout

Claims ICollection<TClaim> The collection of claims that the user has
assigned

Email string User’s e-mail address

EMailConfirmed bool Specifi es whether the e-mail has been con-
fi rmed by the user responding to an e-mail from
the system

Id TKey The user identifi er. It defaults to a GUID, but
the system can be confi gured to use other
types as well.

LockoutEnabled bool Indicates whether lockout is enabled for this
user

LockoutEndDateUtc DateTime? The date-time value (in UTC) when lockout
ends; any time in the past is considered not
locked out.

Logins ICollection<TLogin> The collection of logins for the user. This is an
interesting concept, as it means that a particular
e-mail address/login name has multiple logins.
This happens when a user has a login for your
site as well as a login through a trusted third
party. Thus, no matter how a user logs into your
site, that user is recognized as a single user.

PasswordHash string The salted/hashed form of the user password

continues

554 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 554

PROPERTY TYPE DESCRIPTION

PhoneNumber string The user’s phone number

PhoneNumberConfirmed bool Specifi es whether the phone number has been
confi rmed

Roles ICollection<IRole> The collection of roles to which the user has
been assigned

SecurityStamp string A random value that changes when a user’s
credentials change. The primary purpose of this
property is to enable “sign out everywhere.”
The idea is that whenever something security
related is changed on the user, such as a pass-
word, your application should automatically
invalidate any existing sign-in cookies. This
ensures that if the user’s password/account
was previously compromised, the attacker no
longer has access because the SecurityStamp
is compared each time a token-based login is
performed.

TwoFactorEnabled bool Specifi es whether two-factor authentication is
enabled for this user

UserName string The UserName is the online identity of the
visitor.

As you can see from the list of properties, many features can be enabled by default and supported by
the system out of the box. These features include confi rmation (both e-mail and phone) as well as two-
factor authentication.

Confi rmation is the process in which the system sends a code through the selected approach that
is being confi rmed, either e-mail or phone, and the user must enter the code that was sent through
that process into the application. By entering this code, the system verifi es that there is a relationship
between that selected approach and that user. In other words, the system knows that that person has
access to that particular e-mail address or phone number. Typically, as soon as a user registers for your
application, you would send that person the applicable confi rmation(s). The registration process that
was created by the project scaffolder shows how this could be done, though it is commented out in the
actual page:

string code = manager.GenerateEmailConfirmationToken(user.Id);
string callbackUrl = IdentityHelper
 .GetUserConfirmationRedirectUrl(code, user.Id, Request);
manager.SendEmail(user.Id, "Confirm your account",
 "Please confirm your account by clicking
 < a href =\"" + callbackUrl + "\">here.");

TABLE 15-2 (continued)

Introducing Security ❘ 555

c15.indd 12/18/2015 Page 555

After the user registration has been confi rmed, the application creates a random value that it uses as a
confi rmation token. This token is then part of an e-mail that is sent to the e-mail address provided dur-
ing registration. The user is then expected to click the URL that was assigned—the URL that contains
the confi rmation token. This request is received by the application, which attempts to match the confi r-
mation token to an account. If the attempt is successful, then the application marks that e-mail as being
confi rmed.

Two-factor authentication provides an additional layer of security: It expects a user to provide login
information through multiple components. An ATM uses two-factor authentication in that it expects
users to provide a physical item, their ATM card, as well as an identifying number. Obviously this
won’t work when authenticating for a website, so another approach was taken whereby the user uses
mobile phone two-factor authentication.

In mobile phone two-factor authentication, users install a special application on their phone. A user
securely logs in to the authenticating system with this application. This syncs the phone to the user’s
login account. Going forward, once two-factor authentication is enabled, the user has to get a value
from their phone and use that value as part of the login process to the application. This makes it like
the ATM in that users must have something—namely, their phone—as one authentication factor, as
well as the traditional login/password combination for the second factor.

While all of this is provided with the Identity framework, because your application is not accepting a
credit card or doing any online processing other than reserving equipment that the user would have to
pick up in person, none of this functionality has been implemented in your application.

It was mentioned earlier that all the identity efforts were actually “turned on” by an attribute that was
added to an action. This action is shown again here:

[Authorize]
[HttpGet]
public ActionResult Checkout()
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 return null;
 }
}

The Authorize attribute is the important attribute because it adds a requirement that users visiting this
URL must be authenticated. That is why after adding this attribute, clicking the link to this URL took
you immediately to the login page instead. The system was able to evaluate whether you were logged
in because it looked in the request’s cookie collection to see if an authentication cookie was present.
Failing that check would take you to the login page that was confi gured in the Startup.Auth.cs fi le
within the App_Start directory. When confi guring the cookie authentication process, you can set the
LoginPath property as shown here:

app.UseCookieAuthentication(new CookieAuthenticationOptions
{
 AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
 LoginPath = new PathString("/Account/Login"),
 Provider = new CookieAuthenticationProvider

556 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 556

 {
 OnValidateIdentity = SecurityStampValidator
 .OnValidateIdentity<ApplicationUserManager, ApplicationUser>(
 validateInterval: TimeSpan.FromMinutes(30),
 regenerateIdentity: (manager, user)
 => user.GenerateUserIdentityAsync(manager))
 }
});

This setting ensured that the login page created by the project scaffolding is called when necessary.
Because you didn’t have an account, you had to click the “Register for an account” link. This brought
you to the account registration page. Registering for your application was straightforward, and already
handled by the defaults set during project creation, including the default settings for password valida-
tion. Password validation ensures that the password is as secure as possible. The available validation
settings are shown in Table 15-3.

TABLE 15-3: Password Validation Confi guration Properties

PROPERTY DEFINITION

RequireDigit Specifi es whether the password requires a numeric
digit (0–9)

RequiredLength Contains the value for the minimum required pass-
word length

RequireLowercase Specifi es whether the password requires a lower
case letter (a–z)

RequireNonLetterOrDigit Specifi es whether the password requires a non-letter
or digit character

RequireUppercase Specifi es whether the password requires an upper-
case letter (A–Z)

 1. The default settings that were created can be found in the App_Start\IdentityConfig.cs fi le,
and are shown here:

// Configure validation logic for passwords
manager.PasswordValidator = new PasswordValidator
{
 RequiredLength = 6,
 RequireNonLetterOrDigit = true,
 RequireDigit = true,
 RequireLowercase = true,
 RequireUppercase = true,
};

As you saw when you created your initial login, the validator expects a minimum of six characters in
the password, of which at least one needs to be a non-letter or digit (i.e., a special character), one needs

Introducing Security ❘ 557

c15.indd 12/18/2015 Page 557

to be a number, one needs to be lowercase, and another needs to be uppercase. Enabling each of these
validations helps to ensure that the password will not be easy to break.

The validation against these password characteristics does not happen until the form is submitted upon
user creation. The registration method is shown here:

protected void CreateUser_Click(object sender, EventArgs e)
{
 var manager = Context.GetOwinContext().GetUserManager<ApplicationUserManager>();
 var signInManager = Context.GetOwinContext().Get<ApplicationSignInManager>();
 var user = new ApplicationUser(){UserName = Email.Text, Email = Email.Text};
 IdentityResult result = manager.Create(user, Password.Text);
 if (result.Succeeded)
 {
 signInManager.SignIn(user, isPersistent: false, rememberBrowser: false);
 IdentityHelper.RedirectToReturnUrl(Request.QueryString["ReturnUrl"],
 Response);
 }
 else
 {
 ErrorMessage.Text = result.Errors.FirstOrDefault();
 }
}

The ApplicationUserManager.Create method returns an IdentityResult object that contains a
Succeeded fl ag. If there is any problem in creating the user, then the Succeeded fl ag is set to false and
the Errors property is updated, including the reason(s) for the failure. In the case of password valida-
tion the message would contain a list of the validation requirements that failed.

Successfully creating a user account did one more thing: It created the database tables necessary to per-
sist the default user information. This was possible because the Identity framework uses the Code-First
Entity Framework approach just like the rest of your application. While it is taking a similar approach,
it is doing it in a different database context, the ApplicationDbContext. You could have changed it
so that it was using the same context as the rest of your application, but keeping them in two different
contexts enables them to be accessed and maintained separately. In many companies that have differ-
ent applications, it is common for user information to be shared across multiple applications. Keeping
this a separate context makes that easier. While you do not have to worry about this with your sample
application, it is a best practice to separate your security information from your business information.
You are doing that here by using a second context.

Figure 15-13 shows a screen shot of the data that was created as part of the registration process.

FIGURE 15-13: AspNetUsers data

As you can see, all the properties in Table 15-3 are present in the table. Note in particular the value in
the PasswordHash column. This is not the password that was entered in the registration screen. It is
instead hashed and salted.

558 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 558

Hashing is the process of applying a formula to a string of text; it produces a return value of fi xed
length that cannot be decrypted back into the original value. If you repeat the same hash on the same
text, you will get the same result. Matching hash results indicates that the data has not been modifi ed.

Salting is a process that strengthens encryption and hashes, making them more diffi cult to break. Salting
adds a random string to the beginning or end of the input text prior to hashing or encrypting the value.
When attempting to break a list of passwords, for example, hackers have to account for the salt as well
as possible password information before being able to break into the application. If each value being
salted is assigned a different salt value, the ability to create a table of potential password values for a
password-cracking program becomes exceedingly complex and diffi cult.

The results of the hashed password are what is stored in the database. When users attempt to log in to
the application, the password that they enter into the login screen is salted, or has a string value added,
and then hashed. This value is compared to the value stored in the database. If the hashed values are the
same, then the password is correct. This enables the application to validate a password without actually
having to save the password itself anywhere. It is impossible for the application to recover the actual
password itself.

As this example shows, confi guring the Identity framework for use in your application is mainly an
exercise in defi ning the database connection and then setting values for items such as password valida-
tion expectations. The Identity framework, especially in conjunction with the scaffolded project fi les,
does the rest of the work for you.

After confi guring the Identity framework for use within your application, the next step is to start
taking advantage of actually knowing who the users are.

Working with Users within Your Application
Knowing who your users are is great, once you have the code written to take advantage of the user
information. The main pieces of information to which you currently have access are as follows:

 ➤ Username

 ➤ E-mail address

 ➤ Phone number

 ➤ Unique identifi er or Id

As mentioned earlier, once a user is logged into your application, an authentication cookie is created
that is used going forward for identifying and validating the user. After the framework has validated
the token, it is able to create a true identity for that user. Once the framework gets that information,
it can store it such that it is accessible through the application.

There are two approaches to getting the user information, and the approach that you take depends
on the object making the call; making it from the view or the controller requires one approach,
while getting the user information in another class—even a Web Form code-behind—requires
another approach.

Introducing Security ❘ 559

c15.indd 12/18/2015 Page 559

Accessing the user information from within a controller is simple, as the base controller class from
which all controllers inherit has a User property. This property is of type System.Security
.IPrincipal, which is the default type for security within Windows. If you were working with a
desktop application, when looking for the logged-in user it would also be an IPrincipal.

Note that this doesn’t do you any good in terms of trying to get an ApplicationUser that you can
use, as the User property is not convertible to something that you can use. Instead, you have to use
a method on the Identity property of the Principal to get the user’s Id, and then use that to get
the ApplicationUser, as shown here:

string userId = User.Identity.GetUserId();
ApplicationUserManager aum = HttpContext.GetOwinContext()
 .GetUserManager<ApplicationUserManager>();
ApplicationUser appUser = aum.FindById(userId);

Once you have the ApplicationUser from the ApplicationUserManager you can then access the
properties as desired. In the next Try It Out, you start to use the ApplicationUser information
within your application.

TRY IT OUT Update Shopping Cart Based on Real User

In this activity you use the user information that was created during user registration. Specifi cally, you
update the shopping cart management so that the shopping cart works appropriately when a user is
logged in.

 1. Ensure that Visual Studio is running and the RentMyWrox application is open.

 2. Right-click on your Controllers directory, and add a new item. Create a class fi le called
UserHelper.cs.

 3. In your new fi le, add the following using statements:

using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.Owin;
using Microsoft.Owin.Security;
using RentMyWrox.Models;

 4. Inside the class defi nition add the following line of code:

private const string coookieName = "RentMyWroxTemporaryUserCookie";

 5. As shown in Figure 15-14, add the following method:

public static Guid GetUserId()
{
 Guid userId;
 if (HttpContext.Current.User != null)
 {
 string userid = HttpContext.Current.User.Identity.GetUserId();
 if (Guid.TryParse(userid, out userId))
 {
 return userId;
 }
 }

560 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 560

 if (HttpContext.Current.Request != null
 && HttpContext.Current.Request.Cookies != null)
 {
 HttpCookie tempUserCookie = HttpContext.Current.Request.Cookies
 .Get(coookieName);
 if (tempUserCookie != null && Guid.TryParse(tempUserCookie.Value,
 out userId))
 {
 return userId;
 }
 }

 userId = Guid.NewGuid();
 HttpContext.Current.Response.Cookies.Add(
 new HttpCookie(coookieName, userId.ToString()));
 HttpContext.Current.Request.Cookies.Add(
 new HttpCookie(coookieName, userId.ToString()));
 return userId;
}

FIGURE 15-14: UserHelper.cs

Introducing Security ❘ 561

c15.indd 12/18/2015 Page 561

 6. Add the following method:

public static ApplicationUser GetApplicationUser()
{
 string userId = HttpContext.Current.User.Identity.GetUserId();
 ApplicationUserManager aum = HttpContext.Current.GetOwinContext()
 .GetUserManager<ApplicationUserManager>();
 return aum.FindById(userId);
}

 7. Add the following method:

public static void TransferTemporaryUserToRealUser(Guid tempId, string userId)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 if (context.ShoppingCarts.Any(x => x.UserId == tempId))
 {
 Guid newUserId = Guid.Parse(userId);
 var list = context.ShoppingCarts.Include("Item")
 .Where(x => x.UserId == tempId);
 foreach (var tempCart in list)
 {
 var sameItemInShoppingCart = context.ShoppingCarts
 .FirstOrDefault(x => x.Item.Id == tempCart.Item.Id
 && x.UserId == newUserId);
 if (sameItemInShoppingCart == null)
 {
 tempCart.UserId = newUserId;
 }
 else
 {
 sameItemInShoppingCart.Quantity++;
 context.ShoppingCarts.Remove(tempCart);
 }
 }
 context.SaveChanges();
 }
 }
}

 8. Open the ShoppingCartController fi le and delete the following line:

private Guid UserID = Guid.Empty;

 9. As shown in Figure 15-15, add the following line to the top of the AddToCart action:

Guid UserID = UserHelper.GetUserId();

562 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 562

FIGURE 15-15: UserHelper.cs

 10. Expand the Accounts directory. Click the arrow to the left of Register.aspx to expand the other
fi les. Open Register.aspx.cs. Update the method by adding the highlighted lines from the fol-
lowing code:

protected void CreateUser_Click(object sender, EventArgs e)
{
 var manager = Context.GetOwinContext().GetUserManager<ApplicationUserManager>();
 var signInManager = Context.GetOwinContext().Get<ApplicationSignInManager>();
 var user = new ApplicationUser() { UserName = Email.Text, Email = Email.Text };
 Guid oldTemporaryUser = Controllers.UserHelper.GetUserId();
 IdentityResult result = manager.Create(user, Password.Text);
 if (result.Succeeded)
 {
 Controllers.UserHelper.TransferTemporaryUserToRealUser(oldTemporaryUser,
 user.Id);
 signInManager.SignIn(user, isPersistent: false, rememberBrowser: false);
 IdentityHelper.RedirectToReturnUrl(Request.QueryString["ReturnUrl"],
 Response);
 }
 else
 {
 ErrorMessage.Text = result.Errors.FirstOrDefault();
 }
}

Introducing Security ❘ 563

c15.indd 12/18/2015 Page 563

 11. Open the Login.aspx.cs fi le. Update the Login method by adding the highlighted areas shown
here:

protected void LogIn(object sender, EventArgs e)
{
 if (IsValid)
 {
 var manager = Context.GetOwinContext()
 .GetUserManager<ApplicationUserManager>();
 var signinManager = Context.GetOwinContext()
 .GetUserManager<ApplicationSignInManager>();
 Guid currentTemporaryId = Controllers.UserHelper.GetUserId();

 var result = signinManager.PasswordSignIn(Email.Text, Password.Text,
 RememberMe.Checked, shouldLockout: false);
 switch (result)
 {
 case SignInStatus.Success:
 var user = signinManager.UserManager.FindByName(Email.Text);
 Controllers.UserHelper.TransferTemporaryUserToRealUser(
 currentTemporaryId, user.Id);
 IdentityHelper.RedirectToReturnUrl(
 Request.QueryString["ReturnUrl"], Response);
 break;
 case SignInStatus.LockedOut:
 Response.Redirect("/Account/Lockout");
 break;
 ...
 }
 }
}

 12. Run the application and add an item to the shopping cart.

 13. When the shopping cart summary refreshes, click the checkout link. You should go to the login
page.

 14. Log in with the user information that you created in the last activity. You will end up at a blank
Checkout screen.

 15. Change the URL to go to the home page and you will see that the shopping cart summary still
shows the same summary information.

How It Works

Most of the new functionality that you added was in a new class, UserHelper. This class is designed,
as the name says, to help when working with users. You added three different methods to UserHelper.
The fi rst method, GetUserId, manages getting the user’s Id from a logged-in user, where possible. If the
user is not logged into the application, this method assigns the person a temporary user identifi er that
can be used to manage items put into the shopping cart. The second method, GetApplicationUser,
gets an ApplicationUser object that corresponds to a particular user Id. The third method,

564 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 564

TransferTemporaryUserToRealUser, merges a shopping cart that users may have started using a tem-
porary ID with the shopping cart that uses their real Id value.

As mentioned earlier in this chapter, user information is sent back and forth between the client and the
server in an authentication cookie. The GetUserId method adds to that by creating a cookie, passed
back and forth between the client and server, that contains the temporary user Id number that was
created. This creates a unique identifi er for visitors, regardless of whether they are logged into the
application.

The method fi rst determines whether a valid user is attached to the HttpContext. The following code
snippet includes this check:

if (HttpContext.Current.User != null)
{
 string userid = HttpContext.Current.User.Identity.GetUserId();
 if (Guid.TryParse(userid, out userId))
 {
 return userId;
 }
}

Because the class is not a controller, you don’t have access to a User property. Instead you have to
go through the HttpContext to get to the Identity. Once you get the Identity you can call the
GetUserId method, which returns a string representation of the user’s Id. There will always be an
Identity if the User exists, but if the user is not logged into the application the GetUserId will return
a null string. This is why the application does a TryParse, just in case the value returned cannot be
converted into a Guid.

The following example shows more of the method, specifi cally the part that handles reading the tempo-
rary identifi er:

if (HttpContext.Current.Request != null
 && HttpContext.Current.Request.Cookies != null)
{
 HttpCookie tempUserCookie =
 HttpContext.Current.Request.Cookies.Get(coookieName);
 if (tempUserCookie != null && Guid.TryParse(tempUserCookie.Value, out userId))
 {
 return userId;
 }
}

The fi rst section checks whether a cookie was already set with the same key. If so, the value is evalu-
ated; and if the value can be converted to a Guid, then it is returned as the value. When no cookie has
been set with the key, the user has not yet been assigned a temporary value, so the next few lines enable
the system to create the appropriate cookie:

userId = Guid.NewGuid();
HttpContext.Current.Response.Cookies.Add(
 new HttpCookie(coookieName, userId.ToString()));
HttpContext.Current.Request.Cookies.Add(
 new HttpCookie(coookieName, userId.ToString()));

Introducing Security ❘ 565

c15.indd 12/18/2015 Page 565

Typically you would only need to set the cookies on the Response object, as those are the ones that the
browser picks up to return to the server on the next request. However, you are also setting the Request
cookies because there may be another call to the method later in the process, so setting it in both
Response and Request ensures that it will be available no matter when the call is made.

Whereas this method ensures that there is always a unique identifi er, whether or not the user is logged
in, the next method, GetApplicationUser, is only responsible for getting the ApplicationUser. This
code is shown again here:

public static ApplicationUser GetApplicationUser()
{
 string userId = HttpContext.Current.User.Identity.GetUserId();
 ApplicationUserManager aum = HttpContext.Current.GetOwinContext()
 .GetUserManager<ApplicationUserManager>();
 return aum.FindById(userId);
}

This simple method is responsible for looking up the ApplicationUser based on an Id. However,
due to the nature of ASP.NET, it can do this without having to pass any parameters into the method
because it can get all the needed information itself. First, it can get the user’s Id from the HttpContext,
just as you can do from within a controller. However, because you don’t have all the built-in function-
ality of a controller, you instead have to access a “real” HttpContext instance by going through the
HttpContext class’s Current property, which is a wrapper for the active HttpContext for this request.
Once you have the user’s Identity, you can call the GetUserId method to get their Id as a string.

The next line in the method demonstrates the approach to getting instantiated versions of various man-
agers. If you remember the Startup.Auth.cs fi le, there are several lines of code that create various
authentication items and add them to the OwinContext. These lines are displayed here:

app.CreatePerOwinContext(ApplicationDbContext.Create);
app.CreatePerOwinContext<ApplicationUserManager>(ApplicationUserManager.Create);
app.CreatePerOwinContext<ApplicationSignInManager>(ApplicationSignInManager.Create);

An ApplicationUserManager was already created and added to the OwinContext, so all you
need to do is fetch the object from the OwinContext. This fetch is what you are doing with the
GetUserManager method with the type of ApplicationUserManager. You can take a similar approach
to getting an instantiated ApplicationSignInManager by using that type in the method call, rather
than the ApplicationUserManager type.

Once you have the user manager, you simply need to call the FindById method with the Id that you
previously determined. You could have added this code into those methods but following the best prac-
tice of putting code that is repeated in multiple places into a single method that can be called anywhere,
it made sense to extract the method to a class that can be accessed from all other code within the
application.

The last method in this class is TransferTemporaryUserToRealUser. This method is responsible
for transferring items that may have been added to a shopping cart before the user is logged in to the
logged-in user’s cart. Unfortunately, it is not quite as simple as updating the database with the new
UserId value, as users may already have items in their shopping cart from a previous visit, so the items
in both carts (temporary and “real user”) have to be evaluated to determine whether the quantity
should be updated or the line item updated with the user’s id.

566 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 566

Note something interesting in this method:

var list = context.ShoppingCarts.Include("Item").Where(x => x.UserId == tempId);

The Include method is necessary in this case because the system will only return with the base
data and not load any related entities. You might realize that this is the fi rst time you are pulling a
ShoppingCart item out of the database and needing to do anything with the Item; in every other
case you were including a property on the ShoppingCart.Item as a query value so that the Entity
Framework already knew that it had to deal with the item as a related entity.

If you did not have the Include method in the query, then the Item property would always be null.
Also, because the Item_Id database column added by the Entity Framework to manage this relation-
ship is not part of the ShoppingCart model, you cannot even access that value for the comparison.

Once the UserHelper class was added, the other changes that you made were to take advantage of the
UserHelper methods you added. The ShoppingCartController, for example, will now use the appro-
priate id, temporary or real, and remember it between calls to the server, while the code that handles
the login and registration work both call the method that moves shopping cart items as soon as the user
logs in (or registers).

At this point, you have added authentication to the application, or the capability to confi rm
that someone is who they say they are. You also added a little bit of authorization by using the
Authorize attribute to ensure that a specifi c method can only be called when the user is logged in,
as that single action is what starts all the authentication that has been defi ned so far.

However, you don’t yet have a capability to discern anything beyond whether a user has been
authenticated. That’s why there were no changes to the administrative pages yet. Managing access
to those pages requires more than a simple check for authentication; it also needs an approach to
determine if a user is authorized to view those specifi c pages. That’s where roles come into the
picture.

ROLES

A traditional approach to determining authorization is through the use of roles. A role provides a
way to defi ne a set of responsibilities, much like a list of things that can be done by someone within
that role. When you look at it in security terms, a role can be used to lock down an action such that
“only users that have this specifi c role” can take the action. Typically, roles are delineated by the
type of work that a user can do, and then users are assigned one or more roles as necessary to defi ne
their actual responsibilities. In our previous example about the bank, the guard was able to identify
a person because of the role that they played, that of manager.

In the ASP.NET Identity framework, a collection of roles is available on the ApplicationUser.
A role is a separate item within the context of the Identity framework, which translates into them
having their own database table, AspNetRoles, and another table that joins the user to one or more
roles, AspNetUserRoles. This join table is necessary because a role may be assigned to more than
one person, and a person may have more than one role.

Roles ❘ 567

c15.indd 12/18/2015 Page 567

Using roles provides a much more granular level of authorization, as you can be as specifi c as neces-
sary when you are grouping responsibilities. In the sample application, you really only need one role
that will be used to ensure that a user going into the Admin section is both logged in and authorized
to take that action, but it is easy to conceive of cases in which the grouping of responsibilities may
lead to many different, more granular roles.

Creating a project with authentication does not create any role-management screens. Any role
creation and confi guration has to be either coded or entered directly into the database. There’s really
nothing special that you have to do with a role, however, to create it; a default role has only two
properties: Id and Name.

Confi guring Your Application to Work with Roles
Creating and linking roles are straightforward tasks, so getting roles onto a User object is easily
and automatically done once linked in the database. However, getting the application to understand
the roles is a bit different, and varies, of course, between ASP.NET Web Forms and ASP.NET MVC
applications. You saw how MVC uses an attribute to ensure that a user is authenticated, which
makes sense because everything that happens in MVC is happening to code. Web Forms are dif-
ferent in that everything there is fi le-based. Thus, an approach using attributes is more diffi cult to
implement.

Instead, when working with an ASP.NET Web Forms application, you can manage authorization in
confi guration fi les. There hasn’t been much discussion about confi guration fi les other than when you
have accessed one to manage the connection strings; however, confi guration fi les can manage much
more than just database connection information. You can also have more than one confi guration fi le
in an application, as you can place one in nested directories as well. By convention, code in a direc-
tory looks fi rst for confi guration fi les in that directory. If none is found in that directory, the code
then looks up a level (while still in the context of the running application) until a confi guration fi le is
located and referenced.

Confi guration fi les are important because they provide a simple way to handle authorization for
ASP.NET Web Forms pages. An abbreviated version showing how this can work is displayed here:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authorization>
 <allow roles="Role1, Role2" />
 <deny users="*"/>
 </authorization>
 </system.web>
</configuration>

Putting this code in any directory with Web Forms fi les ensures that the application is locked down
and only accessible for those users who have been assigned either Role1 or Role2. In those cases
where the user is not logged in, or is logged in but does not have the appropriate role and tries to
access a page in this directory the framework will instead forward the user to the login page. If the
user can log in and has the appropriate roles, then he or she will be allowed to visit any of the pages
in the directory.

568 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 568

The preceding approach can limit access to every page in the directory, but you also can limit access
to specifi c pages through confi guration as well. Recall the example when you created the scaffolded
project, in the Account directory that contains all the scaffolded user interaction. The web.config
fi le included for this change is shown here:

<?xml version="1.0"?>
<configuration>
 <location path="Manage.aspx">
 <system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
 </location>
</configuration>

In this case, the confi guration specifi es that anyone who is logged in can go to the Manage.aspx fi le,
which makes sense when you look at the content of the Account directory and evaluate what each
page is expected to do. The only one that is expected to work with an authenticated user is Manage
.aspx, which maintains login information—valid only for authenticated users.

TRY IT OUT ADDING ROLES

In this activity, you lock down the administrative portion of your application based on a role that you
create. You will have the opportunity to check several different settings and how they impact security.

 1. Ensure that Visual Studio is running and the RentMyWrox application is open. Run the applica-
tion and go to \Admin, as shown in Figure 15-16.

FIGURE 15-16: Default page in the Admin directory

 2. Right-click on the Admin directory and select Add New Item. Make sure you are in the Web
section on the left, and select Web Confi guration File, as shown in Figure 15-17. Click the
Add button.

Roles ❘ 569

c15.indd 12/18/2015 Page 569

FIGURE 15-17: Creating a web.confi g fi le for the Admin directory

 3. Update the new fi le so that it has the following content:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
</configuration>

 4. Run the application again and try to go to the Admin page. It will take you directly to the login
page. Enter your credentials, which you created earlier. If you entered the login information cor-
rectly, you should be taken back to the default admin screen.

 5. Change the "?" in <deny users="?"/> to "*" so that the line looks like <deny users="*"/>
instead.

 6. Run the application again and try to go to the Admin page (/Admin). It will take you directly to the
login page. Enter your credentials. If you entered the login information correctly, note that you are
not taken to the admin screen, but back to the login page, without any validation errors.

570 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 570

 7. Open Server Explorer, and select Database and then Tables. Right-click on the AspNetRoles table
and select Show Table Data. When the grid opens, add “Admin” to both columns as shown in
Figure 15-18.

FIGURE 15-18: Adding a role to the database

 8. Show the Table Data for both the AspNetUsers table and the AspNetUserRoles table. Copy the
Id of the user who will become an administrator from the AspNetUsers table and paste it into the
UserId column of the AspNetUserRoles table. Type “Admin” in the RoleId column. It should look
like Figure 15-19 when you are done.

FIGURE 15-19: Assigning a role to a user in the database

 9. Update the web.config fi le that you added as follows:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authorization>
 <allow roles="Admin" />
 <deny users="*"/>
 </authorization>
 </system.web>
</configuration>

 10. Run the application and go to the Admin page. You should be redirected to the login page.

 11. Log in with the user whose Id was assigned the role. Upon entering the correct credentials you will
be taken to the Admin page.

How It Works

The Identity framework supports the use of roles in authorization by default, so all you had to do to
populate roles was create one or more roles and then assign them to a user. You did this without any
UI, instead entering them directly into the database. However, once you did this, they became immedi-
ately available on the user, as shown in Figure 15-20.

Roles ❘ 571

c15.indd 12/18/2015 Page 571

FIGURE 15-20: ApplicationUser with roles collection populated

Once you added the role and linked it to a user, you could use the web.confi g approach to lock down
a complete directory. You actually took it through three different steps. The fi rst, whereby you used a
"?" in the deny element, denied access to the directory if the user was not logged in. However, once the
user was logged in, the use of the "?" granted them access to the fi les. This result is comparable to the
Authorize attribute that you used on the MVC action.

The next step changed the "?" to a "*". This completely changed the meaning because this step denies
any user access to the pages in the directory, regardless of login status. Any directory that has this
confi guration, and only this confi guration, can never be accessed, as there is no exception to a simple
“Deny All” approach.

You can override this “Deny All” approach by adding another confi guration, in this case the allow
element. By adding an allow element with a role (or list of roles), you changed the authorization for
this directory to be “no user, logged in or not, is allowed to access this directory unless they have an
allowed role.” This progression of authorization is what allowed your role-bearing user to access the
pages within the directory while other users were still kept out.

This shows how you can lock down ASP.NET Web Forms and limit access to a subset of roles. You can
do the same in ASP.NET MVC. The Authorize attribute that you worked with before has an override
that accepts a list of roles. This override would be used as follows:

[Authorize(Roles = "Admin")]
public ActionResult SomeAction()

The outcome of this attribute is the same as when you used the confi guration approach on the Admin
directory, only those logged-in users that have a role of Admin are allowed to access this URL and thus
call this action. Any other type of user would be sent directly to the login screen, as happened during
the exercise.

Also, just as the web.confi g approach can secure either an entire directory or a single page (through
the use of the location element), you can do the same with the Authorize attribute. The current
example locks down a single action, much like the web.confi g in the Account directory locks down a
single page; remember that the closest correspondence between the two approaches is an .aspx page
to an action on a controller.

572 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 572

Although you have used the Authorize attribute only on a controller action, it can also be used at the
controller level. This would look like the following:

[Authorize(Roles = "Admin")]
public class SomeAdminController : Controller

It results in every action on that controller acting as if that attribute were applied directly to them. This
approach is more like the web.confi g approach that locks down an entire directory.

When considering giving a single page an exception, you saw how you can do this by including a
location element that manages the exception; thus, with the confi guration approach, you can lock out
the directory and then create a special exception, using the location element, for a particular fi le or fi les.

You have a similar capability through attributes in MVC:

[Authorize(Roles = "Admin")]
public class SomeAdminController : Controller
{
 [AllowAnonymous]
 public ActionResult Index()
 {
 }
}

The AllowAnonymous attribute enables you to confi gure an action to be accessible even when the
controller itself has been attributed with an Authorize element. The combination of Authorize and
AllowAnonymous enables you to defi ne authorization at a high level but also allows exceptions.

A lot of the simple authorization needs can be managed through the judicious use of web.confi g
authorization for Web Forms as well as the use of Authorize attributes in MVC. However, some-
times you will need to determine whether a user is authorized or within a role.

Programmatically Checking Roles
You can’t always make your decisions about how to handle different considerations regarding
authentication and authorization at the page level. Perhaps you only want to show a section of a
page a user is logged into; or if the user has a particular role, the page itself may have a different
requirement for authorization than a particular section. Thus, working with this section will require
a different way to manage that determination. This is where programmatic checking of roles comes
into play.

The advantage of checking on roles and login status in code is that the approach is generally similar
in both MVC and Web Forms, as shown here:

IN CONTROLLER OR VIEW

User.IsInRole("Admin")

EVERYWHERE ELSE

HttpContext.Current.User.IsInRole("Admin");

Roles ❘ 573

c15.indd 12/18/2015 Page 573

Both of these return a simple Boolean value that indicates whether the user has been assigned the
input role. This method returns false if the user is not authenticated or the user is authenticated but
does not have the role.

In the next Try It Out, you add functionality to the application that is dependent upon accessing
identity information programmatically.

TRY IT OUT Changing Menu Options Based on Role

In this activity, you update your application to add additional menus to it. In some cases, the menus
are displayed only if the user is logged in, while in others the menus are displayed only if the user has a
specifi c role.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Open the
Views\Shared_MVCLayout.cshtml fi le.

 2. Find the element for the left menu. As shown in Figure 15-21, replace everything within the
 elements with the following code:

Home
Contact Us
About Us
@if (!User.Identity.IsAuthenticated)
{
 Login
}
else
{

}
@if (User.IsInRole("Admin"))
{
 Admin Home
 Items List
 Order List
 User List
}

 3. Open the Site.Master in the root directory. Find the <div> with the id of “LeftNavigation.”
Replace it with the following:

<ul class="level1">
 Home
 Contact Us
 About Us
 <li runat="server" id="loginlink">
 Login

 <li runat="server" id="loggedinlink">

<asp:Menu ID="AdminMenu" runat="server" DataSourceID="SiteMapDataSource1"
 IncludeStyleBlock="false"></asp:Menu>
<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
 ShowStartingNode="False" />
<div id="storeHoursMessage"></div>

574 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 574

FIGURE 15-21: Updating the menu in the _MVCLayout.cshtml fi le

 4. Open the Site.Master.cs code-behind. Add the following code to the Page_Load method:

AdminMenu.Visible = HttpContext.Current.User.IsInRole("Admin");
loginlink.Visible = !HttpContext.Current.User.Identity.IsAuthenticated;
loggedinlink.Visible = !loginlink.Visible;

 5. Run the application and go to the home page. Click the Login button and log in with a user who
has the Admin role (see Figure 15-22).

FIGURE 15-22: Home page with Admin menu

Roles ❘ 575

c15.indd 12/18/2015 Page 575

 6. Click the Admin Home link to go to the Admin home page.

How It Works

In this activity, you added links to your application so that users who were not authenticated would be
sent to a login screen. You did this by adding a new list item to the layout view. However, to ensure that
the link is only available when the user isn’t authenticated, you added a check in the view, as shown
again here:

@if (!User.Identity.IsAuthenticated)
{
 Login
}

You can access the User property in your view just as you can in your controller, so by accessing the
User.Identity you have access to the IsAuthenticated property, which tells you whether the current
user has logged into your site. In this case, you are checking to see if the user is not authenticated, in
which case you display the login link.

Later in that same page, you also do a check to determine whether the user is assigned a particular role:

@if (User.IsInRole("Admin"))
{
}

If the user has been assigned the Admin role, then additional menu items are available, which take them
to the Admin section. If not, they won’t even know those menu options are available.

In the Site.Master page you took a different approach. This is because of the simple capability to con-
vert an HTML element into a server control that you can access in code. The markup and code-behind
lines of code are displayed here:

MARKUP

<li runat="server" id="loginlink">
 Login

<li runat="server" id="loggedinlink">

<asp:Menu ID="AdminMenu" runat="server" DataSourceID="SiteMapDataSource1"
 IncludeStyleBlock="false"></asp:Menu>

CODE-BEHIND

AdminMenu.Visible = HttpContext.Current.User.IsInRole("Admin");
loginlink.Visible = !HttpContext.Current.User.Identity.IsAuthenticated;
loggedinlink.Visible = !loginlink.Visible;

The logic that you use in the code-behind is the same as you used in the view. This is because the secu-
rity system is not MVC or Web Forms; it is part of ASP.NET, so it is available in both. The only dif-
ference is that controllers and views have a slightly different access point because they both have the
User exposed as a property, whereas in non-controller and view fi les you have to access that same User
through the HttpContext.Current.

576 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 576

You have now added authentication and authorization to the sample application. Because the
Identity framework is based in ASP.NET, rather than in either of the two framework technologies,
you were able to use the same approach in evaluating and working with users and their credentials.

PRACTICAL SECURITY TIPS

The items below are a few things you need to keep in mind when you work with security within
your application.

 ➤ Although you did not work with security until close to the end of the book, you should actu-
ally consider security from the beginning of the application development process. You want
to determine at the outset what kind of authentication and authorization needs you will have
because this may affect many different aspects of the development process.

 ➤ Determining roles can be one of the more complicated processes of adding security. A com-
mon mistake is to simply use job titles as a role. This means that a piece of functionality
may need to support many different roles, and tracking functionality to the list of roles
becomes very problematic. Instead, take an approach whereby roles defi ne a common set of
job requirements. This likely means that a user will have multiple roles, but it is a lot easier
to change the role assignment for a user than it is to change the code to add a new job-title
type role to a controller. This is especially true because you will need to build a UI to man-
age user-role assignment, so managing more roles becomes a lot simpler while still remaining
very fl exible.

 ➤ The most secure approach to take is a white-list approach, which means that the default is to
deny all actions to a user unless otherwise specifi ed. Permission is assigned on an as-needed
basis. This keeps your application more secure than taking the opposite approach whereby
you start off allowing the user to do anything and secure functionality as needed.

 ➤ The importance of security cannot be overstated. Obviously, the effect of a security breach
will be based on what you are doing; but whenever you make the decision to add authentica-
tion, any breach will, at minimum, rupture the trust that users may have in your company
and application.

SUMMARY

Adding security to your ASP.NET web application is not as scary as it could be. The Identity
framework was redesigned to make it very developer friendly. You can see this from the very begin-
ning in terms of how the framework uses Entity Framework Code First to manage database access.
This fi ts perfectly into how your own application accesses the database. It means that everything
you already do to manage your own database you can extend to manage the database part of your
security system.

The most complex aspect of working with the Identity framework is how it is instantiated into the
Owin context and how you may need to pull various objects out of the Owin context so that you
can use them for interaction with the system. However, by working with the Owin context, you

Summary ❘ 577

c15.indd 12/18/2015 Page 577

have access to all the different security aspects, from authenticating a user from the username and
password they entered into your system, to evaluating users to determine whether they have the nec-
essary roles to access specifi c pages or perform actions within pages.

Confi guring the usage of authentication is dependent upon the framework that you are using. If you
are confi guring ASP.NET Web Forms pages, you can maintain security expectations through the use
of confi guration fi les in which you defi ne those expectations—either for all fi les in a directory or for
individual fi les. If you are working in MVC you don’t have the capability to use web.config fi les for
security because MVC uses a different, non-fi le-system-based approach. Instead, you put authoriza-
tion attributes on actions and/or controllers. The attributes defi ne the authorization expectations.

Because the Identity framework is an ASP.NET approach, working with the framework in code is
virtually the same regardless of which framework you are using. This means the methods are the
same and the way that you get the information is the same whether you are working with MVC or
Web Forms.

EXERCISES

 1. Whenever the application starts, what two fi les are responsible for setting confi guration items
such as minimum length for a password?

 2. What is the difference between authentication and authorization?

578 ❘ CHAPTER 15 SECURITY IN YOUR ASP.NET WEBSITE

c15.indd 12/18/2015 Page 578

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

ApplicationDbContext A class created at the same time that the project is created.
It acts as the database context fi le for all the tables that are
part of the Identity framework. It is completely comparable
to the DbContext that you have been using throughout the
application.

ApplicationSigninManager Handles the management of signing in

ApplicationUser The user class that is created during the scaffolding process. It
acts as the defi nition of what constitutes a user.

ApplicationUserManager A scaffold-created class that performs many user-management
tasks

Authentication The process of verifying that users are who they say they are. At
a minimum, it requires the user to provide a username and pass-
word that must be identical to the information provided when
the account was created.

Authorization The process of determining whether the user is allowed, or
authorized, to take an action. Authorization can be managed at
any level. In the ASP.NET framework, it is usually managed by
the roles that have been assigned to a user.

authorization attribute An MVC feature that enables you to defi ne authentication and
authorization requirements. This attribute can be applied at
either a controller or action level.

authorization element A component used when confi guring authentication and authori-
zation for Web Forms in a web.config fi le

Hash A process that takes a value and creates a one-way conversion
to another value. The beauty of a hash is that it is impossible to
go back to the original value, and no other value can be hashed
and match the hash from the fi rst value. Therefore, it is ideal for
matching passwords without the system ever having to know
what that password is.

Identity framework A .NET system that manages authentication and authorization.
It provides a facility for defi ning the user and storing information
about this user, as well as any affi liated roles.

IdentityResult The result of an identity operation, such as a login. It includes
a property for Succeeded, so you can tell whether the login
worked; and a property for Errors, which provides a list of
strings describing the encountered problems.

Summary ❘ 579

c15.indd 12/18/2015 Page 579

IsInRole A method on the Identity. You can pass in a role name and
get a Boolean indicating whether the logged-in user has been
assigned that role.

OwinContext A container used to store security information. It is initialized
upon application startup; and if you need various Identity com-
ponents, you generally fetch them from the OwinContext.

PasswordValidator A class used to validate passwords upon user registration or
password change. It enables you to set minimum length and the
type of characters that are required.

Role An item used to describe the relationship between the user and
the kinds of actions that they can perform. The application is
coded to validate a role for a set of functionality, and the user is
assigned one or more roles that determine what they can do in
the application.

Salt A value added to a hash. It is used in Identity to further obfus-
cate the hashed value of the password.

SignInStatus An enum that is returned from an attempt to sign in. It describes
the outcome, such as success or failure.

c16.indd 12/15/2015 Page 581

Personalizing Websites
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Adding personal information to ASP.NET Identity

 ➤ Managing your security database

 ➤ Different approaches to website personalization

 ➤ How to implement personalization in your website

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 16
download and individually named according to the names throughout the chapter.

Implementing security in your web site means that you now have the ability to identify your
users. Once you can do that, you can start gathering information about them—everything
from their name and address, to date of birth, to favorite color—whatever information you
can use to make their experience with your site more welcoming, memorable, and special. The
more welcome your users feel, the more comfortable they will be when working with your
application, and the more likely that they will come back.

Once you have identifi ed users, you can also monitor other aspects about them, including what
pages they visit, how often they visit, what items they may click on most, and other interesting
information. With that kind of data you can build directed marketing efforts, or remember
users and take them directly to given product pages—benefi ts that aren’t possible when you
don’t have the capability to recognize a user or you don’t have information about that user.

Any of this information can be considered for, and used in, personalization, which is simply
the concept of having your application recognize a user and take specifi c actions based on the
information you have about that user. It could be as simple as displaying their name or as
complex as building an entire preference catalog specifi cally for them.

16

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

582 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 582

UNDERSTANDING THE PROFILE

Previous versions of ASP.NET had a complete profi le manager, a special ASP.NET component that
was tacked onto the login manager; and although it was fl exible, in that you could add any kind of
data to it, it was also complicated because it kept the information separate from the user. While the
storage mechanism was complicated, however, the manager hid most of that from you and made it
almost transparent to use.

The main reason why this approach was taken was because the previous version of user manage-
ment was not fl exible. The design was extremely rigid so that the framework always understood
each row in the various identity tables (those tables were very much like the default tables that were
created in the sample application) because this was before the Entity Framework was completely
melded into the framework. Any changes to those tables could break the system.

Now that ASP.NET Identity uses the Entity Framework in general, and Code First specifi cally, the
personalization approach that you use is more manageable; it’s directly integrated with the user,
rather than kept separately and accessed through a separate manager. In the next section you will
learn the steps necessary to add personalization support information to the default user.

Creating the Profi le
Several steps are necessary to add profi le information to the default ASP.NET Identity setup. The
fi rst step is determining what additional information you want to gather. This information could be
a simple type, such as a string for fi rst name, or a complex type, such as an address. Second, after
you have determined the additional information that you want to add, you must then consider
how you will be accessing the information. The last step is to implement the data changes and
update the database.

Determining the additional information is usually the simplest part of the process. You may need to
consider how to build out complex types if you need those, but there is nothing new about determin-
ing the additional information and that information’s specifi c types.

You should also spend some time considering how you will be accessing the information; think
about extra information are you adding as well as how you want to combine the user and profi le
information. The recommended approach is to use a different database context for your security
information (so that it can have different database access rights). Doing so enables you to identify
the interaction between the two, which in turn determines how you defi ne the personalization
information.

Lastly, after determining that it makes the most sense to put the additional information into the
security database, you add the information to the models and then update the database. All these
steps are part of the next Try It Out.

TRY IT OUT Initial Confi guration for Personalization

In this exercise you add various personalization features to the application, including new information
that will be part of the same database context as the rest of the security system, as well as personaliza-
tion data that will be saved with traditional application data.

Understanding the Profi le ❘ 583

c16.indd 12/15/2015 Page 583

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open.

 2. Open the Model\IdentityModels.cs fi le, and add a new using statement for System
.ComponentModel.DataAnnotations.

 3. As shown in Figure 16-1, add the following class to the fi le:

public class Address
{
 public string Address1 { get; set; }

 public string Address2 { get; set; }

 public string City { get; set; }

 [StringLength(2)]
 public string State { get; set; }

 [StringLength(15, MinimumLength = 2)]
 public string ZipCode { get; set; }
}

FIGURE 16-1: New class for addresses

 4. Add the following properties to the ApplicationUser class (see Figure 16-2):

public string FirstName { get; set; }

584 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 584

public string LastName { get; set; }

public Address Address { get; set; }

public int UserDemographicsId { get; set; }

public int OrderCount { get; set; }

FIGURE 16-2: Additional user properties

 5. Right-click the Models directory and add a new class called UserVisit. Add the following proper-
ties (don’t forget to add a new using statement for System.ComponentModel.DataAnnotations):

[Key]
public int Id { get; set; }

[Required]
public Guid UserId { get; set; }

[Required]
public int ItemId { get; set; }

[Required]
public DateTime VisitDate { get; set; }

 6. Open the Models\RentMyWroxContext and add the following line with the other DbSets:

public virtual DbSet<UserVisit> UserVisits { get; set; }

 7. Open the Package Manager Console by selecting Tools ➪ NuGet Package Manager ➪ Package
Manager Console. Create a new migration script by entering the following command and clicking
Enter:

add-migration "regular personalization"

Understanding the Profi le ❘ 585

c16.indd 12/15/2015 Page 585

 8. Open the new fi le in the Migrations folder that includes the string “regular personalization.” It
should look like Figure 16-3. Note that the new migration fi le does not contain any of the new
properties added to the user area.

FIGURE 16-3: Initial migration script

 9. Back in the Package Manager Console window, enter the following command in a single line and
click Enter:

enable-migrations -ContextTypeName RentMyWrox.Models.ApplicationDbContext
 -MigrationsDirectory:ApplicationDbMigrations

 10. Go to your Solution Explorer. You will notice a new directory was added,
ApplicationDbMigrations, as shown in Figure 16-4.

FIGURE 16-4: New migrations directory

 11. Enter the following command in the Package Manager Console window, in a single line:

add-migration -configuration:RentMyWrox.ApplicationDbMigrations.Configuration
 Personalization

586 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 586

 12. Go to the ApplicationDbMigrations folder and open the fi le that contains “Personalization” in the
title (see Figure 16-5).

FIGURE 16-5: ApplicationDbMigration migration fi le

 13. Try to update the database using the standard command in the Package Manager Console:
update-database. You should get the “migrations failed” esponse shown in Figure 16-6.

FIGURE 16-6: Failed database update

 14. Enter the following command in the Package Manager Console:

update-database -configuration:RentMyWrox.ApplicationDbMigrations.Configuration

 15. Enter this command into the Package Manager Console:

update-database -configuration:RentMyWrox.Migrations.Configuration

 16. Validate that the databases have been properly updated by going into Server Explorer. You should
see an additional table for UserVisits and additional columns in the AspNetUsers that match the
properties that you added to the ApplicationUser table.

Understanding the Profi le ❘ 587

c16.indd 12/15/2015 Page 587

How It Works

Adding properties to an existing model, as well as adding completely new classes, is something that you
have done before, so the initial parts of this activity should be something you can soon do routinely.
However, the output and the changes that you have to start making because of these additions are
something that you have not seen yet in this project.

First, you can no longer run a simple update-database command as you have been able to until this
point. The error message returned was quite specifi c about why the error occurred: mainly because the
system found two different confi guration fi les and was confused about what tables should actually be
updated.

You haven’t really reviewed the migration confi guration fi le before. Each database context fi le needs
a Configuration class fi le that defi nes the process for managing database migrations. These fi les are
created when you enable migrations for a specifi c DbContext. The content of the fi le that you created in
this activity is displayed here:

internal sealed class Configuration :
 DbMigrationsConfiguration<RentMyWrox.Models.ApplicationDbContext>
{
 public Configuration()
 {
 AutomaticMigrationsEnabled = false;
 MigrationsDirectory = @"ApplicationDbMigrations";
 ContextKey = "RentMyWrox.Models.ApplicationDbContext";
 }

 protected override void Seed(RentMyWrox.Models.ApplicationDbContext context)
 {
 // This method will be called after migrating to the latest version.

 // You can use the DbSet<T>.AddOrUpdate() helper extension method
 // to avoid creating duplicate seed data. E.g.
 //
 // context.People.AddOrUpdate(
 // p => p.FullName,
 // new Person { FullName = "Andrew Peters" },
 // new Person { FullName = "Brice Lambson" },
 // new Person { FullName = "Rowan Miller" }
 //);
 //
 }
}

One constructor and one method, Seed, were created during the process of enabling migrations. The
constructer sets several properties that were inherited from the DbMigrationsConfiguration class.
These properties are described in Table 16-1, along with other properties that can be managed in the
Configuration class.

588 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 588

TABLE 16-1: Database Migration Confi guration Properties

Property Description

AutomaticMigrationDataLossAllowed Specifi es whether data loss is acceptable during auto-
matic migration. If set to false, an exception is thrown if
data loss may occur as part of an automatic migration.

AutomaticMigrationsEnabled Specifi es whether automatic migrations can be used
when migrating the database. If so, manual migrations
are no longer necessary and the system handles the
migration as needed. This value is set to false by default.

ContextKey Distinguishes migrations belonging to this confi guration
from migrations belonging to other confi gurations using
the same database. This property enables migrations
from multiple different database contexts to be applied
to a single database. This value is set by default, gener-
ally with the fully qualifi ed type name from the context.
In the confi guration fi le created earlier, you can see that
the value “RentMyWrox.Models.ApplicationDbContext”
was used, the type name for the context.

MigrationsDirectory The subdirectory in which code-based migrations are
stored. This property must be set to a relative path for
a subdirectory under the Visual Studio project root; it
cannot be set to an absolute path. The default version,
for the fi rst DbContext where migrations were enabled,
is “Migrations.” Each subsequent context that you want
to use will have to have a directory set when you enable
migrations.

TargetDatabase This property is of type DbConnectionInfo and is
provided to enable the developer to override the con-
nection of the database to be migrated. This means you
don’t use the setting that is set for the context being
migrated.

Setting these values gives you some additional control over migrations and how they happen. Automatic
migrations represent an interesting group of these confi guration settings. The approach that you have
used so far is manual migration. Automatic migrations enable you to skip the step in which you run the
Add-Migration command in the Package Manager Console. Instead, the system automatically runs the
migration whenever you run the update-database command.

It would seem that the system could simply check migrations whenever you run the upgrade, updating
the database if there are any changes. However, if you consider that approach more closely, you will
see that you lose control over the update process; it is better to wait until someone tells the system to
run the update rather than doing it on its own.

Understanding the Profi le ❘ 589

c16.indd 12/15/2015 Page 589

If you are running with automatic migrations enabled, you can also determine whether or not losing
data is allowed during the migration process. When you run the manual migration you don’t have this
option; instead, you can add code to the Up and Down methods (in the migration fi le that was created
when the add-migration command was run) to manage these special cases.

When every update you do with your database is simple, it makes sense to pursue an automatic migra-
tion process. However, it is very diffi cult to predict that at the beginning of the project. In those
cases where your database update is very simple and/or straightforward, you can change this value.
Therefore, for some changes you can run with automatic migrations enabled, and for others you can
switch that fl ag off and require manual migrations. While a case-by-case approach may make the
process of updating unpredictable, it is certainly supported within all database contexts that may be
updated.

The method that was created in the new Configuration class, Seed, is run on every update, as it
enables you to add or update data in the database. Typically this would be used for lookup tables,
such as if the sample application had shipping types that were stored in a database. It can also be run
on existing data to change the data as needed to support the migration that is being performed on the
database tables. In this case there was no need to pre-create or update any data.

As you can see, each database context you are going to migrate needs to be defi ned. In your case, one is
defi ned as the default because it is stored in the “Migrations” directory. This is the only confi guration
in which you can add a migration without specifying a confi guration by name; however, you always
need to add the confi guration when you are running the update-database
command with multiple confi gurations, even if you are doing the update
with the default confi guration.

Note that having multiple confi gurations only became an issue when you
added extra personalization-based information to the ApplicationUser
class. You could have continued handling migrations and updates without
specifying confi guration information, but once you needed to update the
security information in the second context you had to create the second
confi guration fi le.

There was one more interesting item as part of this migration that is outside
of the change in how you migrate the database going forward, and that is
how the new Address class was handled by the system when you defi ned
the new class and added it as a new property to the ApplicationUser
class. The table that stores the user information is shown in Figure 16-7.

As you can see, the information specifi c to the address was not put into its
own table. These fi elds were instead added directly into the table, prefaced by the class name “Address”
and an underscore character before the property name. The framework made this decision not because
the Address class was in the same physical fi le as the ApplicationUser class, but because of how the
Address was defi ned.

If the information stored in the address were important as a discrete item, such as a scenario in
which you want multiple people who live at the same address to share the same information, then
you could have effected that by adding an Id property to the Address class and attributing it with
the key attribute. You would then also add the address to the list of DbSet values defi ned in the

FIGURE 16-7

590 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 590

ApplicationDbContext. By adding it to the context fi le you ensure that you can access it independently
of the user.

Although you could have taken this approach, there was no need because in this particular case you
only care about the address as a set of unique values on the user. In fact, you would have a very similar
database design if you added them as simple properties on the ApplicationUser class, but by pulling
those data fi elds out into their own class you can perform special work on them, as shown later in
the book.

You added one other additional class as part of this activity, the UserVisits class, which contains
information about items that a user interacts with, as well as the date and time that this interaction
occurs. However, this class was added to the RentMyWroxContext class, rather than the user context.
This refl ects the consideration regarding how information should be stored, with the options being as
attributes of the user or as a stand-alone item.

As you think about how to best capture information, consider it in terms of a separation of concerns.
In other words, although there are many things that you need to know about the user, such as orders,
shopping cart items, etc., there are very few things that a user has to know about. An order is pointless
without a user who placed it, but a user without an order is a valid item in itself. With that in mind, you
can see why the decision was made to put the UserVisit table in a separate context from the security
information. The user doesn’t care about the items that he or she visited, but the system does; therefore,
that information should be kept with the rest of the non-user information.

The work that you just performed is as complicated as it gets when confi guring your application to
support personalization and additional user information. You need to determine the properties that
you want to add to your application, and you need to evaluate how you can best access the
information. These two considerations together will help you understand how to construct your
object models.

Once you have your object models constructed, the next step is to update the database to support
the additional information. When using more than one context in a fi le, you have an additional
level of complexity for this step, but it is still a relatively simple process. After you have the models
defi ned and the database properly updated, the next step is to use this information.

Using the Profi le
Now that you have whatever personalization information that you want to capture added to the
models in your application and to the database, the next thing to do is actually use the information.
In this next Try It Out, you make the necessary changes in your application to capture and use all of
this information.

TRY IT OUT Capturing and Applying Data

In this exercise you update your application to capture data and take advantage of that data. As you
go through the various steps, consider how they enhance your visitors’ experience as they interact with
your application. You can see many of these features in major eCommerce sites.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open.

Understanding the Profi le ❘ 591

c16.indd 12/15/2015 Page 591

 2. Open the Account\Register.aspx page. Because you will be adding multiple rows to the fi le, it
may be easiest to create one and copy/paste the rest, ensuring that you name everything correctly.

<div class="form-group">
 <asp:Label runat="server" AssociatedControlID="FirstName"
 CssClass="col-md-2 control-label">First Name</asp:Label>
 <div class="col-md-10">
 <asp:TextBox runat="server" TextMode="SingleLine" ID="FirstName"
 CssClass="form-control" />
 <asp:RequiredFieldValidator runat="server" ControlToValidate="FirstName"
 CssClass="text-danger"
 ErrorMessage="The first name field is required." />
 </div>
</div>
<div class="form-group">
 <asp:Label runat="server" AssociatedControlID="LastName"
 CssClass="col-md-2 control-label">Last Name</asp:Label>
 <div class="col-md-10">
 <asp:TextBox runat="server" TextMode="SingleLine" ID="LastName"
 CssClass="form-control" />
 <asp:RequiredFieldValidator runat="server" ControlToValidate="LastName"
 CssClass="text-danger"
 ErrorMessage="The last name field is required." />
 </div>
</div>
 <div class="form-group">
 <asp:Label runat="server" AssociatedControlID="Address1"
 CssClass="col-md-2 control-label">Address Line 1</asp:Label>
 <div class="col-md-10">
 <asp:TextBox runat="server" TextMode="SingleLine" ID="Address1"
 CssClass="form-control" />
 <asp:RequiredFieldValidator runat="server" ControlToValidate="Address1"
 CssClass="text-danger"
 ErrorMessage="The Address Line 1 field is required." />
 </div>
</div>
<div class="form-group">
 <asp:Label runat="server" AssociatedControlID="Address2"
 CssClass="col-md-2 control-label">Address Line 2</asp:Label>
 <div class="col-md-10">
 <asp:TextBox runat="server" ID="Address2" CssClass="form-control" />
 <asp:RequiredFieldValidator runat="server" ControlToValidate="FirstName"
 CssClass="text-danger"
 ErrorMessage="The address line 2 field is required." />
 </div>
</div>
<div class="form-group">
 <asp:Label runat="server" AssociatedControlID="City"
 CssClass="col-md-2 control-label">City</asp:Label>
 <div class="col-md-10">
 <asp:TextBox runat="server" ID="City" CssClass="form-control" />
 <asp:RequiredFieldValidator runat="server" ControlToValidate="FirstName"
 CssClass="text-danger" ErrorMessage="The city field is required." />
 </div>
</div>

592 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 592

 <div class="form-group">
 <asp:Label runat="server" AssociatedControlID="State"
 CssClass="col-md-2 control-label">State</asp:Label>
 <div class="col-md-10">
 <asp:TextBox MaxLength="2" runat="server" ID="State"
 CssClass="form-control" />
 <asp:RequiredFieldValidator runat="server" ControlToValidate="FirstName"
 CssClass="text-danger"
 ErrorMessage="The state field is required." />
 </div>
</div>
<div class="form-group">
 <asp:Label runat="server" AssociatedControlID="ZipCode"
 CssClass="col-md-2 control-label">Zip Code</asp:Label>
 <div class="col-md-10">
 <asp:TextBox MaxLength="10" runat="server" ID="ZipCode"
 CssClass="form-control" />
 <asp:RequiredFieldValidator runat="server" ControlToValidate="FirstName"
 CssClass="text-danger"
 ErrorMessage="The zip code field is required." />
 </div>
</div>

 3. Open the Register.aspx.cs fi le and change the CreateUser_Click method as follows:

protected void CreateUser_Click(object sender, EventArgs e)
{
 var manager = Context.GetOwinContext().GetUserManager<ApplicationUserManager>();
 var signInManager = Context.GetOwinContext().Get<ApplicationSignInManager>();
 var user = new ApplicationUser()
 {
 FirstName = FirstName.Text,
 LastName = LastName.Text,
 UserName = Email.Text,
 Email = Email.Text,
 OrderCount = 0,
 UserDemographicsId = 0,
 Address = new Address
 {
 Address1 = Address1.Text,
 Address2 = Address2.Text,
 City = City.Text,
 State = State.Text,
 ZipCode = ZipCode.Text
 }
 };
 Guid oldTemporaryUser = Controllers.UserHelper.GetUserId();
 IdentityResult result = manager.Create(user, Password.Text);
 if (result.Succeeded)
 {
 Controllers.UserHelper.TransferTemporaryUserToRealUser(oldTemporaryUser,
 user.Id);
 signInManager.SignIn(user, isPersistent: false, rememberBrowser: false);
 Response.Redirect(@"~\UserDemographics\Create?" +

Understanding the Profi le ❘ 593

c16.indd 12/15/2015 Page 593

 Request.QueryString["ReturnUrl"]);
 }
 else
 {
 ErrorMessage.Text = result.Errors.FirstOrDefault();
 }
}

 4. Open the Models\ShoppingCartSummary.cs fi le and add a new property:

public string UserDisplayName { get; set; }

 5. Open the Controllers\ShoppingCartController.cs fi le. As shown in Figure 16-8, add the
following lines in the GetShoppingCartSummary method:

var appUser = UserHelper.GetApplicationUser();
if (appUser != null)
{
 summary.UserDisplayName = string.Format("{0} {1}", appUser.FirstName,
 appUser.LastName);
}

FIGURE 16-8: Updated GetShoppingCartSummary method

 6. Open Views\Shared_ShoppingCartSummary.cshtml. Update the UI to the following code:

@model RentMyWrox.Models.ShoppingCartSummary
@{
 string display;
}
@if (Model != null && Model.Quantity > 0)
{
 display = string.Format("{0}{1}you have {2} items in your cart with a
 value of {3}",
 Model.UserDisplayName,
 string.IsNullOrWhiteSpace(Model.UserDisplayName) ? " Y" : ", y" ,
 Model.Quantity,
 Model.TotalValue.ToString("C")
);

@display
Check Out

594 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 594

}
else
{
 display = string.Format("{0}{1}your cart is empty",
 Model.UserDisplayName,
 string.IsNullOrWhiteSpace(Model.UserDisplayName) ? " Y" : ", y"
);
@display
}

 7. Open the UserDemographicsController and fi nd the Create method that handles POST requests.
Update the method as follows:

[ValidateInput(false)]
[HttpPost]
public ActionResult Create(UserDemographics obj)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var ids = Request.Form.GetValues("HobbyIds");
 if (ids != null)
 {
 obj.Hobbies = context.Hobbies.Where(x => ids.Contains(x.Id.ToString()))
 .ToList();
 }
 context.UserDemographics.Add(obj);
 var validationErrors = context.GetValidationErrors();
 if (validationErrors.Count() == 0)
 {
 context.SaveChanges();

 ApplicationUser user = UserHelper.GetApplicationUser();
 user.UserDemographicsId = obj.Id;
 context.SaveChanges();

 return Redirect(Request.QueryString["ReturnUrl"]);
 }
 ViewBag.ServerValidationErrors =
 ConvertValidationErrorsToString(validationErrors);
 return View("Manage", obj);
 }
}

 8. Run the application and go to the registration screen, shown in Figure 16-9.

 9. Register a new user, ensuring that you fi ll out all the necessary fi elds.

 a. Click the Register button.

 b. Go to the UserDemographics page, where you can fi ll out the questionnaire.

 c. Saving will take you back to the page from which you accessed the login page.

Understanding the Profi le ❘ 595

c16.indd 12/15/2015 Page 595

 10. Open the Controllers\UserHelper.cs fi le. Find the TransferTemporaryUserToRealUser
method and add the following code above the context.SaveChanges method:

foreach(var tempUserVisits in context.UserVisits.Where(x=>x.UserId == tempId))
{
 tempUserVisits.UserId = newUserId;
}

FIGURE 16-9: Updated registration page

 11. Add the following new method to the UserHelper class:

public static void AddUserVisit(int itemId, RentMyWroxContext context)
{
 Guid userId = GetUserId();
 context.UserVisits.RemoveRange(context.UserVisits.Where(x => x.UserId == userId
 && x.ItemId == itemId));
 context.UserVisits.Add(
 new UserVisit
 {
 ItemId = itemId,
 UserId = userId,
 VisitDate = DateTime.UtcNow
 }
);
}

596 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 596

 12. Go back to the ShoppingCartController.cs fi le and locate context.SaveChanges in the
AddToCart method. As shown in Figure 16-10, add the following code above it:

UserHelper.AddUserVisit(id, context);

FIGURE 16-10: Updated AddToCart method

 13. Open the ItemController.cs fi le and update the Details action as follows:

[OutputCache(Duration = 1200, Location = OutputCacheLocation.Server)]
public ActionResult Details(int id)
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 Item item = context.Items.FirstOrDefault(x => x.Id == id);
 UserHelper.AddUserVisit(id, context);
 context.SaveChanges();
 return View(item);
 }
}

 14. While still in ItemController.cs, add a new action:

public ActionResult Recent()
{
 using (RentMyWroxContext context = new RentMyWroxContext())

Understanding the Profi le ❘ 597

c16.indd 12/15/2015 Page 597

 {
 Guid newUserId = UserHelper.GetUserId();
 var recentItems = (from uv in context.UserVisits
 join item in context.Items on uv.ItemId equals item.Id
 where uv.UserId == newUserId
 orderby uv.VisitDate descending
 select item as Item).Take(3).ToList();
 context.SaveChanges();
 return PartialView("_RecentItems", recentItems);
 }
}

 15. Right-click on Views\Shared and add a new view. Name it _RecentItems and ensure that it is a par-
tial view, as shown in Figure 16-11.

FIGURE 16-11: Adding a new view

 16. Add the following content to the new view:

@model List<RentMyWrox.Models.Item>

@if (Model != null && Model.Count > 0)
{
 <div id="recentItemsTitle">Items you have recently reviewed</div>
 foreach (var item in Model)
 {

 <div class="recentItemsName">@item.Name</div>

 @if (item.Description.Length > 250)
 { @item.Description.Substring(0, 250)... }
 else
 { @item.Description }

 }
}

mailto:@item.Description

598 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 598

 17. Open your RentMyWrox.css fi le and add the following styles:

#recentItemsTitle{
 background-color:#F8B6C9;
 color:white;
 font-weight:800;
 width: 900px;
 margin-top: 15px;
 display:block;
 padding: 10px;
 float:left;
}

.recentItemsName {
 color:#C40D42;
 font-size: 16px;
 font-weight:600;
}

.recentItem{
 padding: 10px;
 width:275px;
 float:left;
}

.recentItemsDescription {
 color:#C40D42;
 float:left;
 font-size: 12px;
}

 18. Open the Views\Shared_MVCLayout.cshtml page. Find the @RenderBody method and add the
following line below it, while still in the same <div> tags (see Figure 16-12).

@Html.Action("Recent", "Item")

FIGURE 16-12: Updated layout page

 19. Run the application. Go into several detail pages and then back to the home page. It should look
like Figure 16-13.

How It Works

In this activity you added several pieces of functionality that will provide a more welcoming and useful
experience to users. They will feel more welcome because the site now remembers them by name, and it
will be more useful as well as remembering and displaying some of the things that they viewed and/or
purchased on previous visits. Personalization items include using the visitor’s name when they log in, and
adding it to text related to their shopping cart (whether it is empty or not), as shown in Figure 16-14.

Understanding the Profi le ❘ 599

c16.indd 12/15/2015 Page 599

FIGURE 16-13: Home page with recent items displayed at the bottom

FIGURE 16-14: Shopping cart area displaying name

You were able to capture this information by fi rst adding the new data entry fi elds on the registration
page. Once the UI was updated, you then updated the code-behind so that the ApplicationUser that
you were creating had the additional fi elds. This change was very limited, as you simply needed to add
the data captured in your new data entry fi elds to their appropriate properties in the model.

You also made a change so that rather than simply return to the page that requested the login, the user
was then taken to the UserDemographics entry screen, with the requesting URL being passed to that
screen as a query string value. After the user fi lls out their UserDemographics screen, they are taken
to the page from which they started the registration process—the value of which was passed via query
string through each one of the requests.

While they might not seem like much, these few changes are a huge step in personalization. That’s
because you can now display the user’s name, which is signifi cant because it gives users the sense of a
relationship. For example, imagine how users would react to seeing someone else’s name on the screen
after they logged in. They would certainly lose confi dence in your application and its ability to keep
their information safe. Feeling safe is an important part of personalization, and it is enhanced by the
building of a relationship.

600 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 600

Adding the user’s name to the UI required a change to the object that is used to populate the shopping
cart, the ShoppingCartSummary class, where you added a property that would “carry” the user’s dis-
play name. Once the name was added, you could change the text displayed so that it included the user’s
name in a proper sentence.

The other set of changes that you made were all related to providing a list of recently viewed items.
You can see this type of functionality on many eCommerce sites, such as Amazon.com. You capture
the relationship in two different instances: whenever the user goes to the details page for an item
and whenever an item is added to the shopping cart. Because you are capturing this in more than
one place, it makes sense to pull that code out and put it in a shared location. In this case that’s the
UserHelper class, to which you already added various helper methods that support interacting with
user information.

The method that is capturing this information is shown again here:

public static void AddUserVisit(int itemId, RentMyWroxContext context)
{
 Guid userId = GetUserId();
 context.UserVisits.RemoveRange(context.UserVisits.Where(x => x.UserId == userId
 && x.ItemId == itemId));
 context.UserVisits.Add(
 new UserVisit
 {
 ItemId = itemId,
 UserId = userId,
 VisitDate = DateTime.UtcNow
 }
);
}

Note two things about this example. First, the method is taking a context as a parameter. This means
that the method does not have its own place where it runs the SaveChanges method, instead expect-
ing the calling code to manage that aspect. If the calling code doesn’t take this action, then the method
call would be in vain. The other option would be to create a context within the method and use that
to manage the database access, but that would mean a second connection open to the database in
the same method call. Since a limited number of database connections are available, it simply doesn’t
make sense to consume two of them for the same call when you can pass the context into a method.
Therefore, by convention, whenever you use a context as a method parameter, that method could be
making changes in that context; so if you call another method and pass in a context, then you should
also assume the responsibility of saving those changes.

The second interesting item in the AddUserVisit method is that the fi rst thing you do is remove any
other visits by that same user to a particular item. If you don’t take this approach, you may well pres-
ent a view in which the same product is listed multiple times, and that would be an unpleasant user
experience.

Understanding the Profi le ❘ 601

c16.indd 12/15/2015 Page 601

COORDINATED UNIVERSAL TIME (UTC)

UTC is the primary time standard used throughout the world to regulate clocks
and coordinate time zones. It is the mean solar time at 0 degrees longitude, and is
defi ned by the International Telecommunications Union and based on International
Atomic Time, which also adds leap seconds at irregular intervals to compensate
for the changes in earth’s rotation. All the other time zones are defi ned in relation
to UTC. You may see time notations such as UTC–8, which corresponds to Pacifi c
Standard Time, the time on the West Coast of the U.S.

UTC is commonly used to store times in a database because it standardizes them,
enabling a database to gather date and time information from multiple time zones
and store them in a single time zone where you can easily use the standard offsets,
such as –8 for Pacifi c Time, in order to display the correct time for users based on
their particular system time. This ensures that all of the times are saved relatively,
for everyone across the world, rather than in a single time zone.

You were capturing this information so that you could display it to the user. This
display is being handled by a partial view that presents a horizontal list of items
that the user has already visited. If the user has not visited any items, then nothing
is displayed, not even the section header.

The controller action that builds this list is shown again here:

public ActionResult Recent()
{
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 Guid newUserId = UserHelper.GetUserId();
 var recentItems = (from uv in context.UserVisits
 join item in context.Items
on uv.ItemId equals item.Id
 where uv.UserId == newUserId
 orderby uv.VisitDate descending
 select item as Item).Take(3).ToList();
 context.SaveChanges();
 return PartialView("_RecentItems", recentItems);
 }
}

continues

602 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 602

This is the fi rst time you have done a LINQ join in which you are linking informa-
tion from two different collections. You are taking a value from the fi rst collection
of objects, UserVisit.ItemId, and using that value to join to the second collec-
tion. You are able to do this join because the ItemId value from the UserVisit has
a corresponding value in the Id property of the Item collection. The join state-
ment that you built does exactly that—it joins the second collection (Items) to the
fi rst collection (UserVisits) by using the on keyword and defi ning the relationship
between the two properties as equal.

After adding the join for the two collections, you were able to sort it in descending
order by the time visited. In the next line you took the fi rst three items from the list
using the Take extension method. This ensures that the list is never more than three
items long, the maximum number of items that would nicely fi t in the UI.

Once you had the application updated to capture and display the additional infor-
mation, the last thing you had to do was add a few styles to the style sheet so that
the new section of the screen you added looks like a regular part of the site.

Adding personalization information and displaying it is no different than any other data that you
capture and use. The only reason it is special is because the data doesn’t necessarily fi t any business
purpose per se; its entire purpose for existing is to build a better and more comfortable relation-
ship between users and your application, with the hope that they spend more time with it, and even
consider it the primary solution for whatever problem your application is meant to solve. In the case
of the sample application, you want users to consider your lending library fi rst whenever they need
a tool—even before they would consider going to a hardware store and purchasing a new one. The
steps that you took here will incrementally increase the likelihood of that happening because users
feel that you understand them and their desires; you have demonstrated that you know them person-
ally because you implemented personalization in your application.

PRACTICAL PERSONALIZATION TIPS

The following list contains some tips to keep in mind when you are implementing personalization:

 ➤ You can’t immediately access the user information that is stored in the authentication
cookie immediately after logging in. The system automatically loads the information into
the response cookies, but the default user management tools expect to read from the request
cookies, so you won’t be able to access the user until the next time that user visits the site.
This is why successful logins redirect the user to a different page; at that point, the page to
which the user was redirected can access the user information.

 ➤ When you are considering whether information should be stored in the Identity database or
in your own application database, a key consideration is whether the information you are
saving describes your user or the interaction between your user and your site. If the informa-
tion is specifi c to, and about, the user, then that is personalization data stored with the user.

continued

Summary ❘ 603

c16.indd 12/15/2015 Page 603

When the information is not specifi cally about and describing the user, then that information
should probably be stored in your application’s database context.

 ➤ Try to keep your personalization data as fl at as possible. In other words, avoid any approach
that creates a lot of database tables and stores a lot of information—that’s probably not
something you want to attach to your user. Keep in mind that because the goal is personal-
ization, you will likely be accessing the user upon every request for which the user has logged
in. Therefore, you want something very performant by ensuring that the number of tables
being managed is minimized.

SUMMARY

Personalization is when a system, such as your web application, can recognize users and provide
information specifi c to their needs. A system can provide personalization by gathering information
about the person, whether through direct questions or through tracking their movement through the
site. As creepy as this might sound, it is a critical part of being able to predict your user’s wants and
needs so that your application can better support them and makes information available to them
without the user having to take any special action. Personalization is used on all the major eCom-
merce sites, which analyze their visitors’ habits in order to determine what to present to them, with
the goal of driving more sales.

In the current world of ASP.NET, implementing personalization is no big deal. It has been made
easy because of the way in which the Identity framework uses Entity Framework Code First to man-
age creation of the security database. Using EF Code First enables you to customize the data tables
that store user information. With this level of customization you can add any number of properties
on a user account, of any type—from simple C# types to complex objects.

EXERCISES

 1. Your e-commerce site sells women’s clothing. What kind of information would you gather if you
wanted to get an understanding of the color palette that the user preferred?

 2. What could you do with the information that you just gathered?

604 ❘ CHAPTER 16 PERSONALIZING WEBSITES

c16.indd 12/15/2015 Page 604

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Automatic
Migration

The capability of Entity Framework Code First to perform a database
migration in a single step, rather than requiring you to fi rst create a migra-
tion and then update the database. Using an automatic migration may be
worth it if you fi nd that you rarely, if ever, customize your migration fi les.
Any time you need to customize the migration script by altering database
types or adding indexes or other database-specifi c items (that you can’t
defi ne in the model using an attribute) you need to use a manual migra-
tion. Automatic migration is managed by a value in the Configuration
class in your Migration directory.

-configuration A new keyword used when either adding a migration or updating a data-
base. It is necessary when the application contains more than one data-
base context.

Configuration.cs A class created when you enable migrations in more than one database
context for your application. It contains all the confi guration information
that defi nes the Migration directory, whether to use automatic migra-
tion, etc. It also contains the Seed method, whereby you can defi ne data
that will be created every time a deployment happens for the database
context.

Migration Directory The directory that contains a Configuration.cs class and all the
migration scripts for a database context. It is created when you run the
enable-migration command in the Package Manager Console, and it
requires that you pass in the name of the directory as a parameter in the
command.

Personalization The concept of recognizing users and providing special information to
them based on this recognition. It can be as simple as using their name in
the site or as complex as tracking their preferences and always using these
preferences when displaying content to them.

c17.indd 12/18/2015 Page 605

Exception Handling,
Debugging, and Tracing

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ The different types of exceptions

 ➤ How to handle exceptions

 ➤ Debugging your application

 ➤ How to use the Page Inspector

 ➤ Using standard tracing in ASP.NET

 ➤ Logging

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wiley.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 17
download and individually named according to the names throughout the chapter.

Unfortunately, the more time you spend as a developer, the greater the variety of errors you will
encounter, as errors are a common part of the development process. However, as your applica-
tion evolves, the burden is on you to fi nd these errors and resolve them, because they demon-
strate some kind of problem in either your software or the data with which you are working.

You have already had some exposure to exceptions throughout the book, but your software
can experience other types of problems that don’t throw exceptions. Because of this lack of
exceptions, these problems can be diffi cult to track down; instead, you have to follow through
the code and examine what is happening with the data, rather than analyze an exception to
get this information. This process can be very complicated, especially in larger applications,

17

http://www.wiley.com/go
http://www.wiley.com/go/beginningaspnetforvisualstudio

606 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 606

because a request could travel through many different classes and objects between the request being
received and the response being returned.

In this chapter you will learn different ways to watch your application so that you can understand
the cause of different types of problems. This chapter also covers debugging and introduces other
tools in Visual Studio that enable you to get up close and personal with the processing of your
application.

Because your application runs outside of Visual Studio, such as after you put it into a production
environment, you will also learn about various ways to capture information without the application
running in debugging mode. These approaches may not give you an immediate understanding of the
problem, but they provide you with a way to evaluate it so that you can still try to remedy it.

ERROR HANDLING

In many ways error handling is a process as much as a set of specifi c techniques. It is virtually
impossible to get everything right the fi rst time you write the code for an application because so
many things can go wrong. You can mistype a variable name, put a method call in the wrong place,
run across bad data during the running of the application, or even something completely out of your
hands such as the database server going down during the running of the application. You need to
anticipate these kinds of failures and design your application to deal with them.

The process of managing errors is called debugging. Visual Studio includes a rich set of tools to help
you debug your application. These tools range from checks during the compilation of your code, to
the ability to watch your application as it runs, checking the values of different variables along the
way. There is a much more detailed discussion of debugging later in this chapter.

Different Types of Errors
You might run into three different types of errors during the application development process:

 ➤ Syntax errors: Errors caused when the code itself is incorrect, either because of typos or miss-
ing language. These types of errors throw compile-time errors and you will not be able to run
the application.

 ➤ Logic errors: Errors that cause an incorrect outcome. These could be as simple as subtracting
a value when it should be added, or using the wrong value for a calculation, or any number
of different possibilities where the code is just wrong. The application will still compile and
most likely run, but it won’t return the results you may be looking for.

 ➤ Runtime errors: Errors that cause the application to crash or throw exceptions while running.
Sometimes a logic error may demonstrate as a runtime error, but not always.

Each of the preceding errors is explained in detail in the following sections.

Syntax Errors
Syntax errors, also known as compile-time errors, are caused when the code that you write is incor-
rect. You may have already run into these when working with the sample application if you missed

Error Handling ❘ 607

c17.indd 12/18/2015 Page 607

a line of code or mistyped a variable name. These errors are generally caught during compilation
time—or even earlier than that, as Visual Studio understands the compilation rules and reevaluates
the area of code that you are working on with every keystroke. This reevaluation is what enables
the IntelliSense auto-complete dropdown to be populated. However, as shown in Figure 17-1, it also
populates the Error List pane with all the current syntax errors, repopulating this view after each
keystroke.

FIGURE 17-1: Error List in Visual Studio

The error list displayed in Figure 17-1 lists all the syntax errors found across the application. As
you can see, two different errors were found on line 74, the line where the cursor is located; the fi rst
indicates that a semicolon (;) is missing, while the second error states that the keystrokes already
typed in are not a value. This second error will disappear once the typing is completed and Visual
Studio recognizes the action that you are trying to take, while the fi rst will go away once you type
the semicolon character at the end of the line of code.

The presence of any errors in this list will prevent the application from compiling, so it should
become second nature to take a quick look at the Error List to see if there are any outstanding errors
before you try to run the application. However, it is possible that there are errors present in the
application that the reevaluation hasn’t caught. The larger your application, the greater the chance
that syntax errors in other parts of the system will not be displayed until after you try to compile the
application.

Items listed in the Error List are easy to fi nd and fi x. Not only does the list display the fi lename and
line number, double-clicking on the row with the error also takes you directly to the line in that fi le
and the description explains the nature of the problem.

Logic Errors
Whereas syntax errors stop your application from compiling, much less running, logic errors are
much more subtle. They won’t cause a problem with compilation and may not even throw a runtime
exception; instead, you simply won’t get the expected output. These are the most common errors by

608 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 608

far, as there is no automatic notifi cation when they happen; they instead rely on something, or some-
one, recognizing that the behavior is unexpected.

Consider the following snippets that have been taken from the sample application and slightly
altered:

MIS-ASSIGNMENT ERROR

using (RentMyWroxContext context = new RentMyWroxContext())
{
 var item = context.Items.FirstOrDefault(x => x.Id == itemId);
 tbAcquiredDate.Text = item.DateAcquired.ToShortDateString();
 tbCost.Text = item.Cost.ToString();
 tbDescription.Text = item.Name;
 tbItemNumber.Text = item.ItemNumber;
 tbName.Text = item.Description;
}

COMPARISON ERROR

using (RentMyWroxContext context = new RentMyWroxContext())
{
 Notification note = context.Notifications
 .Where(x => x.DisplayStartDate >= DateTime.Now
 && x.DisplayEndDate <= DateTime.Now)
 .FirstOrDefault();

 return PartialView("_Notification", note);
}

Each of these snippets contains one or more logical errors that will compile without a problem yet
negatively affect your application’s ability to run correctly. Can you fi nd them just by examining
the code?

The error in the fi rst snippet is noticeable when you look for a problem, but if you aren’t expecting
a problem it would be easy to miss that you are assigning the value of the item’s Name property to
the value of an object named tbDescription, and the value of the item’s Description property
to an object named tbName. Identifying this is made even more diffi cult because it may actually be
correct; perhaps the TextBox controls were poorly named or the terms “Description” and “Name”
mean different things in the different contexts (business interface vs. user interface).

The error in the second snippet is much more subtle and thus harder to track down. The require-
ment that this snippet is trying to fulfi ll is to display those notifi cations that are currently active;
today’s date falls between the DisplayStartDate and DisplayEndDate properties of the notifi ca-
tion. Therein lies the problem. The code snippet returns a notifi cation only if the DisplayStartDate
is greater than or equal to the current DateTime and the DisplayEndDate is less than the current
DateTime. Thus, the only items that will be returned are those whose DisplayEndDate is before
their DisplayStartDate or those items that are malconfi gured. The comparison operators for the
DisplayStartDate and DisplayEndDate are reversed.

Later in the chapter you will look at the support Visual Studio offers you for tracking these
errors down.

Error Handling ❘ 609

c17.indd 12/18/2015 Page 609

Runtime Errors
An error that you are not able to see until the application is actually running is a runtime error.
Obviously, because the application is running, this error is not a syntax error but instead means that
something in your application did something unexpected that the application cannot handle. One
of the more problematic concerns about runtime errors is that they may only happen occasionally,
especially when they are related to log errors.

Consider the following conditions (again taken from the sample application and altered):

protected void SaveItem_Clicked(object sender, EventArgs e)
{
 if (IsValid)
 {
 Item item;
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 item = new Item();
 UpdateItem(item);
 context.Items.Add(item);

 context.SaveChanges();
 }
 Response.Redirect("~/admin/ItemList");
 }
}

private void UpdateItem(Item item)
{
 item.Description = tbName.Text;
 item.Name = tbDescription.Text;
}

public class Item
{
 [Key]
 public int Id { get; set; }

 [MaxLength(50)]
 public string Name { get; set; }

 [MaxLength(250)]
 public string Description { get; set; }
}

There is a close replication of the logical error that you saw earlier, but in this case you are building
the object that will be saved to the database. This means that it is a logical error, although some-
times it will cause a runtime exception. If you look at the data attributes for the item you will see
that the maximum length for the Name property is 50 characters, while the maximum length for the
Description property is 250 characters.

These MaxLength attributes are what’s causing the problem. You correctly built the client-side vali-
dation so that both properties will be validated before returning to the server, so it’s easy to assume

610 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 610

that it all will work correctly. Indeed, when you run some simple tests it seems to work—there are
no exceptions. However, the fi rst time a user types a value longer than 50 characters into the tb
Description textbox, a runtime error is thrown because that large value was incorrectly assigned
to the Name property, therefore failing validation when the SaveChanges method is run on the con-
text. This error causes an exception to be thrown.

A parser error is another type of runtime error that does not throw an exception. Rather, it throws
an error that you can see in the browser as opposed to automatically in the debugger. Figure 17-2
shows one of these parser errors.

FIGURE 17-2: ASP.NET Web Forms parser error

Parser errors can happen when “non-code” elements are run. For ASP.NET Web Forms, this would
likely mean that controls are incorrectly confi gured in the markup page, as shown in the fi gure.
With ASP.NET Web Forms markup pages, even items that you would expect to create syntax errors
will successfully compile yet throw an error during runtime. Figure 17-3 shows an example of this:
The server control name is spelled incorrectly yet the application still compiles and runs until it gets
to that page. Note that Visual Studio understands that something is wrong with the syntax because
the markup page has a squiggly line under the misspelled control name, indicating a problem.

FIGURE 17-3: ASP.NET Web Forms server error with VS

Error Handling ❘ 611

c17.indd 12/18/2015 Page 611

Unfortunately, you have some of the same possibilities when working with ASP.NET MVC views, as
shown in Figure 17-4, even though there is a problem with the code. In this case the highlighted line,
line 9, references an invalid property named “Bame” on the Item object.

FIGURE 17-4: This MVC view has syntax error yet compiles.

That name is not a valid property, and Visual Studio indicated that with the squiggly line under the
property name. However, it compiles successfully.

The primary difference between ASP.NET Web Forms and ASP.NET MVC is that this problem
throws a runtime exception in MVC that you can examine in Visual Studio, rather than the server
error thrown in Web Forms. Running this view as shown causes the exception shown in Figure 17-5.

FIGURE 17-5: Runtime error caused by MVC view syntax error

612 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 612

One of the key outputs from a runtime error is an exception. In the next section you will learn how
to catch and work with .NET exceptions.

Catching and Handling Exceptions
There are many different default .NET exceptions, all of which inherit from the base Exception
class. This inheritance creates a set of common properties that are available on all .NET exceptions.

You have seen exceptions at work in a few places already in this book, but there has not been a lot
of in-depth discussion about them, other than that you don’t want them surfacing in your applica-
tion. In a nutshell, exceptions are errors that occur during the runtime of a program. The advan-
tage of using exceptions is that the program doesn’t terminate due to the occurrence of the error; it
instead “throws” an exception. This enables you to understand the error condition by analyzing the
exception, while giving the application the opportunity to continue its processing.

When .NET throws an exception you will see that it is of a specifi c type and always ends with the
term “Exception.” These exceptions are objects, and you can interact with them as if they were any
other type of object if you properly “catch” them.

If you peruse different Internet articles on exceptions, you will notice that the terminology differs
from that used when working with a regular custom object. Exceptions tend to be “thrown” or
“tossed”; and when handled appropriately, they are said to be “caught,” “captured,” or “handled.”
In many ways these verbs are appropriate.

Consider how an application runs. In simple terms it steps through the fi rst line of code and then
goes to the next line. It processes in this way until it gets to the fi nal line of the code, at which time
the application ends. Many different method calls and work may occur in between, but this is gener-
ally how the program fl ows. However, when an error is encountered the application stops what it is
doing, identifi es and wraps the error in an exception, and then throws it out of the method in which
it is running.

This is done through each level of the application (or each of the methods in which the error may
happen) until it gets to a point where there is a handler for the exception, where the exception is
caught. If there is no handler for the exception, then the application stops running.

Three keywords support the exception system: try, catch, and finally. Each of these keywords
references a specifi c part of the exception system, as shown here:

try
{
 // take a series of actions that may cause an exception
 // this may be one method in particular or a whole set of
 // steps.
}
catch(Exception ex)
{
 // if an exception is thrown the code in this section
 // will be run
}
finally
{

Error Handling ❘ 613

c17.indd 12/18/2015 Page 613

 // code in this section will be run regardless of
 // whether or not an exception was thrown
}

The try keyword defi nes the wrapper; or the block of code where you are ready to capture an
exception. An exception happening inside this block will be directed to the code block defi ned by
the catch keyword. An exception happening outside of a try block will propagate up the call stack
until either it is caught or it surfaces in runtime, causing the application to crash.

CALL STACK

The call stack is a data structure that stores information about the active routines
of a software application. Also known as the execution stack or run-time stack, the
primary responsibility of the call stack is to keep track of which active functions
should return control when they fi nish executing. An active function is a method
that has been called but has not yet completed. It is called a stack because these
method calls can be nested as shown:

public void TopMethod()
{
 MiddleMethod();
}

public void MiddleMethod()
{
 BottomMethod();
}

Public void BottomMethod()
{
 // processing
}

The call stack for your application varies according to where you examine it. If
you looked at the call stack in the TopMethod, you would see that it only contains
TopMethod. If you examined the call stack while in the MiddleMethod you would
see that both TopMethod and MiddleMethod were in the call stack. Examining the
call stack while in the BottomMethod would show all three methods.

The call stack shrinks and grows as the application proceeds. Just as the call stack
becomes three deep when in the BottomMethod, after processing is completed in
that method and it returns to the MiddleMethod the call stack will unwind, or
back up one level, and only show the TopMethod and MiddleMethod. The same
happens when the MiddleMethod returns.

Later in this chapter you will learn how to navigate the call stack in Visual Studio
so that you can monitor the entire range of calls happening within that current pro-
cessing stack.

614 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 614

The try keyword defi nes the code block that is going to be managed for exceptions. The catch key-
word defi nes the code block that will run when an exception is thrown from code being managed
within the try block. Typically, the work being performed in this area evaluates the exception to
determine whether execution can resume or should be stopped, and to take some action to publicize
that an error occurred.

You can use the catch keyword without the parameters:

try
{
 // some work
}
catch
{
 // some other work
}

If you use the catch block without the parameters, however, you will never be able to do anything
with the exception, so cases in which you will want to use this approach are very limited.

You can also use multiple catch blocks for a single try block, each capturing a different kind of
exception:

try
{
 // some work
}
catch(ArgumentNullException ex)
{
 // some other work
}
catch(Exception ex)
{
 // some other work
}

If you chain your catch blocks in this way the order is important. The framework evaluates the
parameter of the fi rst catch block to see if the exception that was thrown matches. If it doesn’t
match, it goes on to the second catch block and tries again, through the entire chain of catch
blocks until it fi nds one that matches. If there is no match, then the exception keeps going up the
call stack. This is why when you see multiple catch blocks, you may see the last one as a very generic
type such as an Exception, which is the base class for every exception, so it catches all exceptions
that reach that point.

Once you catch the exception you have to determine what your application will do. First, you need
to evaluate the type of exception that is thrown. Table 17-1 describes the most common exceptions
that you will run into when you are working with ASP.NET applications.

Error Handling ❘ 615

c17.indd 12/18/2015 Page 615

TABLE 17-1: Common Exceptions

EXCEPTION DESCRIPTION

AmbiguousMatchException Thrown when binding to a member results in more than one
member matching the binding criteria. This is common in
ASP.NET MVC when two different actions can respond to a
single request. Because the system can’t determine which is
the appropriate value, it throws this exception. This excep-
tion is very rarely deliberately thrown by a developer.

ArgumentNullException Thrown when a null reference is passed to a method that
doesn’t accept it as a valid argument. This exception is com-
monly thrown by developers when they write a method that
is accepting arguments of a complex type and they cannot
handle a null object.

ArgumentOutOfRangeException Thrown when the value of an argument is outside the allow-
able range of values as defi ned by the invoked method.
This is different from an ArgumentNullException in that
the object is not null, but instead has some invalid data. An
example here could be a function that includes taking the
square root of a value. This means that the value cannot be
negative, so passing in a negative value should throw an
ArgumentOutOfRangeException.

DBConcurrencyException Thrown by a DataAdapter during an insert, update, or
delete operation if the number of rows affected equals zero.
This exception could be thrown when using ASP.NET Web
Forms data controls for direct access to the database. It is
rarely thrown by a developer.

FileNotFoundException Thrown when the system tries to access a fi le on the fi le
system that does not exist. This exception can be thrown by
developers when they determine that an expected resource
does not exist. It can also be thrown by the framework when
the attempt to access the fi le happens.

HttpRequestValidationException Thrown when a potentially malicious input string is received
from the client as part of the request data. This type of
exception is generally not thrown by the developer but when
Request Validation fails.

IndexOutOfRangeException Thrown when an attempt is made to access an element of an
array or collection with an index that is outside its bounds.
This exception is rarely thrown by a developer. It’s typically
seen when working with arrays or other types of collections
and there is an attempt to access an item outside the collec-
tion, e.g., trying to access item 21 when there are only 20
items in the collection.

continues

616 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 616

EXCEPTION DESCRIPTION

InvalidCastException Thrown when the conversion of an instance of one type to
another type is not supported. For example, attempting to
convert a Char value to a DateTime value throws this excep-
tion. It is virtually never thrown by a developer, but by the
framework.

KeyNotFoundException Thrown when the key specifi ed for accessing an element in
a collection does not match any key in the collection. This is
much like an IndexOutOutRangeException in that it works
on collections, but it requires one of the collections types
that use a key/value approach, such as a Dictionary.

NoNullAllowedException Thrown when you try to insert a null value into a column
where AllowDBNull is set to false. This exception could
be thrown when using ASP.NET Web Forms data controls
for direct access to the database. It is rarely thrown by a
developer.

NullReferenceException One of the most common exceptions, this is thrown when
you try to access a member on a type whose value is null.
A NullReferenceException exception typically refl ects
developer error, with the most common reasons being
that you’ve forgotten to instantiate a reference type or
you get a null return value from a method and then call
a method on the returned type. This exception may be
thrown by a developer, but most developers would use
ArgumentNullException to manage null values being
passed into a method.

OutOfMemoryException Thrown when there is not enough memory to continue the
execution of a program. This exception represents a cata-
strophic failure. The most common way to have this problem
in a web application is to try to load too much dynamic infor-
mation into memory, such as loading all the rows of a data-
base into memory and then working with them in memory.
This exception is a default system exception and is never
thrown by a developer.

StackOverflowException Thrown when the execution stack overfl ows because it con-
tains too many nested method calls. This is another fairly
common exception and is generally called when using recur-
sion, when a method calls itself.

One of the most common mistakes that new developers make is deciding that they should probably
use try and catch keywords in every method so that all exceptions can be caught and dealt with.

TABLE 17-1 (continued)

Error Handling ❘ 617

c17.indd 12/18/2015 Page 617

You should only do this if you know that you can actually handle the exception; and you should
never have an empty catch block, as shown here:

try
{
 // some work
}
catch
{}

These empty catch blocks may be convenient in that using them stops the exception from rising any
higher up the call stack, but it does nothing to help you actually fi x the problem. You should catch
the error when you have a chance to either fi x the problem or to mitigate the issue that caused the
error, such as using a default value or retrying a database call; whatever failed.

When you get exceptions that you can’t handle, instead, allow these exceptions to continue up the
stack. Later in this chapter you will learn how to confi gure the application to handle these unhan-
dled exceptions in a way that enables you (as the developer) to gather information about the
problem yet still provide a consistent experience to the user even though the work that they were
trying to do failed.

While I have so far been emphasizing the errors thrown by the framework, it is important to
realize that as a developer you will sometimes be creating and throwing exceptions yourself, in your
own code. An example of this would be a method that you create that accepts an object as one of
the properties. Would you be able to perform the work that you need to when the object is null? If
not, what would you do? How would you handle it? In many cases you will throw an exception, as
shown here:

public void AlphabetizeList(List<ApplicationUser> list)
{
 if (list == null)
 {
 throw new ArgumentNullException("list");
 }

 list = list.OrderBy(x=>x.LastName)
 .ThenBy(y=>y.LastName).ThenBy(z=>z.MiddleInitial);
}

By throwing the exception you are telling the calling code that the argument passed in is problem-
atic. Doing the check also ensures that your method doesn’t try to do any work on the null object, as
doing that would cause the framework to throw a NullReferenceException. You may wonder why
you don’t just let the framework go ahead and do that; but if you did, you would be making it more
complicated for the developer of the calling method to determine what happened. Instead, you are
passing back an ArgumentNullException that includes information about the argument causing the
problem. This makes it very easy to determine both what the problem is and the steps necessary to
remedy it.

618 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 618

So far you have seen how to catch an exception and how to throw an exception. Sometimes you
need to do both: catch an exception, do something with it, and then turn around and rethrow the
exception so that it can continue up the call stack. Here is the appropriate way to handle such a case:

try
{
 // some work
}
catch(Exception ex)
{
 // log the exception in your logging system
 throw;
}

This is different from the earlier snippet when your method was throwing an exception, because
at that point you used the throw keyword along with the exception that you were going to throw.
In this case you are using just the keyword itself without an exception, but because the keyword is
within a catch block it can determine its context. Make sure that you do not do this:

try
{
 // some work
}
catch(Exception ex)
{
 // log the exception in your logging system
 throw ex;
}

This approach will break the link between the exception and its originator, making the exception
look like it was thrown from this method rather than the method that actually threw it. The throw
that sends the exception becomes the owner, regardless of whether you just created the exception
yourself or are passing it through from another area.

It is easy to get the impression that exceptions are bad so you should never write code that throws
them. However, exceptions enable you to communicate problems back to consuming code; you are
throwing an exception because it is giving you incorrect or broken information. If you don’t tell
the calling code (by throwing the exception), the problem won’t be understood. Ideally, your code
throws the exception to the calling code, which is then fi xed so that it can start calling your code
correctly. A well-constructed exception policy helps to ensure quality.

When you get an exception, your responsibility is to fi x the calling code so that the exception disap-
pears. If you were calling the AlphabetizeList method from the earlier example and you received
an ArgumentNullException, then you would know that you have to fi x your code so that you are
not passing in a null list. Thus, you may have to make a change from

try
{
 using (ApplicationDbContext context = new ApplicationDbContext())
 {
 var userList = context.ApplicationUsers;
 AlphabetizeList(userList);
 return View(userList);
 }

Error Handling ❘ 619

c17.indd 12/18/2015 Page 619

}
catch(Exception ex)
{
 // log the exception in your logging system
 throw;
}

to

try
{
 using (ApplicationDbContext context = new ApplicationDbContext())
 {
 var userList = context.ApplicationUsers.Where(x=>x.State == state);
 if (userList != null)
 {
 AlphabetizeList(userList);
 }
 return View(userList);
 }
}
catch(Exception ex)
{
 // log the exception in your logging system
 throw;
}

This ensures you are not calling the method with the incorrect item. You can start to see how there
may be chains of these types of methods. Perhaps the method calling the AlphabetizeList mes-
sage was called from other code that passes in the fi lter criteria, and the only way that the code can
call the AlphabetizeList method with a null object is if calling methods send information that
causes the list to be null, such as sending fi lter criteria that no item in the list will match. In that case
you may want to set up the code as follows and throw an exception when incoming data causes an
improper state:

try
{
 using (ApplicationDbContext context = new ApplicationDbContext())
 {
 var userList = context.ApplicationUsers.Where(x=>x.State == state);
 if (userList != null)
 {
 throw new ArgumentException("state returns null list",
 state);
 }
 AlphabetizeList(userList);

 return View(userList);
 }
}
catch(Exception ex)
{
 // log the exception in your logging system
 throw;
}

620 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 620

Unfortunately, this means that there is no hard-and-fast rule about when you should throw excep-
tions. It is instead a step-by-step evaluation. The key thing to remember is that your code needs to
be able to tell calling code about any problems it may have, especially when interacting with infor-
mation that was provided by the calling code.

Once you have caught an exception you need to understand where it came from and what caused
it so that you can fi x the problem. Remember that although exceptions are not bad, that doesn’t
mean you want them hanging around in your application. Ideally, your application will ship and
never throw a single exception, even if every method that you write has at least one throw new
Exception line, because you have written your code so that they simply don’t happen.

Every exception in .NET inherits from the Exception class, which means that is a set of common
properties that give you information about the nature of the exception. These common properties
are listed in Table 17-2.

TABLE 17-2: Properties on the Exception Class

PROPERTY DESCRIPTION

Data This property is a dictionary containing a collection of key/value pairs that pro-
vide additional user-defi ned information about the exception. The interesting
thing about the Data property is that you can continue to add information to it
as it goes up the call stack.
catch (Exception e) {

 e.Data.Add("RequestedState", state);

 throw;

}

HelpLink The HelpLink property is intended to contain a link to information about that
exception. The information available from that link generally describes the con-
ditions that caused the exception to be thrown and may describe how to iden-
tify and fi x the problem.

InnerException The Exception instance that caused the current exception. When an exception
X is thrown as a direct result of a previous exception Y, the InnerException
property of X should contain a reference to Y. You can create a new exception
that catches an earlier exception. The code that handles the second exception
can make use of the additional information from the earlier exception to handle
the error more appropriately.
Suppose there is a function that reads a fi le and formats the data from that
fi le. In this example, as the code tries to read the fi le, an IOException is
thrown. The function catches the IOException and throws a
FileNotFoundException. The IOException could be saved in the
InnerException property of the FileNotFoundException, enabling the
code that catches the FileNotFoundException to examine the cause of the
initial error.

Error Handling ❘ 621

c17.indd 12/18/2015 Page 621

PROPERTY DESCRIPTION

Message A string value that describes the current exception. Error messages target the
developer who is handling the exception. The text of the Message property
should completely describe the error, and when possible also how to correct
it. Top-level exception handlers may display the message to end users, so you
should ensure that it is grammatically correct and that each sentence of the
message ends with a period.

Source The name of the application or the object that causes the error. If the Source
property is not explicitly set, the name of the assembly where the exception
originated is returned instead.

StackTrace A string representation of the immediate frames on the call stack. This listing
provides a way to follow the call stack to the line number in the method where
the exception occurs. It provides details of the bottom-most area where the
exception was thrown all the way to the top where the method that called that
code is defi ned. This is the most useful property for determining exactly where
the error occurred. Remember that if you throw an exception again (something
you should not do), then the StackTrace property is reset and you lose the
StackTrace from that point forward.

TargetSite The method that throws the current exception. If the method that throws
this exception is not available and the stack trace is not a null reference,
TargetSite obtains the method from the stack trace. If the stack trace is a null
reference, TargetSite also returns a null reference.

The most important properties that you will use are the exception type itself (ArgumentNullException,
NullReferenceException), Message and the StackTrace. These give you an understanding of the
type of problem and where it occurs. You will learn more details about analyzing exceptions later in
the chapter.

With the recommendation to let exceptions fl ow up through the call stack, you have to be wonder-
ing when (or if) they fi nally are caught. Again, the answer depends. If an exception is thrown, one of
two things will happen: You will catch the exception and attempt to recover. The second is that you
won’t recover and you have to decide on a course of action. In some cases you can parse the error to
give the user some information that may be of use, but for other unexpected errors you cannot do
that. Also, at some point you have to decide whether a generic error-handling approach is best.

The next section demonstrates how ASP.NET helps you display errors and globally manage
exceptions when they happen without alerting the user, even though the application just experienced
an error.

Global Error Handling and Custom Error Pages
You have already seen instances of the “Yellow Screen of Death,” the default screen that appears
when ASP.NET encounters an error. It is not the most welcoming screen for a user. However,

622 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 622

ASP.NET provides a way to prevent users from ever getting to that screen, through its support for
custom error pages.

A custom error page is a page you create that is displayed to the user in lieu of the standard error
screen. Typically this page is styled like the rest of the application and provides a reassuring message
to the user. You can enable custom error pages in the web.config fi le by adding a new element to
the system.web node:

<customErrors mode="On" defaultRedirect="~/Errors/Error500.aspx"
 redirectMode="ResponseRewrite">
 <error statusCode="404" redirect="~/Errors/Error404.aspx" />
 <error statusCode="500" redirect="~/Errors/Error500.aspx" />
</customErrors>

By adding this customErrors element you have enabled custom error pages. You can turn this on
or off through the mode attribute, with on meaning that custom error pages will be used, and off
meaning the opposite. You can also use RemoteOnly, which means that the custom error page will
only be returned to users calling the server from a different machine. This setting enables you to see
the error message when debugging, yet show the custom error page when anyone calls it from a dif-
ferent machine. The other primary attributes in the customErrors element are defaultRedirect,
which provides the default redirect page if no specifi c error page is available for the exception, and
redirectMode, which has two options:

 ➤ ResponseRedirect: Specifi es that the URL to direct the browser to must be different from
the original web request URL

 ➤ ResponseRewrite: Specifi es that the URL to direct the browser to must be the original web
request URL

The other part of the confi guration is the error nodes within the customErrors element. These
nodes provide the mapping between a specifi c HTTP status code (such as 404) and a web page. You
can create maps as detailed as needed, one per status code if that is required; any items not explicitly
mapped will be sent to the defaultRedirect value.

It’s important to realize, however, that this behavior does not capture any information about the
exception that caused the redirect to the custom error page (as opposed to a 404 Page Not Found
error). However, ASP.NET provides a facility to capture information about those exceptions
through the support of a global error handler.

This global error handler is part of the global.asax page that resides in the root directory of the
application.

void Application_Error(object sender, EventArgs e)
{
}

When an exception is thrown and not handled, it ends up reaching the Application_Error event
handler. At that point you can work with it as necessary so that you will always know when there
was an exception.

Error Handling ❘ 623

c17.indd 12/18/2015 Page 623

The following activity gives you some hands-on experience with these error-handling concepts.

TRY IT OUT Adding Error Pages

In this activity you will be adding global error handling and custom error pages to your application.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Open the
Global.asax fi le. Add the following new method (see Figure 17-6).

void Application_Error(object sender, EventArgs e)
{
 if (HttpContext.Current.Server.GetLastError() != null)
 {
 Exception myException = HttpContext.Current.Server.GetLastError()
 .GetBaseException();
 }
}

FIGURE 17-6: Application_Error event handler

 2. Right-click the Project name in Solution Explorer. Select Add ➪ New Folder, and name it Errors.

 3. Right-click the folder you just added and select Add ➪ New Item. Select to add a “Web Form with
Master Page.” Name the fi le Error404 and select the Site.Master fi le as shown in Figure 17-7.

624 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 624

FIGURE 17-7: Master page selected

 4. Open the markup page that you just added, and add the following content within the Content tags
(see Figure 17-8):

<h1>File Not Found</h1>
<p>
 The page you requested could not be found. Either return to the
 Homepage
 or choose a different selection from the menu.
</p>

FIGURE 17-8: Error404 content

 5. Add another a page, the same way, named Error500.

 6. Add the following content to the markup page:

<h1>Other Error</h1>
<p>
 There was an error on the server. Either return to the
 Homepage
 or choose a different selection from the menu.
 We have been notified about the problem and will work
 on it immediately.
</p>

 7. Open the web.config fi le and fi nd the system.web node. Add the following code right below the
opening tag. It should look similar to Figure 17-9 when completed.

Error Handling ❘ 625

c17.indd 12/18/2015 Page 625

<customErrors mode="On" defaultRedirect="~/Errors/Error500.aspx"
 redirectMode="ResponseRewrite">
 <error statusCode="404" redirect="~/Errors/Error404.aspx" />
 <error statusCode="500" redirect="~/Errors/Error500.aspx" />
</customErrors>

FIGURE 17-9: Custom error confi guration in the web.confi g fi le

 8. Run the application and go to the home page.

 9. Append a term to the URL so that the system returns a 404 error (the example uses “New Item”).
You should get a screen similar to that shown in Figure 17-10.

FIGURE 17-10: Displaying the Error404 page

How It Works

In this activity you took several steps to introduce custom error pages and global error handling into
your application. First, you added the event handler that will respond to any exceptions not handled
in your code. The exception is not as straightforward to access as it is in your typical try \ catch
block. Instead, this is really a last chance exception handler, as it captures an error at the last possible
opportunity while the framework still has control of the request, but after it has completed the page
processing phase.

626 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 626

Because it has completed processing, the exception is accessible only on the HTTPContext—the base
object that is available throughout the entire request-response process. The code that you have to use is
shown here:

HttpContext.Current.Server.GetLastError()

What this code does is access the server information in the current HttpContext. The Server property
is a HttpServerUtility object and contains methods that help manage information about the server.
One of these is the GetLastError method, which pulls the last exception that happened during this
request. The returned type is an Exception, so you can now access the properties of that exception just
as you would in a traditional catch block.

The code you added contained an additional method: GetBaseException. This method returns
the Exception that is the root cause of the exception stream, enabling you to always see the initial
Exception that was thrown. This becomes important in a case like the following:

public void ExternalMethod
{
 try
 {
 CallSomeMethod();
 }
 catch(Exception ex)
 {
 throw new SecondException("Top exception", ex);
 }
}

public void CallSomeMethod
{
 throw new Exception("This is the bottom exception");
}

As mentioned earlier in the chapter, if you “rethrow” the same exception, you break the stack trace.
However, you can throw other exceptions and nest the previous exception as just shown. This creates a
chain of exceptions whereby each exception becomes nested in the next exception. This chain of excep-
tions consists of a set of exceptions such that each exception in the chain was thrown as a direct result
of the exception referenced in its InnerException property. For a given chain, there can be exactly one
exception that is the root cause of all the other exceptions in the chain. This exception is called the base
exception and its InnerException property always contains a null reference.

This becomes important because of the rule to capture only those exceptions that you can handle.
However, in a long method chain it is hard to determine exactly what you may be able to solve and
whether the exception is called updated by work that happens in that method or by the information
passed into your method from the calling code. In those cases you can see the exception wrapping as
shown in that last code snippet. Unfortunately, this means that in order to get to the base exception,
you would have to go into an exception and then access its InnerException property until you get
down into the exception where the InnerException is null. The GetBaseException does that recursive
check for you. You should get into the habit of using the GetBaseException for any code where you
do not know how the exception stack is built. It may not be as necessary in an application over which
you have full control, but if you consume third-party applications or controls, then you really don’t
have control over what is going on inside those areas. Rather than take any chances, simply get the base
exception all the time.

Error Handling ❘ 627

c17.indd 12/18/2015 Page 627

You didn’t yet do anything with the exception that was thrown; you will get to that later in the
chapter. Also, accessing the exception in this event handler does not affect the next part of the changes
you made when you added the custom error pages. You added one page to manage any 404 errors that
may happen on your web site and another that captures any exceptions and displays a page which is
much friendlier than the Yellow Screen of Death.

Even though you interact with the exception in your Global.asax page, the framework still calls the
custom error page. With these two items together, you can fi nd and do work with the exception at the
highest level, as well as automatically provide a user-friendly custom error message. In addition, even
though the error pages that you created were ASP.NET Web Form pages, you could have just as easily
used MVC to make the error pages—all you would need to do is change the redirectMode attribute to
ResponseRedirect, rather than ResponseRewrite. The ResponseRedirect is much like the redirect
process covered in Chapter 8 whereby the server responds to the client with a Redirect status code so
that the browser requests the redirected page. A ResponseRewrite is like the Server
.Transfer whereby it requires a physical fi le to be present on the server that the framework uses to
create the response. It is because the ResponseRewrite requires a physical fi le that you cannot redirect
with that mode to an MVC URL.

The custom error pages and global error pages work regardless of the ASP.NET framework that you
are using. However, an additional approach is supported in ASP.NET MVC to manage exceptions
that are thrown from a controller. The next section describes how that process works and how it
differs from the global error handling approach that you just added to the application.

Error Handling in a Controller
The custom errors and global error handling that you just worked with were part of the earliest
forms of ASP.NET Web Forms and have evolved to support MVC as well. ASP.NET MVC has its
own specifi c way to manage exceptions that may happen within a controller or within the code
that it calls. This MVC approach uses an attribute that can be applied at the action, controller, and
application level: the HandleError attribute.

When applying the HandleError attribute you have the option to set the different properties shown
in Table 17-3.

TABLE 17-3: HandleError Properties

PROPERTY DESCRIPTION

ExceptionType Defi nes the type of exception to which the attribute should be applied. If the
value isn’t set, then the attribute defaults to be set to handle the base class
Exception.

Master Defi nes the master view for displaying exception information

View Defi nes the page view that will be used for displaying the exception

628 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 628

Adding a HandleError attribute to a controller looks something like the following:

[HandleError(ExceptionType=typeof(NullReferenceException),
 View="NullReferenceView")]
[HandleError(View = "ExceptionView")]
public class ItemController : Controller

The preceding snippet defi nes two different views that are responsible for displaying your error mes-
sage. These error views are expected to be in the Views\Shared directory and look like all the other
views, except there is no matching controller because the error framework acts as a controller in this
case; that’s why the HandleError attribute also allows you to set the Master page property.

You have seen how to add the attribute to a controller, but you can also add the attribute so that it
covers the entire application. This is a bit more work, as you have to make a couple of changes at the
core of the application. First, you need to add a new class that will add the HandleError attribute as
a fi lter. This class is shown here:

public class FilterConfig
{
 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 }
}

Once you have created the class that manages registration of the fi lter (MVC attributes are also
called fi lters), you have to wire this into the application. You do this in the Global.asax class by
adding a line (highlighted below) to the Application_Start method:

void Application_Start(object sender, EventArgs e)
{
 // Code that runs on application startup
 AreaRegistration.RegisterAllAreas();
 FilterConfig.RegisterGlobalFilters(GlobalConfiguration.Configuration);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
}

When you are considering using the HandleError attribute, you should be aware of a few limita-
tions. The fi rst is that the error won’t be logged anywhere, as there is no code that is handling the
exception. Second, exceptions raised outside of controllers, such as within a view, are not handled.
Third, 404 errors are not handled, so if you want Page Not Found errors to be handled, you still
need to use the customErrors method covered in the previous section.

The MVC approach offers less support out of the box than the customErrors approach. What it
does offer is customizability. ASP.NET Web Forms took an approach whereby it would try to pro-
vide everything that the user would need. It opted for functionality over customizability. ASP
.NET MVC chose the other route. In MVC you can replace or extend the HandleError attribute.

The Basics of Debugging ❘ 629

c17.indd 12/18/2015 Page 629

Therefore, you can write code that enables you to solve some of the limitations, such as interacting
with the exception.

You have been introduced to several different approaches to creating and catching exceptions. The
next section describes how you can manage interacting with these exceptions, and your code in gen-
eral, as it is running, as many times as you need to see the problem in action before you understand
how to fi x it.

THE BASICS OF DEBUGGING

Debugging is the process of fi nding problems in your code and fi xing them. These problems can
be caused by many different things, and determining the root cause can sometimes be a challenge.
Many times you have to trace the execution of your program to watch what is happening to the data
so that you can determine what is actually causing the error.

Luckily, Visual Studio provides a lot of different tools that are designed to give you insight into the
fl ow of your application. You have seen how you can use breakpoints to stop the fl ow of your appli-
cation, giving you access to the state of the various objects in the system. You can add these any-
where and you can evaluate the status of almost any kind of object. You can stop at a point in the
application and then go through it line by line to watch how information changes on each line.

Tools Support for Debugging
In Visual Studio there are many different ways to see the values of the various objects within your
application. Not only can you see the values, you also have multiple ways to move through the code
as your application executes. The fi rst thing you will do is examine the various ways that you can
move through the execution of your application.

Moving Around in Debugged Code
Before you can move through your code, you have to consider how you enter it. You always have
the option to run your application without debugging (Ctrl+F5), but if you are going to run in debug
mode there are several different ways that you can start. One is the way that you have started up
until this point, using F5, or Start. This enables you to run in debug mode. Running in debug mode
enables you to add breakpoints, stopping the code at any point during its processing; and it will take
you directly to any unhandled exception when it is thrown.

Once you have stopped the execution fl ow with a breakpoint you can restart the code execution.
You can use F5 to restart the application, which allows the program to execute until it hits the next
breakpoint. You can also select F11 to restart the application and then step to the next line of code
that is executing. This process, going from one line to the next line of executing code, is called step-
ping through. Table 17-4 describes several other combinations of keystrokes that help you move
around once program execution has been paused.

630 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 630

TABLE 17-4: Keystrokes That Support Debugging

KEYS DESCRIPTION

F5 Starts the application in debug mode. If code execution is stopped, F5 will restart
execution and allow it to run until the next breakpoint is hit or execution has
completed.

F11 Starts the application in debug mode. If code execution is stopped, such as at a
breakpoint, then F11 restarts execution, runs the next line of code, and then pauses
again as if it had hit a breakpoint. If you select F11 on a method call you are taken
into the method, where you can continue to step through execution.

F10 Starts the application in debug mode. When code execution is stopped, F10 restarts
execution, runs the next line of code, and then pauses again as if it had hit a break-
point. F10 differs from F11 in that if you select it on a method call, the execution fl ow
does not go into the method; instead, it continues to the line after the method call.
It does not allow you to trace into the method.

Shift + F11 This combination of keys enables you to complete the execution within your cur-
rent code block. It is generally used after you have used the F11 key to enter into a
method and determined that you do not need to continue through the processing
within that method. Using this combination of keystrokes enables you to move to the
next line after the call that took you into that code block.

Shift + F5 Stops debugging and closes the browser window

Ctrl + Shift
+ F5

This combination of keys stops debugging, closes the browser window, and restarts
debugging.

F9 Toggles breakpoints on and off. If you are doing this while running in debug mode,
you can only do it when execution is stopped. This means that you are either turning
it off once you get to a breakpoint or you are turning it on once you have stepped
into a line of code. You can also perform this when the application is not running to
toggle a breakpoint on the line of code that has focus.

Ctrl + Shift
+ F9

Deletes all the breakpoints. You have to confi rm that you want to take this action.
You can do this just as you would with F9, either while the application is running and
execution has stopped, or simply when in the IDE.

You can manage movement through the code using the keystrokes shown in Table 17-4 or through
buttons on the Debugging toolbar (see Figure 17-11.)

Stop Step-Into Step-Out

Pause

Step-OverRestart

FIGURE 17-11: Debugging toolbar

The Basics of Debugging ❘ 631

c17.indd 12/18/2015 Page 631

The Debugging toolbar should be displayed in your Visual Studio toolbars when in debug mode.
If it isn’t, you can right-click an existing menu item and ensure that Debug is checked, as shown in
Figure 17-12.

FIGURE 17-12: Debugging toolbar

Understanding how to move through the code when in debugging mode is the fi rst part of being able
to understand what is going on with your application. The next is accessing the information so that
you can analyze it. You have seen how you can move your mouse over an object when execution has
stopped and then drill down into that object and its assigned values. This is effective, but it can be
a little awkward, especially if you want to do something such as compare values in different objects.
Fortunately, Visual Studio provides different forms of support to help you get the information
you need.

Debugging Windows
Visual Studio has various windows that are designed to support debugging. The fi rst set is related
to monitoring the values of different variables within your code. The following sections look at
those fi rst.

Watch Windows
The most important and fl exible debugging window is the Watch window. A Watch window enables
you to enter one or more variables and monitor the values of the variable. You can open the Watch
window when execution is stopped by selecting Debug ➪ Windows ➪ Watch. Note that there are
multiple Watch windows, as shown in Figure 17-13.

632 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 632

FIGURE 17-13: Watch windows

A Watch window is a simple grid with three column headings: Name, Value, and Type. Using the
Watch window is simple: Double-click into the grid and type the names of the variable(s) that you
want to watch into the Name column, and the Value and Type column will populate as appropri-
ate. As the program execution continues, you can watch the values change in the Watch window.
Figure 17-14 shows the Watch window in use while running through the default page of the sample
application.

Three different values are being watched in this fi gure: ViewBag.PageSize, ViewBag.PageNumber,
and items.Count(). You can see that execution is paused on line 28, and the value for each of the
items listed in the Name section has a value displayed. You can also perform calculations in the win-
dow, so content in that column is calculated and the values displayed:

items.Count() * ViewBag.PageSize

Although you can do some calculations in the Watch window, you cannot do everything. Things
such as LINQ statements will not be run, nor will some of the different casting approaches.
However, most other calculations can be performed and their answer displayed.

Autos Window
Another window that supports debugging is the Autos window. It is available in the same area of
the menu as the Watch window and offers some of the same functionality. The display of the Autos
window is the same as the Watch window too, a grid with three columns. The primary difference
is whereas the Watch window requires you to enter the variables that you want to watch, the Autos
window simply displays all the active variables (see Figure 17-15).

The Basics of Debugging ❘ 633

c17.indd 12/18/2015 Page 633

FIGURE 17-14: Working Watch window

FIGURE 17-15: Working Autos window

634 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 634

Here you can see the ViewBag, the variable named items, and a variable named this. The ViewBag
and the items are the same as what you saw in the Watch window, but the “this” value is different.
Figure 17-16 shows this variable when fully expanded.

FIGURE 17-16: Expanded this variable in the Autos window

The “this” keyword is a synonym for the overall class that is being handled, in this case a
controller. You can view any property of the controller, including values in the base Controller
class such as the User and even the HttpContext.

In short, the Watch window enables you to select which variables you want to watch, whereas the
Autos window gives you access to all the values that are currently available in the area where the
execution is paused.

Locals Window
The Locals window is like the Autos window in that the items displayed are automatically deter-
mined by the window. However, the scope of the variables selected is different in that only those
variables that are in scope at the point of the paused execution are visible, as shown in Figure 17-17.

The Locals window shows the variables that were passed into the method, whereas the Autos win-
dow doesn’t. The ViewBag isn’t locally scoped (defi ned within the current method), which is why
you don’t see it listed by name. You can still get to the values within the ViewBag, however, because
they are contained within the this keyword, which like the Autos window contains all the proper-
ties available for use by the line where execution is paused.

Other Windows
In addition to the variable monitoring windows, there are other windows available to help support
your debugging requirements.

Breakpoint Window
The Breakpoint window displays all of the breakpoints that you have set throughout the application,
as shown in Figure 17-18.

The Basics of Debugging ❘ 635

c17.indd 12/18/2015 Page 635

FIGURE 17-17: Working Locals window

FIGURE 17-18: Working Breakpoint window

636 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 636

It contains the page and line information as well as any condition that has been set for a breakpoint,
and the amount of times that breakpoint has been hit during the current phase of execution.

You have seen how you can set a regular breakpoint, but you can also add a condition. A condition
is a rule (or set of rules) that determines when the breakpoint will stop the execution of the applica-
tion. The default behavior is for execution to stop every time the application hits that breakpoint,
but using a condition you can specify when to break, such as only when the value of a variable
exceeds a set amount. You can add conditions to a breakpoint by right-clicking on it and selecting
“Conditions.” You can also add a condition by right-clicking on the breakpoint from the Breakpoint
window. The Conditions selection window is shown in Figure 17-19.

FIGURE 17-19: Window for selecting a condition

In this case, a condition is set for the breakpoint recentItems.Count > 2. As shown in the fi gure,
recentItems is the result set from a database query, so the condition displayed ensures that the
execution will break only when there are more than two items in the returned list.

Call Stack Window
Whereas the Breakpoint window gives you a view into the places where you are set to stop the appli-
cation’s execution, the Call Stack window gives you a view into the call stack for the line of code at
which you are paused. As you move through the application, you can easily get back to the parent call-
ing method simply by double-clicking on the base item in the call stack list, as shown in Figure 17-20.

Immediate Window
Another window that is extremely useful during the debug process is the Immediate window. The
Immediate window differs from the other windows that you have seen in this section in that it does
more than simply display information about variables available when debugging; it also enables you
to execute code. Figure 17-21 shows two different approaches—in the fi rst, a method was run, and
in the second, details about a current variable are displayed.

The Basics of Debugging ❘ 637

c17.indd 12/18/2015 Page 637

FIGURE 17-20: Using the Call Stack window

FIGURE 17-21: Using the Immediate window

The key to working in the Immediate window is the ? character, which tells the system to write the
results out. The fi rst line of the Immediate window is ? Details(3), where the ? tells the window
to output the results to itself. The window then runs the Details method of the controller, passing
in the value of 3. The results of the method are shown below that line.

The next instance of the ? is with ? userId, where the window outputs the value of the variable
named userId. You can also do work with those values, such as use the command below, which
would return false to the Immediate window:

? userId == Guid.Empty

You can do many more things with the Immediate window. For more information about its func-
tionality, go to https://msdn.microsoft.com/en-us/library/f177hahy.aspx.

https://msdn.microsoft.com/en-us/library/f177hahy.aspx

638 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 638

Debugging Client-Side Script
You have spent some time debugging server-side code so that you can get an understanding of
the code that is processed on the server to create the HTML and other content sent to the user’s
browser. However, this debugging functionality that you have seen so far seems to end once the
content has been sent to the client. Fortunately, you can perform additional debugging of JavaScript
running on the client side using many of the same tools that you have just worked with.

This means that you can add breakpoints in JavaScript. If you are using inline JavaScript, you
can do this simply by putting a breakpoint onto the line of JavaScript code on that page that
you want to debug. If you want to debug JavaScript code that you wrote, such as the methods in
MainPageManagement.js, you can just add a breakpoint as you did in the C# code. In the following
Try It Out activity, you’re going to be given some error-causing code and walk through the process
of fi nding and resolving the issue.

TRY IT OUT Debugging Faulty Code

In this exercise you will use the debugging that you just reviewed as you fi nish your sample applica-
tion by completing the order process. As part of this effort you are given code that causes some kind of
error. You will then walk through the code, tracking the error and fi xing the problem. Some of the win-
dows that were just described are used as part of this process. A lot of changes will be coming in, with
extra steps to walk through the debugging process, so make sure you have plenty of time!

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open.

 2. Open Controllers\ShoppingCartController.cs and fi nd the Checkout method. Replace the content
with the following:

Guid UserID = UserHelper.GetUserId();
ViewBag.ApplicationUser = UserHelper.GetApplicationUser();
ViewBag.AmCheckingOut = true;
using (RentMyWroxContext context = new RentMyWroxContext())
{
 var shoppingCartItems = context.ShoppingCarts
 .Where(x => x.UserId == UserID);
 Order newOrder = new Order
 {
 OrderDate = DateTime.Now,
 PickupDate = DateTime.Now.Date,
 UserId = UserID,
 OrderDetails = new List<OrderDetail>()
 };
 foreach (var item in shoppingCartItems)
 {
 OrderDetail od = new OrderDetail
 {
 Item = item.Item,
 PricePaidEach = item.Item.Cost,
 Quantity = item.Quantity
 };
 newOrder.OrderDetails.Add(od);
 }
 return View("Details", newOrder);
}

The Basics of Debugging ❘ 639

c17.indd 12/18/2015 Page 639

 3. Right-click the Views\ShoppingCart directory and add a new view. Name it Details, use the Empty
(without Model) template, and make it a Partial View.

 4. Add the following content to the new page you just created:

@model RentMyWrox.Models.Order
@{
 RentMyWrox.Models.ApplicationUser au = ViewBag.ApplicationUser;
}
<h1>Checkout</h1>
@using (Html.BeginForm())
{
 <div>@au.FirstName @au.LastName</div>
 <div>@Html.DisplayFor(user => au.Address)</div>

 Enter your pickup date: @Html.EditorFor(model => model.PickupDate)

 <table class="table" width="600">
 <tr>
 <th>Quantity</th>
 <th>Name</th>
 <th>Price</th>
 </tr>
 @foreach (var item in Model.OrderDetails) {
 <tr>
 <td align="center">
 <input type="text" value="@item.Quantity"
 id="@item.Item.Id" name="@item.Item.Id"
 style="width:25px"/>
 </td>
 <td>@Html.DisplayFor(modelItem => item.Item.Name)</td>
 <td align="right">@item.PricePaidEach.ToString("C")</td>
 </tr>
 }
 </table>
 <p><input type="submit" value="Complete Order" class="btn btn-default" /> </p>
}

 5. Right-click the Views\Shared\DisplayTemplates directory and add a new view. Name it Address,
use the Empty (without Model) template, and make it a Partial View.

 6. Add the following content to the new page you just created:

@model RentMyWrox.Models.Address
<div>
 @Model.Address1
</div>
<div>
 @Model.Address2
</div>
<div>
 @Model.City, @Model.State @Model.ZipCode
</div>

 7. Open the Views\Shared_MVCLayout.cshtml fi le. Add the following code directly under the
@Model defi nition. It should look like Figure 17-22 when completed.

mailto:@Html.EditorFor
mailto:value="@item.Quantity
mailto:id="@item.Item.Id
mailto:name="@item.Item.Id
mailto:@Model.Address1
mailto:@Model.Address2
mailto:@Model.City
mailto:@Model.State
mailto:@Model.ZipCode

640 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 640

@{
 bool userIsCheckingOut = ViewBag.AmCheckingOut == null ? false
 : ViewBag.AmCheckingOut;
}

FIGURE 17-22: _MVCLayout content

 8. Find the div element with an id of "header". Wrap the span with the id of "shoppingcart
summary" by adding the highlighted text shown here:

@if (!userIsCheckingOut)
{

 @Html.Action("Index", "ShoppingCart")
}

 Do the same in the div element with the id of "section" for the unnamed span. It should look
like Figure 17-23 when completed.

FIGURE 17-23: Addition of checks

mailto:@Html.Action

The Basics of Debugging ❘ 641

c17.indd 12/18/2015 Page 641

 9. Run the application. Log in, ensure that you have items in your shopping cart, and select the
Checkout link. You should get the exception shown in Figure 17-24.

FIGURE 17-24: Error thrown when checking out

 10. Open the Debug ➪ Windows ➪ Locals window. Expand the shoppingCartItems and Results view
(see Figure 17-25).

FIGURE 17-25: Locals window when stopped by error

642 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 642

 11. Go back into ShoppingCartController and fi nd the code that is accessing the database. Update it as
shown here:

var shoppingCartItems = context.ShoppingCarts
 .Include("Item")
 .Where(x => x.UserId == UserID);

 12. Run the application.

 13. Log in, ensure that you have items in your shopping cart, and select the Checkout link. You should
get a screen similar to that shown in Figure 17-26.

FIGURE 17-26: Successful Checkout window

 14. Stop the application. While still in the ShoppingCartController, add the following action:

[Authorize]
[HttpPost]
public ActionResult Checkout(Order order)
{
 Guid UserID = UserHelper.GetUserId();
 ViewBag.ApplicationUser = UserHelper.GetApplicationUser();
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var shoppingCartItems = context.ShoppingCarts
 .Include("Item")
 .Where(x => x.UserId == UserID);
 order.OrderDetails = new List<OrderDetail>();
 order.UserId = UserID;
 order.OrderDate = DateTime.Now;
 foreach (var item in shoppingCartItems)
 {
 int quantity = 0;
 int.TryParse(Request.Form.Get(item.Id.ToString()),
 out quantity);
 if (quantity > 0)
 {
 OrderDetail od = new OrderDetail
 {
 Item = item.Item,
 PricePaidEach = item.Item.Cost,
 Quantity = quantity
 };

The Basics of Debugging ❘ 643

c17.indd 12/18/2015 Page 643

 order.OrderDetails.Add(od);
 }
 }
 order = context.Orders.Add(order);
 context.ShoppingCarts.RemoveRange(shoppingCartItems);
 context.SaveChanges();
 return RedirectToAction("Details", "Order",
 new { id = order.Id });
 }
}

 15. Add a breakpoint at the highlighted line in the preceding snippet.

 16. Run the application.

 17. Log in, ensure that you have items in your shopping cart, and select the Checkout link. Click the
Complete Order button. Execution should stop at the breakpoint you just added.

 18. Open the Debug ➪ Windows ➪ Autos window (see Figure 17-27).

FIGURE 17-27: Autos window

 19. Expand the order and order.OrderDetails areas. You can see values populated as expected in
the order, but note that order.OrderDetails has 0 items listed (see Figure 17-28).

FIGURE 17-28: Autos window with details displayed

644 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 644

 20. Update the method that you just added, replacing the following code:

OLD

int.TryParse(Request.Form.Get(item.Id.ToString()), out quantity);

NEW

int.TryParse(Request.Form.Get(item.Item.Id.ToString()), out quantity);

 21. Run the application.

 22. Log in, ensure that you have items in your shopping cart, and select the Checkout link. Click the
Complete Order button. Execution should stop again at the breakpoint.

 23. Hover your mouse over the order object on that line, and expand the dropdown. You should be
able to see that there are now items in the OrderDetails property.

 24. Stop the application. Right-click on the Controllers directory and add a new controller, MVC 5
Controller - Empty, named OrderController.

 25. Add the following method to this new controller:

public ActionResult Details(int id)
{
 Guid UserID = UserHelper.GetUserId();
 ViewBag.ApplicationUser = UserHelper.GetApplicationUser();
 using (RentMyWroxContext context = new RentMyWroxContext())
 {
 var order = context.Orders
 .Include(p => p.OrderDetails.Select(c => c.Item))
 .FirstOrDefault(x => x.Id == id && x.UserId == UserID);
 return View(order);
 }
}

 26. Right-click on the Views\Order directory and add a new view. Name it Details, use the Empty
(without Model) template, and make it a Partial View.

 27. Add the following to the new view:

@model RentMyWrox.Models.Order
@{
 RentMyWrox.Models.ApplicationUser au = ViewBag.ApplicationUser;
}
<div>
 <h4>Order #@Model.Id</h4>
 <hr />
 <div>@au.FirstName @au.LastName</div>
 <div>@Html.DisplayFor(user => au.Address)</div>

 <div>

 @Html.DisplayNameFor(model => model.OrderDate)

 @Html.DisplayFor(model => model.OrderDate)

 </div>
 <div>

mailto:@Html.DisplayNameFor
mailto:@Html.DisplayFor

The Basics of Debugging ❘ 645

c17.indd 12/18/2015 Page 645

 @Html.DisplayNameFor(model => model.PickupDate)

 @Html.DisplayFor(model => model.PickupDate)

 </div>

<table class="table" width="600">
 <tr>
 <th>Quantity</th>
 <th>Name</th>
 <th>Price</th>
 </tr>
 @foreach (var item in Model.OrderDetails)
 {
 <tr>
 <td align="center">
 @Html.DisplayFor(modelItem => item.Quantity)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Item.Name)
 </td>
 <td align="right">
 @item.PricePaidEach.ToString("C")
 </td>
 </tr>
 }
</table>

 28. Run the application and complete the order process. You should get a screen similar to the one
shown in Figure 17-29.

FIGURE 17-29: Completed order detail screen

mailto:@Html.DisplayNameFor
mailto:@Html.DisplayFor
mailto:@Html.DisplayFor
mailto:@Html.DisplayFor
mailto:@item.PricePaidEach.ToString

646 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 646

How It Works

The fi rst set of changes that you added to the application were related to displaying the screen to man-
age the checkout process. In the Checkout method you created a new Order object and copied the
ShoppingCartItems to the OrderDetails of the new order. You also added a couple of items to the
ViewBag.

The fi rst part of the addition to the ViewBag was adding a Boolean value, AmCheckingOut. This tells
the views that it is in “checkout mode.” The other change you made, to the Checkout method, was
adding the ApplicationUser to the ViewBag. You did this so that the name and address information
would be available for display in the UI.

You made a couple of different changes to the existing layout page to take advantage of the
AmCheckingOut value in the ViewBag. Because you only wanted to manage this special condition in a
few places (during the checkout process) you had to add some code to the view that enables it to handle
when a ViewBag value is not present, as shown here:

bool userIsCheckingOut = ViewBag.AmCheckingOut == null
 ? false
 : ViewBag.AmCheckingOut;

The only time this value is added to the ViewBag is when the special considerations need to be made, so
the absence of the value is defi ned as false so that there is no change in the UI.

Another UI change that you made was adding a display template to manage the display of the address.
You did this the same way that you created the previous shared templates, by creating a view in the cor-
rect directory with the same name as the type being displayed.

Once you ran the application after the initial changes it threw an exception. This is one of the excep-
tions that you do not want to catch; instead, you want to know that it occurred so you can resolve it.
As soon as the exception was thrown, you were able to see that it was a NullReferenceException,
and where in the code it happened. Unfortunately, however, it could have been multiple items in that
area of code because it is a compound constructor. That’s why you opened the Locals window, which
gives you access to all the local variables.

As you go through the Locals window, you are looking for something that has a null value but
shouldn’t. In addition, this object has one of the properties being called. The section of code that threw
the exception is shown here:

OrderDetail od = new OrderDetail
{
 Item = item.Item,
 PricePaidEach = item.Item.Cost,
 Quantity = item.Quantity
};

You know that a property had to be called, so the problem is that either item or item.Item is null.
After expanding the shoppingCartItems you can see that there are items in the list, so you know that
the item is not null. This leaves the item.Item, which is indeed shown with a null value. That’s the
problem you fi xed by adding the Include statement in the database query.

Tracing Your ASP.NET Web Pages ❘ 647

c17.indd 12/18/2015 Page 647

Once you got the UI working to display the checkout screen, the next action that you added was sup-
porting the submission from that checkout screen. This action takes the order that is returned and
converts it into an order that is persisted to the database. However, as the Autos window showed, there
was a problem with the initial set of code; you were able to see that the OrderDetails property did
not have any items. The problem was that all of the quantities were coming through as 0, so the items
were not being added to the list. Knowing that the quantities were present in the UI, you would look at
how the quantity is being determined. The problem was that the attempt to get the quantity was look-
ing for the incorrect Id; it was using a value that didn’t match the value used in the UI (where the view
was defi ned using the Id of the Item to create the name of the textbox). After you fi xed that the system
populated the order correctly.

The last parts of the application that you worked on were the order controller and the order confi rma-
tion view that will be used to display the details for an order. The selection of the order to send to the
view is no different from any of the other actions that you have created—with one exception. This
exception is shown here:

var order = context.Orders
 .Include(p => p.OrderDetails.Select(c => c.Item))
 .FirstOrDefault(x => x.Id == id && x.UserId == UserID);

The use of the Include is different from anything that you have used before. That’s because this is the
fi rst time you have needed to use a grandchild object. A grandchild object is an object, in this case an
Order, that has a child, the OrderDetail, which has its own child, in this case an Item. The previ-
ous approach to using the Include was different in that you identifi ed the child object to include by
passing in a string value that matched the name of the property to include. In this case, because you
also wanted to include the grandchild, you needed to use a different Include, one that enabled you to
include both the child, p.OrderDetails as defi ned in the preceding code, and its child, added by using
the Select method and defi ning the Item property.

Using debugging while writing your code is invaluable. Unfortunately, it doesn’t provide any support
when running the code independently of your Visual Studio debugger. In the next section you will
learn how to capture error information in the running application regardless of its environment.

TRACING YOUR ASP.NET WEB PAGES

Tracing is the ability to get information output about the running of an application and is built
into ASP.NET, and it provides a lot of support for understanding how your application is behaving
while running. In addition, because it is built into ASP.NET, it does not require any special coding
to access the information. When you enable tracing, you ensure that the system captures informa-
tion about the complete processing of each request. The default items that are displayed in a trace’s
details are listed in Table 17-5.

648 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 648

TABLE 17-5: Sections Available in Trace Output

TRACE SECTION DESCRIPTION

Request Details Displays general information about the current request and response. Some
of the interesting information displayed in this section includes the time of the
request, the request type, such as GET or POST, and the returned Status Code.

Trace
Information

Displays the fl ow of page-level events. If you have created custom trace mes-
sages (next section), the messages are displayed here as well.

Control Tree Displays information about ASP.NET server controls that are created in the
page. This section is only fi lled by ASP.NET Web Forms pages and controls.

Session State Displays information about values stored in session state, if any.

Application State Contains information about values stored in application state, if any. Application
state is a data repository available to all classes in an ASP.NET application.
Application state is stored in memory on the server and is faster than storing and
retrieving information in a database. Unlike session state, which is specifi c to a
single user session, application state applies to all users and sessions. Therefore,
application state is a useful place to store small amounts of often used data that
does not change from one user to another. You did not do anything that uses
application state.

Request Cookies
Collection

Displays the cookie information that was sent from the browser to the server.
You used Request Cookies to hold the temporary user information, so you
should see those values listed in this section.

Response
Cookies
Collection

Displays the cookie information that was returned from the server to the client

Headers
Collection

Displays information about request and response message header name/value
pairs, which provide information about the message body or requested resource

Form Collection Displays name/value pairs that show the form element values (control values)
submitted in a request during a POST operation. You need to be very careful
with this because all information is visible, including values that may have been
entered into a Password box.

Querystring
Collection

The values that are passed in the URL. In a URL, query string information is sepa-
rated from the path information by a question mark (?); multiple query string
elements are separated by an ampersand (&). Query string name/value pairs are
separated by an equals sign (=).

Server Variables Displays a collection of server-related environment variables and request header
information. This includes the requested URL, information about where the
request came from, local directories, and so on.

Tracing Your ASP.NET Web Pages ❘ 649

c17.indd 12/18/2015 Page 649

Before you can access any of this information, you need to enable tracing. You do this by adding a
confi guration item into the system.web element within the web.config fi le.

A common version of this confi guration is shown here:

<trace mostRecent="true" enabled="true" requestLimit="100"
 pageOutput="false" localOnly="true" />

The available confi guration attributes are listed in Table 17-6.

TABLE 17-6: Trace Confi guration Attributes

ATTRIBUTE DESCRIPTION

Enabled You can set this to true or false and it enables tracing across the entire applica-
tion. To override this setting for individual pages, set the Trace attribute in the
@Page directive of a page to true or false.

PageOutput When PageOutput is true, trace information is put at the bottom of every page
sent to the browser. Trace information is also available from the trace viewer.
When this value is false, the trace information is available only on the trace
viewer.

RequestLimit A value specifying the number of trace requests to store on the server. The
default is 10.

TraceMode The order in which trace information is displayed. Set to SortByTime, the
default value, to sort by the order in which information was processed. Set to
SortByCategory to sort alphabetically by a user-defi ned category.

LocalOnly Makes the trace viewer available only when being called from a browser on the
host Web server. The default value is true.

MostRecent Specifi es whether to display the most recent trace information as tracing output.
When the RequestLimit is exceeded, then detail is discarded. If this value is set
to false, the newest data will be discarded.

You will be able to see this trace information at an address that became available once tracing was
enabled, Trace.axd. Figure 17-30 shows this initial page.

FIGURE 17-30: Trace listing page

650 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 650

This shows you the list of requests that have been traced. The list is refreshed every time the server
is restarted, so accessing traces from previous runs is not possible. The list only displays the list
of requests, but it provides access to the trace details from the link on the right side of the page.
Clicking one of these links gives you the trace details, as shown in Figure 17-31.

FIGURE 17-31: Trace details page

Adding tracing to your application enables you to gather information about its behavior as it is
being used. However, while the default information can provide some interesting information, add-
ing custom information makes tracing even more effective.

Adding Your Own Information to the Trace
Every application that uses ASP.NET has different requirements, which means that each of them has
different items that could be important. This is why you have the capability to add information to
the trace.

Adding custom information to the trace requires two different steps: adding additional confi gura-
tion, and adding additional code to support the trace, because although you don’t need to add any
additional code to support a default trace, you do need to add the calls to tell the tracing engine
what custom information you want added to the trace and when the trace should occur.

Tracing Your ASP.NET Web Pages ❘ 651

c17.indd 12/18/2015 Page 651

Adding confi guration requires adding one more confi guration value to the system.diagnos-
tics element. In the system.diagnostics element of the web.config fi le you need to confi gure a
listener:

<trace>
 <listeners>
 <add name="WebPageTraceListener"
 type="System.Web.WebPageTraceListener, System.Web,
 Version=2.0.3600.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"/>
 </listeners>
</trace>

Once you have added the listener, you have to add the code to add the additional information to
the trace. The primary approach is using the System.Diagnostics.Trace class. The methods are
shown in Table 17-7.

TABLE 17-7: Trace Methods

METHOD DESCRIPTION

TraceError Writes an informational message to the trace. If this method is used the
message is displayed in red.

TraceInformation Writes an informational message to the trace

TraceWarning Writes an informational message to the trace. If this method is used the
message is displayed in red.

Write Writes an informational message to the trace

WriteIf Writes an informational message to the trace if a specifi c condition is met

WriteLine Writes an informational message to the trace

In the next Try It Out activity you enable tracing in your application, and make some changes to
include custom trace information.

TRY IT OUT Confi guring Tracing in Your Application

In this activity you will confi gure tracing in your application and add some custom debugging
information.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Open the
web.config fi le.

 2. Insert the following line in your system.web element (see Figure 17-32).

<trace mostRecent="true" enabled="true" requestLimit="1000"
 pageOutput="false" localOnly="true" />

652 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 652

FIGURE 17-32: Web.confi g fi le after enabling trace

 3. Run the application. Click through a couple of pages in the site to build up some history. After a
few clicks, go to \Trace.axd. You should see a trace list.

 4. Click into one of the detail pages by selecting the View Details link at the far right of each row.

 5. Stop debugging.

 6. Add the following element after the closing tag for system.web. It should look like Figure 17-33
when completed.

<system.diagnostics>
 <trace>
 <listeners>
 <add name="WebPageTraceListener"
 type="System.Web.WebPageTraceListener, System.Web,
 Version=2.0.3600.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"/>
 </listeners>
 </trace>
</system.diagnostics>

 7. Open your Global.asax fi le. Add the following lines in the Application_Error method, after
you defi ne the myException object:

Trace.TraceError(myException.Message);
Trace.TraceError(myException.StackTrace);

 8. Run your application. Go to Order\Details. You should be taken to your error page. If so, go to
\Trace.axd.

 9. Click the View Details link where the fi le column has the value of “order/details.” You should see
a page similar to Figure 17-34 where you see the stacktrace from an error displayed in the body of
the trace.

Tracing Your ASP.NET Web Pages ❘ 653

c17.indd 12/18/2015 Page 653

FIGURE 17-33: Web.confi g fi le after enabling listeners

FIGURE 17-34: Trace details page with error

654 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 654

How It Works

You added the confi guration necessary to support both default trace and custom trace information. You
set it up so that it would automatically be on, and that the system stores the 1,000 most recent traces.
You then added the confi guration that sets up the trace listener so that you could write code that would
write to the trace system.

Once the confi guration was completed, you added the trace to the global error handler that you set up
earlier in the chapter. By going to a page that would throw an exception (the Details action on the
Order controller requires an integer id parameter to be sent in the call), you were able to create a trace
that included the exception.

You made two different calls to write the trace. The fi rst was to send just the exception message to the
trace, and the second was to send the complete stack trace. Those two pieces of information should pro-
vide you with a good idea about where to look in order to understand any exceptions that may occur in
the production environment.

Tracing and Performance
As you might guess, tracing incurs some performance overhead, because extra work must happen on
the server to save this information. Therefore, it may not always be in your best interest to keep trac-
ing on all the time when you are running in a production environment. Typically, because tracing is
managed by confi guration, you can turn it on or off as needed.

In those instances where there are separate environments, such as development, test, and produc-
tion, tracing is usually turned on in both development and test because these environments are
designed to have problems—mainly so that there are no problems left when your application gets to
production!

LOGGING

Tracing is an excellent tool to get real-time information about what is going on in your application.
However, it has some fl aws in that it only keeps a limited number of requests; and, probably even
worse, the request list is kept only for the lifetime of the running web site. Fortunately, there is an
easy way to extend this functionality: logging.

In its most simple defi nition, logging is the capability to maintain data about or from your applica-
tion. This data is different from the information necessary in the running of your application, as it
generally contains data about what is going on inside your application. This data can be stored as
text in local fi le storage, in a database, by calling a remote web service, or a variety of different ways
that enable you to store and consume this kind of information.

Logging ❘ 655

c17.indd 12/18/2015 Page 655

There is no .NET built-in facility for creating logs, but a plethora of third-party tools are available.
In this section you will be working with one of those third-party tools, an open-source tool called
nLog.

nLog provides a lot of different functionality, but the only part of it that you will be working with at
this point is its text logging capability. For more information about the complete set of functionality,
visit http://www.nlog-project.org.

Downloading, Installing, and Confi guring a Logger
Adding logging to your application is made easy through the use of NuGet packages, which enable
you to integrate additional functionality. The logging system you will be integrating, nLog, is a
single library fi le that NuGet automatically makes available within your application. In this next Try
It Out you will install, confi gure, and implement logging within the sample application.

TRY IT OUT Adding nLog to Your Application

The following steps will add logging to your sample application so that you have long-term storage of
activity going on within it.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open.

 2. In the Solution Explorer, right-click the project and select Manage NuGet Packages.

 3. Search for nLog. You will get a result set with the top item being nLog. Select this top result and
click the Install button.

 4. Accept any licensing screens that appear.

 5. Open your web.config fi le. Find the configSections element contained in the confi guration
node. Add the following code within that node:

<section name="nlog" type="NLog.Config.ConfigSectionHandler, NLog"/>

 6. Immediately below the closing confi gSections, add the following code. When completed, your con-
fi guration should be similar to Figure 17-35.

<nlog xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <targets>
 <target name="logfile" xsi:type="File" fileName="${basedir}/Logs/log.log"
 layout="${longdate} ${message}
 Trace: ${stacktrace}" />
 </targets>
 <rules>
 <logger name="*" minlevel="Info" writeTo="logfile" />
 </rules>
</nlog>

http://www.nlog-project.org
http://www.w3.org/2001/XMLSchema-instance

656 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 656

FIGURE 17-35: Confi guration for logging

 7. Open the global.asax fi le. Add the following code within the Application_Error message,
underneath the trace lines:

ILogger logger = LogManager.GetCurrentClassLogger();
logger.Error(myException, myException.Message);

 8. Right-click the project solution, select Add ➪ New Folder, and name it Logs.

 9. Run the application. Go to \Order\Details (to cause an error).

 10. Open your Logs directory by right-clicking the folder and selecting Open Folder in File Explorer.
You should see a fi le named Log.txt.

 11. Open this fi le. The contents should look similar to Figure 17-36.

FIGURE 17-36: Log fi le content

How It Works

Integrating nLog into your ASP.NET MVC application is simple. The key task is ensuring that the
proper confi guration is added to your application. There are two different approaches for confi guring
nLog. The fi rst is by using a special nLog confi guration fi le that contains the confi guration items. The
second is by adding the confi guration to your web.config fi le. In this activity, you added it to your
web.config fi le so that you have only one place to manage confi guration of your application.

There are two parts to adding any special confi guration to the web.config fi le. The fi rst is adding the
configSection. By doing this you are telling the confi guration manager how to manage the confi gura-
tion section defi ned in the configSection, the second part of confi guration.

Logging ❘ 657

c17.indd 12/18/2015 Page 657

You need to set up two different items for nLog to work. The fi rst is the target. The target refers to how
the log information will be persisted. It defi nes the destination, the format, and how the log entry will
be written. In this case, you set it to be a text fi le that is saved in a named fi le. You could have set up a
target that would have saved the information into a database or made a call to a web service.

The second confi guration item for nLog is the rule. Whereas the target defi nes how the log entry will be
persisted, the rule defi nes what kind of log entries will be sent to which target. This is managed by the
minLevel attribute. Various values can be set here, each one relating directly to a specifi c error severity
level. The various log levels are described in Table 17-8.

TABLE 17-8: nLog Logging Levels

LEVEL DESCRIPTION

Fatal The highest level, it means that there is a serious problem such as system being down or
unavailable.

Error Application crashed or exception thrown

Warn Incorrect behavior but the application can continue. An example of this could be an
invalid URL was requested.

Info Any kind of interesting, but normal, information. This could include failed logins, new
users registering, and so on.

Debug Information that is useful when debugging your application. This could include anything,
such as values being passed into methods.

Trace A lower level than debug, perhaps including items such as times in and out of a method
to support performance logging.

Confi guring the log level is what provides a lot of customization because it enables you to determine
what kind of information is logged. You can put the minLevel to a low level when working in local,
development, or test, and ratchet it up so that only errors and above are logged in production.

Once you have logging confi gured, the last task is to add the actual logging calls. The code that you
used is shown again here:

ILogger logger = LogManager.GetCurrentClassLogger();
logger.Error(myException, myException.Message);

The fi rst line creates the logger itself. It is important to realize that you cannot create a new logger; you
have to instead use one of the factory methods. The GetCurrentClassLogger is recommended because
it gives you a specially constructed logger that confi gures itself based on the class that is calling the log-
ger. In this case (in the global exception handler) it may be unnecessary, but if you were going to add
logging anywhere else in your application this would be the appropriate method.

After the logger is created, the last thing you need to do is actually log the information. There is a
method for each of the logging levels. When logging the data, you need to determine the appropriate
logging level for that information. This is used to route the information to the appropriate target, if it
even needs to be routed based on the rule setting.

658 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 658

Logging enables you to maintain a record of what is going on within your application. This supports
your error management strategy by putting the error information in a place where you can use it to
determine causation. If there is a fl aw in your application, logging enables you to determine where
it occurs and the state of the data. This in turn enables you to fi x the problem, as every problem in
your application can lead to decreased user satisfaction, and potentially cause loss of revenue.

SUMMARY

Writing software is not a perfect art. As a developer, you will likely spend a lot of time tracking
down problems in software, whether you wrote it or someone else did. There are three different
types of errors that you will run into; syntax, runtime, and logic. Syntax errors are the easiest to
determine because they prevent the application from compiling and the compiling will give you
information about the problem.

Runtime errors cause exceptions to be thrown by the .NET framework. An exception is a notifi -
cation that an error has been detected. Rather than automatically crashing your code however, it
gives you an opportunity to interact with the problem through using the keywords try, catch, and
finally. The try keyword wraps around the code that may throw an exception, while the catch is
one or more code blocks that allow you to handle the exception.

Exceptions tend to give you information about the problem that occurred. The last kind of error is
much more subtle, the logic error. This error means that you wrote code that worked; it just didn’t
work as you were expecting it to. These errors are the hardest to fi nd. However, there are multiple
tools, windows, provided by Visual Studio that allow you to access and watch data as it fl ows
through your application. Between these windows and the debugger, you are able to monitor all of
the data in your application to understand where the issues come from.

All of this helps you manage problems during the development cycle; however, they do not do much
to help you if the application is not running in the debugger. There are a couple of additional tools
that will support those, tracing and logging.

Tracing is a process where you can have your web server remember information about the process-
ing that has occurred over the most recent count of requests. This processing is then available via a
web page so that you can examine what happened during that request. If you or some other user is
testing your application and experiences a problem you can simply look up the trace based on the
part of the application that they were visiting and the time of the error.

Logging is very similar to tracing, except you have to add code to write information to the logger.
The logger also supports writing information out to a physical fi le so that you review it at any point,
regardless of whether the server was restarted; tracing will lose its information if the web server is
restarted.

Summary ❘ 659

c17.indd 12/18/2015 Page 659

EXERCISES

 1. What is the problem with the following code snippet?

try
{
 // call the database for information
}
catch(Exception ex)
{
 // handle the exception
}
catch (ArgumentNullException ex)
{
 // handle the exception
}

 2. Can you use trace or logging to get an understanding of your application’s performance?

660 ❘ CHAPTER 17 EXCEPTION HANDLING, DEBUGGING, AND TRACING

c17.indd 12/18/2015 Page 660

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Call Stack A list of the working code elements. As each method calls another method,
that new method is added to the call stack. The primary responsibility of
the call stack is to return the executing code to a defi ned place, but it also
provides you with an understanding of the code fl ow during the debugging
process.

Custom Error
Pages

Custom error pages enable you to create pages that fi t the look and feel of
your web site, in this case to display errors to the user. You can make the
pages as specifi c or general as needed to best suit your needs.

Debugging The process of running through the execution of your code and determining if
it is providing the expected results

Debugging
Windows

Various windows provided with Visual Studio to help support your debugging
efforts. They are designed to give you access to the various variables and val-
ues that are being used within the executing code.

Exception A special .NET object that contains information about errors that have
occurred, including the type of error and where it happened. It can be caught
and dealt with or allowed to surface through the application as it goes up
through the stack until it is caught or the application stops working.

Global Error
Handling

An approach to error handling whereby it is handled in a single spot within the
application. This allows for a standard approach in a single place. However, it
can also allow for some lost context, as the actual calling point may no longer
be known.

HandleError
Attribute

A global error handling approach that is specifi c to ASP.NET MVC. You can
assign specifi c exceptions to specifi c approaches and handlers at the action
level, at the controller, or application-wide.

Logging The process of writing information about an application’s processing to a cen-
tral repository such as a database or a text fi le

Logic Error Occurs when the code builds and runs but is not getting the expected out-
come. It can range from something simple, such as using > rather than >=, to
very complex, depending on expected outcome.

Runtime Error Occurs when code compiles and runs, but at some point an exception is
thrown that can stop the application’s execution

Stacktrace The call stack, attached to a thrown exception. It shows the call stack as of the
method that threw the exception.

Tracing The process of keeping a running list of data about the activity within your
application. It is different from logging in that it is built into ASP.NET and cap-
tures the internal processing that is generally unreachable for logging.

Syntax Error An error in which the code is incorrect and thus can’t be compiled

c18.indd 12/18/2015 Page 661

Working with Source Control
WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What source control is and why you should use it

 ➤ Using Team Foundation Services as your source code repository
tool

 ➤ How to check in and check out code

 ➤ Merging and branching your source code

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wiley.com/go/
beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 18
download and individually named according to the names throughout the chapter.

Source control is aptly named, because it is the process of controlling the source code that
makes up your application. Source control is not about how you should name your fi les or
directories, but rather about how you can back up and version your code. Called develop-
ment operations, or DevOps, there is an entire discipline around this process, but this chapter
touches on only those aspects that directly impact a developer during the process of creating
and maintaining an application.

If you were going to build a business application, rather than a learning application as you are
doing here, you would have planned to use source control from the very beginning, especially
if multiple developers would be working on the project.

INTRODUCING TEAM FOUNDATION SERVICES

Team Foundation Services (TFS) is Microsoft’s source control product. It is available as a
server product for on-premises use, as well as being available as a cloud-based version called
Visual Studio Online. Both versions of the application can be used to manage multiple projects

18

http://www.wiley.com/go
http://www.wiley.com/go/beginningaspnetforvisualstudio

662 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 662

across multiple users. TFS is a complete Application Lifecycle Management (ALM) system, because
it can manage the tracking of requirements, tasks, and defects, as well as handle many other fea-
tures that help team members interact with one another. This system is quite powerful, but the only
part of this set of functionality you will be using is the source control. The other aspects of TFS are
considerably more function-rich than you need here and would take another book to describe!

Why Use Source Control
One of the primary features of source control is that it acts as a version management system for
your source code. Think of it as a way to back up all the source code fi les for your application. More
important, it gives you access to every version of your fi le. As you have likely already noticed, every
time you compile and run your web application, Visual Studio automatically saves any fi les that
you may have changed. This means that the previous version of your work is overwritten each
time you build your code. Once that happens, you no longer have a previous version of your code
unless you manually copied it elsewhere.

Perhaps the most obvious reason for source control is that you can access previous versions of your
source code, as long as you have taken the step of telling the system to remember these changes.
However, versioning is not the only reason to have source control systems. Imagine working in a
team. When one of your teammates is fi xing a defect in one section of the application while you
are working on another area, you will quickly fi nd another reason for source control: allowing the
sharing of code between different users. You can do the same thing with a shared network folder,
perhaps, but that does not provide the version management features.

There are several different advantages offered by a system such as TFS. The fi rst is the code reposi-
tory, or versioning system, for your code as just discussed. Second is the capability to label your code,
giving a specifi c version of it a name that is meaningful—for example, something like “Production
1.0 – Release,” rather than use the system’s vaguely named default version, something along the lines
of “0.9.754.” The third powerful advantage is branching, which describes the source control system’s
capability to make a complete copy of your code, enabling you to work on both in parallel.

Branching, especially in an enterprise environment, is very important. Consider an application
that has been developed and released. Typically, two different types of work need be done on that
application moving forward: maintenance and bug fi xes on the released version, and larger, more
signifi cant changes such as new functionality. Branching enables you to handle both of these types
of work. A branch of code that contains the released version can have work done that supports the
necessary changes but won’t be affected by the work being done on the larger set of changes.

This enables work to happen in parallel—small incremental fi xes to an application, say version 1.1,
and larger, more long-term changes that may be called version 2.0. As long as the smaller incre-
mental fi xes are merged back into the branch with the larger changes, the version 2.0 branch will
contain both sets of changes to the application, whereas the version 1.1 branch contains only the
short-term changes and is completely unaffected by work being done, in parallel, on the version 2.0
branch. You read much more about branching and merging later in this chapter.

Setting Up a Visual Studio Online Account
You will use Visual Studio Online as your source code repository. It is available in a free version that
supports up to fi ve users per account. Sign-up requires a Microsoft Live account. If you do not have
a Microsoft Live account, you can sign up for one at http://www.live.com.

http://www.live.com

Introducing Team Foundation Services ❘ 663

c18.indd 12/18/2015 Page 663

If you already have a Microsoft Live account, or after you have created one, log into Visual Studio
Online at http://www.visualstudio.com. When you do, you will get a notice that informs you
that “you are not the owner of any accounts,” as shown in Figure 18-1.

FIGURE 18-1: Visual Studio Online initial login message

Clicking the “Create a free account now” link will open the Create a Visual Studio Online dialog
shown in Figure 18-2. Here you will need to determine and input the URL you want to use to access
your online account. This URL will be used later when you confi gure Visual Studio to access your
repository. It is possible that the URL you select may already be taken by a different user. In that
case, select another name until you fi nd one that is not already being used.

FIGURE 18-2: Creating a Visual Studio Online account

Creating your account opens a page where you can create your fi rst project, as shown in
Figure 18-3. Think of your project as being the fi rst directory that you will use to store fi les. The
project name you select should give users some idea of what is contained within that project. While
this might not be critical in your personal work, it is very important when working with profes-
sional projects, as other developers and teammates should be able to quickly locate the fi les they
need in order to do their work. Choosing meaningful project names is a good best practice to adopt.

Other options in this dialog include the type of version control and the process template that you
want to use. There are two version control options: Team Foundation Version Control and Git.
The former is a centralized schema whereby all fi les are kept on the server in Azure. Git is a more

http://www.visualstudio.com

664 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 664

distributed version whereby version management is on your machine, including all copies of the fi les.
For this exercise, select Team Foundation Version Control.

FIGURE 18-3: Creating a project in Visual Studio Online

The process template enables you to confi gure the project management process that you want to
use during development. TFS provides the capability to manage your entire software development
life cycle. It can manage all of the requirements that a system may need through its ability to create
and manage user stories (a way of defi ning the functions a business system must provide). TFS also
supports the creation and assignment of tasks; or the actual work needed to complete those soft-
ware requirements, and track any defects that may be found during a quality assurance and testing
process, as well as provide reports that show the project’s status at any time during the process. TFS
supports various types of project management processes; each of them has a process template you
can select. Because you won’t be using any of the aforementioned features, it doesn’t matter what
you select here.

Click the Create Project button. When you get the confi rmation screen, you have successfully set up
your Visual Studio Online TFS repository. The next step is to connect your local Visual Studio to
the repository. Every time you have a new Visual Studio installation, or any time there is a change
in the TFS server that you use, you need to go through this exercise.

TRY IT OUT Connecting Visual Studio to Team Foundation Server

 1. This process is started in Visual Studio by selecting Team ➪ Connect to Team Foundation Service
from the top menu in Visual Studio. This brings up the Team Explorer - Connect dialog shown in
Figure 18-4.

FIGURE 18-4: Team Explorer - Connect dialog

Introducing Team Foundation Services ❘ 665

c18.indd 12/18/2015 Page 665

 2. Clicking the Select Team Projects link brings up the Connect to Team Foundation Server dialog
shown in Figure 18-5.

FIGURE 18-5: Connect to Team Foundation Server dialog

 3. Because your server is likely not already available in the server dropdown at the top of the page,
click the Servers button to add a Team Foundation Server. This brings up the dialog shown in the
background of Figure 18-6.

 4. Clicking the Add button brings up the foremost dialog in Figure 18-6, Add Team Foundation
Server.

 5. Input the URL that you used when creating your Visual Studio Online account. All the options in
the Connection Details section should be grayed out as you complete the URL.

 6. Clicking OK brings up a login screen where you need to enter the same credentials that you used
to create the Visual Studio Online account. This ensures that you have the authority to access this
account.

FIGURE 18-6: Adding a Team Foundation Server

666 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 666

 7. Ensure that the Add/Remove Team Foundation Server window is active. Once you have
completed the login process, your account is listed in the Team Foundation Server list, as shown
in Figure 18-7.

FIGURE 18-7: Team Foundation Server list

 8. Clicking the Close button brings back the Connect to Team Foundation Server dialog again, but
with your Visual Studio Online project available in the dropdown. Select your account to fi ll out
the Team Project Collections and Team Projects panes, as shown in Figure 18-8.

FIGURE 18-8: Selecting projects to use as a repository

 9. Selecting your project will enable you to click the Connect button. Do so to bring up the Team
Explorer pane shown in Figure 18-9.

 10. Once confi gured, the Team Explorer pane controls virtually all interaction with TFS. To confi gure
Visual Studio to be able to share source code with the repository, click the “Confi gure your
workspace” link. This opens the editing pane shown in Figure 18-10.

Introducing Team Foundation Services ❘ 667

c18.indd 12/18/2015 Page 667

FIGURE 18-9: Team Explorer pane before workspace mapping

FIGURE 18-10: Confi guring the workspace

 11. Select the directory that you want to use to store the code. After selecting Map & Get, you will see
a message that says “The workspace was mapped successfully.”

 12. Go back into Solution Explorer, right-click on the solution, and select Add Selection to Source
Control. The dialog that opens will be similar to the one shown in Figure 18-11.

FIGURE 18-11: Adding your solution to Source Control

668 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 668

 13. Click the OK button. Now you can go to the Source Control Explorer from either your Team
Explorer window or by selecting Views ➪ Other Windows ➪ Source Control Explorer from the
top menu bar in Visual Studio. Your Source Control Explorer window should look something
like Figure 18-12. You won’t see colors in the image, but this book will address color in the text,
assuming it will help you as you follow along on your own screen.

FIGURE 18-12: Source Control Explorer window after adding the solution

 14. The solution you just added appears in the pane on the right, as shown in the fi gure. Note also the
green plus (+) sign to the left of the RentMyWrox folder. This is signifi cant because it indicates that
something was added to the local directory but it has not yet been saved to the server. If your hard
drive were to crash right now, the next time you looked at your online account you would notice
that this new directory and fi les were not available within your project. Ensuring that your fi les are
available is the next step.

How It Works

Step 11, where you map a local directory to the online directory, is the key to tying your local system to
the TFS system. This creates a workspace. A workspace is your local copy of the code base with which
you will be working. This is where you develop and test your code in isolation until you are ready to
check in your work. In most cases, the only workspace you need is created automatically for you, and
you don’t have to edit it. If you are doing the mapping before you have a version of the code on the
computer, such as when installing on a second machine, then select the directory that you want to use
to store the code to create the mapping.

Linking Visual Studio to your TFS account enables you to take full advantage of the features of TFS
and the source code repository. You are giving Visual Studio immediate access to two different versions
of your source code: the one on the server and the one on your local machine. By having this access,
Visual Studio can analyze your code to determine if there are changes; and as mentioned later in this
chapter, it gives you the opportunity to compare these two versions side-by-side.

Introducing Team Foundation Services ❘ 669

c18.indd 12/18/2015 Page 669

An added bonus of this setup is that if you have logged into Visual Studio, you can also access your
TFS account using other installed versions of Visual Studio where you are logged in. You will still have
to link the online directory to a local directory as you did in steps 10 and 11.

Checking Code In and Out
Getting copies of source code to and from the server is accomplished through the process of “check-
ing in,” which copies code from your machine to the server; “getting,” which copies the fi les from
the server to your local machine; and “checking out,” which is the process of notifying the server
that you are going to modify one or more fi les. While checking out isn’t really necessary from
a workfl ow perspective when working as a solo developer, it is useful when working on a team
because it enables your teammates to know which fi les you are changing. This is important because
it can help identify potential confl icts whereby your changes may impact a teammate’s changes. It is
also how Visual Studio determines which fi les it needs to track for check-ins.

Once you completed the linking between the source control server and your local machine, you were
left in a state in which you still had some fi les that were not copied to the server (those fi les with the
green plus sign). To do your fi rst check in, go to the Pending Changes view in Team Explorer (see
Figure 18-13).

FIGURE 18-13: Pending changes before a check-in

670 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 670

As you can see, this view contains several sections. The fi rst section, Comment, enables you to pro-
vide some useful information about changes that will be incorporated with this set of changed fi les.
Even if you are the only developer in the project, this is important because you may need this infor-
mation later. Perhaps a change you made as part of this check-in affects a different set of functional-
ity. Having a useful comment enables you to easily fi nd this set of changes, known as a changeset,
if you ever have such a need. A changeset is a set of changes which should be treated as an indivis-
ible group (i.e. an atomic package); the list of differences between two successive versions in the
repository

The Related Work Items section does not really have any bearing on what you are doing here. It’s a
way to link a check-in to a task, user story, or defect.

The last two sections are Included Changes and Excluded Changes (not shown in Figure 18-13).
They represent every fi le in your local copy of the project that has been checked out from the
TFS system. These are fi les that the system has identifi ed as having been changed. The difference
between the fi les in the Included and Excluded sections is whether a given fi le will be part of this
particular check-in. You will not always want to check in every fi le that has been changed, such
as a confi guration fi le containing a local database connection string, so moving fi les between the
Included and Excluded changes gives you control over every fi le.

When you are ready to check in your changes, click the Check In button. You will get a confi rma-
tion dialog asking if you wish to continue the check-in process. Click Yes to start the fi le copy
process. When the upload is completed, you get a confi rmation message that a changeset has been
successfully checked in, and the Included Files section in your Team Explorer window will be empty.

NOTE The fi rst time you check in, it might take a while because a lot of fi les
need to be uploaded.

Undoing Changes
When working in a source control system, you may come across problems that need to use special
source control features for resolution. One example of this is when you are working on a set of
changes to the application but you get to a point where you just want to start over. TFS and Visual
Studio provide the capability to undo changes. This means that you can select one or more fi les and
have them revert to the version that you previously downloaded from the server. It will not copy to
your local directory the most recent version of that fi le, but rather fi nd the specifi c version of the
fi le that was checked out prior to editing. This is an easy way to go back to “how it was before.” In
order for this approach to be most useful, however, you must do regular check-ins once you believe
that your code is correct and performs as expected.

Performing undo on changes is simple. In the Team Explorer – Pending Changes window, select the
fi le or fi les that you want to undo and right-click to bring up the context menu shown in Figure 18-14.

Introducing Team Foundation Services ❘ 671

c18.indd 12/18/2015 Page 671

FIGURE 18-14: Team Explorer context menu

The bottom option in the popup menu is Undo. Selecting this option opens the confi rmation win-
dow shown in Figure 18-15.

FIGURE 18-15: Undo Pending Changes confi rmation

Click the Undo Changes button to bring up one more confi rmation dialog (see Figure 18-16). Visual
Studio wants to be really, really sure that you want to revert your changes because there is no way to
undo this action; it doesn’t keep multiple versions of your fi les in the local workspace.

672 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 672

FIGURE 18-16: Final confi rmation dialog before undoing changes

Be aware that once you have undone your changes, TFS has no record of what those changes were,
so be sure that you want to take this step. After you have completed the undo process you will have
the same version of those fi les that you had before you started changing them.

Shelvesets
While running Undo on a set of changes completely reverts any
work that you have done on your application, TFS provides a
way to store changes in the system without them overwriting
the current version of the source code fi les. Called a shelveset,
you can think of this stand-alone collection of fi les as a change-
set that is not checked into the base solution but is instead put
in a separate “cupboard.” This enables you to take advantage
of the backup capability of the source control system without
affecting the application. An additional benefi t is that other
developers can locate and download that shelveset. This enables
you to still share code with other developers without the risk
of overwriting the code for everyone. This is useful when two
developers are working on larger features that may affect the
rest of the code base.

Creating a shelveset is much like checking in your changes. At
the top of the Pending Changes dialog is a Shelve link, as shown
in Figure 18-17. Selecting this link expands a pane in which you
can create the name for the shelveset.

You can also select whether you wish to “Preserve pending
changes locally.” If you leave this checkbox selected, there will
be no changes to your local workspace. Unchecking this box
saves the Included Changes fi les to the server as a shelveset and then runs an undo on those fi les. In
the example described earlier, in which you work on a set of changes for a while and decide to start
over, this would be a perfect way to safely save your changes in case you need to refer back to them
as you move forward again.

Getting a Specifi c Version from the Server
There may also be times when you need to get a previous version of your source code. Perhaps you
have spent a few fruitless hours going down a rabbit hole with a change, and you just want to start

FIGURE 18-17: Creating a shelveset

Introducing Team Foundation Services ❘ 673

c18.indd 12/18/2015 Page 673

over again. However, you did some check-ins during that time, so undoing changes will not give you
the results you want. Instead, you can go back to a previous version of the code—perhaps the last
check-in last week. You can do this by getting a specifi c version of your code.

One way to do this is through the Solution Explorer. Right-clicking the solution will bring up a
context menu that contains an option for Source Control. Selecting this menu item brings up
the context menu shown in Figure 18-18.

FIGURE 18-18: Source Code menu from Solution Explorer

From this submenu you can select Get Specifi c Version. That brings up the Get dialog shown in
Figure 18-19.

FIGURE 18-19: Get dialog, for retrieving a specifi c version

674 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 674

This enables you to determine what version you would like to go back to in your local development
workspace. You can go back to a particular changeset, a date, or a particular label. Select whichever
is appropriate and continue through the process. When it completes, you will have downloaded a
different version of the source code.

Before reverting to a previous version, undo any changes that you may already have pending.
Otherwise, Visual Studio may identify confl icts between the fi le being downloaded from the server
and the current fi le on your local machine. The system will try to merge the changes, but it is pos-
sible that it may not be able to do it. If this happens, you will get a dialog similar to the one shown
in Figure 18-20.

FIGURE 18-20: Confl ict found

You can choose to take server version or keep your local version as necessary. In other cases you
may be asked to merge changes. This happens when Visual Studio cannot determine how a merge
should happen and needs manual intervention to determine what one or more fi les should contain.

If you have a saved shelveset, the process is slightly different. Figure 18-21 shows how you need to
work through the menu structure.

FIGURE 18-21: Finding a shelveset

Introducing Team Foundation Services ❘ 675

c18.indd 12/18/2015 Page 675

Selecting Find Shelvesets brings up a list of shelvesets that you have checked in. Click one to display
its contents, as shown in Figure 18-22.

FIGURE 18-22: Unshelving a shelveset

By selecting to restore work items and clicking the Unshelve button, the fi les in the Changes to
Unshelve section will be copied back to your local workspace.

Seeing Changed Items in Solution Explorer
You can always get a list of your changed fi les by going to Pending Changes
in the Team Explorer window. You can also get an overview of each fi le’s
status in Solution Explorer. Figure 18-23 shows an example. The following
list describes what the various icons mean. Note that the image won’t show
color in the book, but the descriptions include color references to help if
you’re following along on your own computer:

 ➤ The About.aspx fi le has a red check next to it. This indicates that the fi le has been checked
out from TFS, either by your editing of the fi le or by manually checking the fi le out.

 ➤ The AboutUs.aspx fi le has a green plus sign next to it, indicating that the fi le was added to
source control locally but has not yet been checked in to the server.

 ➤ Lastly, the Bundle.config fi le has a blue lock next to it. This lock indicates that the local
version of this fi le is the same as the version of the fi le on the server.

Looking at History and Comparing Versions
As you perform your day-to-day work, you may need to see what kind of changes have been made to
a fi le. Visual Studio enables you to look at a fi le’s history of check-ins, which not only supports the

FIGURE 18-23:
Visualizing fi le status in
Solution Explorer

676 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 676

need to get a list of changes, it provides the capability to compare two different versions of the same
fi le to be able to evaluate the changes.

To fi nd the history of the page, select that fi le in your Solution Explorer window and right-click to
get the popup context menu. Select Source Control ➪ View History. This opens a window that dis-
plays a list of the check-ins for a fi le. An example is shown in Figure 18-24.

FIGURE 18-24: History window for a fi le

To see what changed between any two versions, simply highlight the two versions, right-click the
selection, and select Compare. This will bring up a screen similar to the one shown in Figure 18-25.

FIGURE 18-25: Comparing two versions of a fi le

This shows a simple comparison screen. The two different versions of the fi le are side-by-side. Text
highlighted in red has been removed, while the text highlighted in green has been added. The area
on the right side of the screen provides a high-level view of where the changes are located in rela-
tionship to the visible pane. This is a very simple fi le, but a larger, more complex page might contain
many different areas of red and green that may need to be reviewed.

Labeling
Labeling is the capability to give a useful name to a version of the code. It doesn’t change the
version of the source code that is on either your machine or the server, but rather gives it a more

Introducing Team Foundation Services ❘ 677

c18.indd 12/18/2015 Page 677

human-readable name. Creating and applying a label can be done in Source Control Explorer by
right-clicking the directory that you want to label and selecting Advanced ➪ Apply Label. This
brings up a New Label dialog similar to that shown in Figure 18-26.

FIGURE 18-26: Creating and applying a label

After creating the label, you can refer to this particular version of the source code by that label.
Whenever you are looking for a particular version, you will always have the capability to search by
label. Typically, a label is added whenever a milestone event is reached, such as a release.

Interacting with a Team
Working with a team is inevitable in the life of any professional developer. This is good in that you
get the opportunity to work on large applications with a group of intelligent people; but it has its
own set of potential problems, such as the opportunity for multiple developers to step on each
other’s work. TFS does what it can to help ensure that this doesn’t happen, but there are other steps
you can take to ensure that you don’t negatively impact the team:

 1. Always get the latest version of code, compile, and validate that the application works cor-
rectly before you check in your changes.

 2. If you need to merge a new version from the server with one of the fi les that you have
changed, ensure that you do not break the other person’s changes.

 3. Only check in code that compiles and runs unless it has been prearranged with the team.

 4. Ensure that your check-in comments are accurate and succinct. They may be looked at by
others, who need to understand those changes and how they might impact their work.

 5. Lock a fi le if you are making signifi cant changes. This will prevent other developers from
checking in changes that may affect the changes you are making. However, when locking
a fi le, you need to ensure that you are doing it for a brief time only. Many developers have
returned from vacation to a very upset team because they locked one or more fi les right
before they left.

Changing Default Source Control Behavior in Visual Studio
Checking out code is another task that becomes more important when working with a team. Checking
out code does several things. It notifi es others that a fi le is being edited. It also acts to ensure that your
locally running Visual Studio knows that it should track that fi le for changes. This is especially impor-
tant when you are editing a fi le outside of Visual Studio, such as copying a different version of an

678 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 678

image fi le in your application. If you take this action through the fi le system, then Visual Studio will
not recognize that a change was made. However, manually checking out the fi le alerts Visual Studio
that something needs to be tracked.

By default, Visual Studio automatically checks out fi les that you are editing, but you can change this
behavior if desired. These settings are available by selecting Tools ➪ Options ➪ Source Control, as
shown in Figure 18-27.

FIGURE 18-27: Changing default settings when working with a fi le in source control

The following options are available:

 ➤ Check out automatically: This is the default. Every time you edit and/or save a fi le, Visual
Studio will check out the fi le.

 ➤ Prompt for check out: Visual Studio will ask whether it should check out the fi le.

 ➤ Prompt for lock on checkout: Visual Studio will ask whether it should lock the fi le on the
server because of the check-out.

 ➤ Do Nothing: Visual Studio will do nothing—i.e., will not track any changes.

Something to consider as you go through those options is that you cannot check in a changed ver-
sion of a fi le unless you have checked it out. That is why the system is initially set up to check out
on save and edit; so that the system knows that there may be changes and Visual Studio will allow
check-ins.

BRANCHING AND MERGING

As mentioned previously, branching is the duplication of an object under revision control (such as
a source code fi le or a directory tree) so that modifi cations can happen in parallel in both versions.
When you get to the point where you need to support two different versions of the code, you need to
create a TFS branch.

Branching and Merging ❘ 679

c18.indd 12/18/2015 Page 679

To do so, go to the Source Control Explorer and right-click on the workspace name. This brings
up the context menu. Select Branching and Merging ➪ Branch. This will display the Branch dialog
shown in Figure 18-28.

FIGURE 18-28: Branch dialog

This dialog enables you to determine where the new fi les should go, as well as from which version
of the software you want to branch. In this case you are going to branch from the latest version.
Click the OK button to bring up a dialog that shows you the status of the branching. You will spend
some time watching the blue line go across the screen until the branching is completed. Once com-
pleted, your Source Control Explorer will look something like Figure 18-29.

FIGURE 18-29: Source Control Explorer after branching

There is a purple icon to the left of each folder and fi le (while you can’t see the colors in the book, it
might be useful if you’re following along on your machine). This indicates that it is a branch that has
not yet been checked in. Also note that the icon next to the RentMyWrox folder has changed from
a folder to a branch. The folder icon that is next to the RentMyWrox branch folder will change to
the same branch icon after the changes are checked in. While the icons will be the same, these two
directories will have a unique relationship. The directory that was copied is known as the trunk,
while the copied directory will be a branch off that trunk.

After the new branch has been created you can now work in each version of the code as desired.
Typically, the cut branch—in this case, RentMyWrox-branch—is the one that has the smaller, more
incremental changes, while the already existing directory, the trunk, continues to have the larger,

680 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 680

more time-intensive, longer-running changes. At regular intervals changes in the cut branch should
be merged into the trunk. This ensures that the short-term fi xes and changes are included in the next
major release. The more often this merge is performed, the easier each merge will be because there
will likely be fewer differences within the same set of source code.

Using Visual Studio and TFS to perform merges is fairly straightforward. Right-click the folder
from which you want to merge and then select Branching and Merging ➪ Merge, which brings up a
dialog similar to that shown in Figure 18-30.

FIGURE 18-30: Merging branches

There are three areas of importance in this screen. The source branch is the area from which you
want to copy the changes, and the target branch is the area to which you want to copy changes.
Generally, the source is the branch that was cut and the target is the area that was branched, the
trunk. The system supports going the other way too; that type of approach is generally called a
reverse merge because it is much more unusual to be merging items from the trunk to the branch.

Merging the two can be problematic in cases for which both the branch and the trunk have had a lot
of work going on and they were not frequently merged. The more work that happens in each direc-
tory between merges means the more complex the merge will end up being. Visual Studio will likely
be unable to resolve many of these differences, so it ultimately requires human intervention to deter-
mine what the merged code should look like.

If the branch is never merged back into the trunk, then that work will not be available in the trunk.
This means that defects that were resolved by work in the branch may reappear when code from the
trunk is released. Frequent merging ensures that this doesn’t happen, and that changes in the branch
are always refl ected and available in the trunk.

Summary ❘ 681

c18.indd 12/18/2015 Page 681

SUMMARY

This chapter has attempted to condense an entire book’s work of information into some useful
points and suggestions that will help you keep your ASP.NET application backed up and versioned.
You have used Visual Studio Online, a version of Team Foundation Services (TFS), to act as a source
code repository.

Visual Studio Online and TFS are complete application lifecycle management solutions, because
they offer more than source code repository functionality. TFS also supports the gathering and cap-
turing of requirements, tasks, and defects, and it also has a powerful reporting infrastructure that
can support many different project management methodologies.

When dealing with only the source code repository capability, you can check in code, get code, and
check out code. Copying code from your local directory to the server is checking in. A group of
changed fi les are put together into a changeset, and that changeset is merged into the server. After
this merge, the complete directory is given a new version number that represents the state of every fi le
at that particular point in time. Each check-in results in the creation of a new version on the server.

Getting code is the process of copying fi les from the server. The most common behavior is Get
Latest, whereby you copy to your local system all the fi les that have changed since the last time you
did a Get, but you can also get specifi c versions of the fi les as necessary.

Checking out is a way of notifying the server that you are going to be making changes to a fi le. By
default, Visual Studio checks out a fi le whenever you make a change. This is important because
these checked out fi les are the ones that Visual Studio tracks for check-in. You will not be able to
check in fi les that have not been checked out. You may check out fi les in several different ways. The
fi rst way fl ags the fi le on the server so that other developers know that you may be making changes.
The second way actually locks the fi le so that other developers cannot check in changes to that fi le.
You need to be careful with locking a fi le because doing so may impact other developers trying to do
their work.

Working in a team requires more discipline than working alone. You have to be responsible for
ensuring that your changes do not overwrite or break other changes made by other developers. You
also have to ensure that you do your best to keep the application in a workable and functional state.

Source control is a critical part of development. Even a developer working alone will fi nd it very use-
ful, especially the versioning part of the system because it provides more than simple backup func-
tionality. It is also imperative that anyone working professionally as a developer understand how
source control works and how to interact with the system.

EXERCISES

 1. What is a changeset, and why does it matter in source control?

 2. What happens during a checkout?

 3. What does TFS offer to enable a developer to determine who may have changed a fi le?

682 ❘ CHAPTER 18 WORKING WITH SOURCE CONTROL

c18.indd 12/18/2015 Page 682

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Branching The duplication of an object under revision control (such as a source code fi le or a
directory tree) so that modifi cations can happen in parallel in both versions

Check in The process of putting changed fi les into source control and creating a new version
of the source code

Check out The process of notifying the source control system that a fi le is being worked on

Labeling The process of naming a version of the software. Labeling enables a complete
version to be retained and accessed as needed.

Merging The process of synchronizing two different branches. Changes in one branch are
merged into the other branch to ensure that edits are available in both branches.

Repository The online set of source controlled items

Shelveset The group of fi les that make up a single check-in

TFS Team Foundation Server, Microsoft’s version of source control used during this
chapter

Workspace The area on a local machine containing the source control fi les that were
checked out

c19.indd 12/18/2015 Page 683

Deploying Your Website
 WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ How to get your application ready for deployment

 ➤ Using values stored in confi guration fi les

 ➤ Managing multiple environment settings

 ➤ Introduction to Windows Azure, Web Apps, and Azure SQL

 ➤ Publishing your application

 ➤ The importance of validating your deployment

CODE DOWNLOADS FOR THIS CHAPTER:

The wrox.com code downloads for this chapter are found at www.wrox.com/go
/beginningaspnetforvisualstudio on the Download Code tab. The code is in the chapter 19
download and individually named according to the names throughout the chapter.

Eventually, it is hoped that your application gets to a point where other people want to use it
as well. The easiest way to do that is to deploy it to another server where other people can look
at it themselves. Also, at some point you will need to deploy the application to a production
environment so that it can interact with the public—doing the job that it was designed for.

Moving it from your local development machine to a remote server is a big step. It means you
have to ensure that your application can handle multiple environments, and these multiple
environments generally require different confi gurations, including SQL Server connection
strings, so you have to manage those different values as part of your deployment strategy.

Part of this whole process is ensuring that you have a remote system to which you can deploy.
Once that system is appropriately confi gured, your application can be deployed, or published.

19

http://www.wrox.com/go
http://www.wrox.com/go/beginningaspnetforvisualstudio

684 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 684

PREPARING YOUR WEBSITE FOR DEPLOYMENT

Doing the work of building your application is the hard part, but deploying it to a different system is
not necessarily the easiest part. When you build and run the application on the same machine, things
tend to work a lot better than when you move it to a different machine. Numerous things can go wrong
and render your application inoperable after deployment. These problems can stem from many different
sources, such as the installed software being different so dependencies are missing on the server,
or being unable to write a fi le because your running application does not have the security rights.

This section covers all the little details that you have to handle to ensure that your application is
ready to be run on a different machine and connected to different machines in different environ-
ments. You will also learn how to add fl exibility to your application by removing hard-coded set-
tings that would require code changes if something about your business changes, turning those into
confi guration items.

Avoiding Hard-Coded Settings
A hard-coded setting is a value that you have defi ned within code that may change during the life
span of your application. Unfortunately, because the value is defi ned in code, you have to deploy a
brand-new version of the application to change that value. Typically these values are items such
as external web links (links to a different website), e-mail addresses, and other text that is either
 displayed to the user or used in business logic somewhere within your application.

You have an example of this built into the sample application, as shown here, where the store hours
are hard-coded:

public ActionResult Index()
{
 StoreOpen results = new StoreOpen();
 DateTime now = DateTime.Now;
 if (now.DayOfWeek == DayOfWeek.Sunday
 || (now.DayOfWeek == DayOfWeek.Saturday
 && now.TimeOfDay > new TimeSpan(18,0,0)))
 {
 results.IsStoreOpenNow = false;
 results.Message = "We open Monday at 9:00 am";
 }
 else if (now.TimeOfDay >= new TimeSpan(9,0,0)
 && now.TimeOfDay <= new TimeSpan(18,0,0))
 {
 results.IsStoreOpenNow = true;
 TimeSpan difference = new TimeSpan(18,0,0) - now.TimeOfDay;
 results.Message = string.Format(
 "We close in {0} hours and {1} minutes",
 difference.Hours, difference.Minutes);
 }
 else if (now.TimeOfDay <= new TimeSpan(9,0,0))
 {
 results.IsStoreOpenNow = false;
 results.Message = "We will open at 9:00 am";
 }
 else

Preparing Your Website for Deployment ❘ 685

c19.indd 12/18/2015 Page 685

 {
 results.IsStoreOpenNow = false;
 results.Message = "We will open tomorrow at 9:00 am";
 }
 return Json(results, JsonRequestBehavior.AllowGet);
}

Fortunately, ASP.NET has a way to manage this through the use of the Web.config fi le. You have
done some work in the Web.config fi le already by managing database connection strings and add-
ing other confi guration settings to the fi le. The Web.config fi le can also maintain information that
you can use within your application.

The Web.confi g File
You have been in and out of the Web.config fi le several times over the course of this project. One
of the areas in which you have not spent much time is the appSettings element. The appSettings
element is a child element of the configuration element, which is the base element in the fi le. The
appSettings element offers programmatic access to sets of information such as the snippet shown
here where values are given a unique key:

<appSettings>
 <add key="OpenTime" value="9" />
</appSettings>

There are a couple different ways you can access this information, through code and an approach
known as expression syntax.

Expression Syntax
Expression syntax enables you to bind control properties directly to values in your confi guration
fi le. When you are working in ASP.NET Web Forms server controls, you use the following format to
bind in a value from the Web.config fi le:

<%$ AppSettings:KeyName %>

This means that if you wanted, for example, to add a footer control that displayed some brief legal-
ese, you would need to fi rst add the information to your Web.config fi le using the the following
code:

<add key="FooterDisclaimer"
 value="Copyright RentMyWrox, 2015, All Rights Reserved" />

You would then reference this value in a control:

<asp:TextBox ID="Disclaimer" runat="server"
 Text="<%$AppSettings:FooterDisclaimer %>" />

When working with ASP.NET Web Forms you can also directly link the control to a confi guration
value after you have added the value to the Web.config fi le. You can do that when you are creating
the server control that contains the confi guration value by using the Expression Editor.

To open the Expression Editor dialog, select the server control to which you want to add the con-
fi gurable value and go to the Properties window. Look for the major section called Data. It should
contain an Expressions subsection, as shown in Figure 19-1.

686 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 686

FIGURE 19-1: Properties window

If you do not see the Expressions section, you may need to ensure that you have selected the con-
trol in either the Split or Design modes; it is not always available when selecting your control in the
Source (markup) window. Once you have the Expressions section available you can click the ellipses
button on the right to open the Expressions dialog (see Figure 19-2).

FIGURE 19-2: Expressions dialog

Selecting Text from the Bindable Properties pane and AppSettings from the Expressions Type drop-
down, as shown in Figure 19-3, brings up a dropdown containing all the keys that have been added
to the appSettings.

FIGURE 19-3: AppSettings in the Expressions dialog

Preparing Your Website for Deployment ❘ 687

c19.indd 12/18/2015 Page 687

Selecting one of these values fi lls out the property, as shown in the earlier examples.

The Web Confi guration Manager Class
The Expression Editor only works when you are working in ASP.NET Web Forms pages. It is
not supported when in a code-behind page or when working in any ASP.NET MVC compo-
nents. For those other instances when you need to access confi guration-based values in code
(whether Web Forms code-behind or MVC), you have the System.Web.Configuration.
WebConfigurationManager to help support working with confi guration values.

Using this class is very simple and it can be used whenever C# execution is supported. The complete
class and approach is shown here:

@System.Web.Configuration.WebConfigurationManager
 .AppSettings.Get("TestConfigurationValue")

This method call returns a string, so if the information is actually a different type then you need to
cast or convert it as necessary.

In this next Try It Out activity, you convert some of the hard-coded information that you have scat-
tered around the application into values that can be managed within the Web.config fi le.

TRY IT OUT Adding Confi guration

In this activity you will be doing several different things. The fi rst is to create Web.config
appSettings. You then abstract out access to the Web.config fi le into a class containing static proper-
ties that map to confi guration values. Lastly, you update those areas of code to use confi guration values
rather than the hard-coded values they are currently using.

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Open the
Web.config fi le.

 2. Find the appSettings element in the Web.config fi le and add the following items:

<add key="AdminItemListPageSize" value="5" />
<add key="StoreOpenTime" value="9" />
<add key="StoreCloseTime" value="18" />
<add key="StoreOpenStringValue" value="9:00 am" />
<add key="ViewNotifications" value="true" />

 3. Right-click on the Models directory and add a new class named Confi gManager.cs.

 4. Add the following property to the new fi le:

public static int AdminItemListPageSize
{
 get
 {
 int answer = 5;
 string results = WebConfigurationManager.AppSettings
 .Get("AdminItemListPageSize");
 if (!string.IsNullOrWhiteSpace(results))
 {
 int.TryParse(results, out answer);
 }

mailto:@System.Web.Configuration.WebConfigurationManager

688 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 688

 return answer;
 }
}

 5. Add the following items:

public static int StoreOpenTime
{
 get
 {
 int answer = 9;
 string results = WebConfigurationManager.AppSettings.Get("StoreOpenTime");
 if (!string.IsNullOrWhiteSpace(results))
 {
 int.TryParse(results, out answer);
 }
 return answer;
 }
}

public static int StoreCloseTime
{
 get
 {
 int answer = 18;
 string results = WebConfigurationManager.AppSettings.Get("StoreCloseTime");
 if (!string.IsNullOrWhiteSpace(results))
 {
 int.TryParse(results, out answer);
 }
 return answer;
 }
}

public static string StoreOpenStringValue
{
 get
 {
 string results = WebConfigurationManager.AppSettings
 .Get("StoreOpenStringValue");
 if (string.IsNullOrWhiteSpace(results))
 {
 results = "9:00 am";
 }
 return results;
 }
}

public static bool ViewNotifications
{
 get
 {
 bool answer = false;
 string results = WebConfigurationManager.AppSettings

Preparing Your Website for Deployment ❘ 689

c19.indd 12/18/2015 Page 689

 .Get("ViewNotifications");
 if (!string.IsNullOrWhiteSpace(results))
 {
 bool.TryParse(results, out answer);
 }
 return answer;
 }
}

 6. Open the StoreOpenController.cs. There are three instances of TimeSpan(18,0,0). Replace the
"18" with ConfigManager.StoreCloseTime to get the following:

TimeSpan(ConfigManager.StoreCloseTime,0,0)

 7. Replace the "9" in TimeSpan(9,0,0)with ConfigManager.StoreOpenTime to get this:

TimeSpan(ConfigManager.StoreOpenTime,0,0)

 8. Wherever you see the phrase “9:00 am” make the following change. The completed page should
look like the one shown in Figure 19-4.

From:
results.Message = "We open Monday at 9:00 am";

To:
results.Message = "We open Monday at " + ConfigManager.StoreOpenStringValue;

FIGURE 19-4: Updated StoreOpenController

 9. Open your View\Shared_MVCLayout.cshtml fi le. Find and update the following code as shown:

From:
@Html.Action("Recent", "Item")

To:
@if (ConfigManager.ViewNotifications)

690 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 690

{
 @Html.Action("NonAdminSnippet", "Notifications")
}

 10. Open Admin\ItemList.aspx. In your GridView, replace the value in the PageSize attribute with
the following (see Figure 19-5):

<%$ AppSettings:AdminItemListPageSize %>

FIGURE 19-5: Updated ItemList markup fi le

 11. Run the application and confi rm that everything works as expected such as the store hours section
showing up properly including logging in as an administrator and checking the Item list.

How It Works

The ConfigManager class that you built is designed to look in the Web.config fi le and make the confi g-
uration values available for common use. These properties are doing more than simply getting a value
from the confi guration fi le, however, because they also manage a default value, as well as handling
cases where the value is missing from the confi guration fi le. Each property even ensures that the string
value is converted or parsed to the appropriate type. Imagine how much code you would have to write
if you had to do all this each time you wanted to get the value from the fi le rather than putting this all
in one place!

The code you added set a default value, but sometimes this isn’t ideal and you would instead throw an
exception if the confi guration item was missing. That approach would be similar to this:

get
{
 string results = WebConfigurationManager.AppSettings.Get("SomeValue");
 bool answer;

 if (string.IsNullOrWhiteSpace(results) || !bool.TryParse(results, out answer);)
 {
 throw new KeyNotFoundException("config error for SomeValue");
 }

 return answer;
}

Using this approach ensures that if no value is set, or if the value that is returned cannot be parsed into
the appropriate type, then the method will throw an exception rather than try to use a default value.

mailto:@Html.Action

Preparing for Deployment ❘ 691

c19.indd 12/18/2015 Page 691

One more thing to consider is that you can also write to the Web.config fi le, if necessary, by using the
Set method (rather than the Get method to retrieve information from confi guration). This is common
when you want to be able to do some confi guration of the site through the UI, perhaps by adding a
page that enables you to change the values for these fi elds as desired.

You have converted some of your hard-coded values to confi guration values and ensured that you
are calling them correctly. You had to do this so that you can easily support changes that may
happen when your application is deployed to another computer. Now that your code is updated to
support this, you can get ready for the deployment.

PREPARING FOR DEPLOYMENT

All of your work so far has been local, using a web server running on your local machine that con-
nects to a SQL database server that is also running on your machine. You have then been accessing
that web server from a browser that is also, you guessed it, on your machine. Once you deploy your
application, this will all be different. The new web server will be running on one machine, while
the new SQL Server will be running on a different machine; and while your browser will still be
running locally, it won’t be running locally on the same machine as the web server or the database
server.

Because these will all be different machines, your new SQL Server will not be the same as your
development SQL Server, so you know that the connection strings will be different. In this section
you will set up both your deployment environment and the process to manage changes that are
needed for handling these confi guration differences based on environment.

You will be using Microsoft Azure as your web hosting system, as well as to manage your online
data store. For those of you who are unable to access Azure, you will also walk through a fi le-based
deployment process so that you can still follow along with the publishing process.

Microsoft Azure
Microsoft Azure is a collection of different cloud services, including analytics, computing, database,
mobile, networking, storage, and web. Here you will be working with two services in specifi c: App
Services and SQL Database.

The App Services offering from Azure enables you to host web applications built on multiple lan-
guages—from .NET to PHP to Java. This offering is especially powerful because it enables you to
easily scale the resources dedicated to managing your application; as your user base grows, so can
the resources that are handling the work.

The SQL Database service is basically your SQL Server instance hosted in the cloud. The Azure-
based system has an even higher performance and reliability factor than your local SQL Server; and
like the App Services, you can scale your resources up or down as necessary.

Microsoft Azure offers a 30-day free trial, which is what you will be using for the deployment. Note
some caveats about working with Microsoft Azure:

692 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 692

 ➤ Not all areas and countries have access to Azure services depending on local or international
agreements.

 ➤ You are required to enter a credit card number when signing up for Azure. They won’t
charge it unless you give them permission after the 30 day period, but you will not be able to
set up an account without providing a credit card number.

If you can’t access or sign up for Azure services, feel free to skip this next step and go directly to
publishing your site. File-based instructions are also provided as you walk through the publishing
steps.

TRY IT OUT Registering for Microsoft Azure

In this activity you create an account with Microsoft Azure. It is recommended that you use the
Windows Live account that you have used previously to download Visual Studio and set up the source
control from Chapter 18.

 1. Open a web browser and go to http://azure.microsoft.com. You should get a welcome screen
similar to the one shown in Figure 19-6.

FIGURE 19-6: Azure home page

 2. Click the Try for Free button in the middle of the screen. There is also a Free Trial link at the top
right. This brings up the Free Trial page (see Figure 19-7).

http://azure.microsoft.com

Preparing for Deployment ❘ 693

c19.indd 12/18/2015 Page 693

FIGURE 19-7: Azure free trial page

 3. Click the Try It Now link. Log in using your Windows Live account. This brings up the sign-up
page shown in Figure 19-8.

FIGURE 19-8: Azure sign-up page

694 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 694

 4. Create your account as directed on the page. This is the point at which you need to enter credit
card for confi rmation. Click Sign Up when your information has been added and the button has
been enabled. After some processing you will be presented with the Subscription Is Ready page (see
Figure 19-9).

FIGURE 19-9: Subscription is ready page

 5. Click the Start Managing My Service button. You will get a dialog offering a short tour (see
Figure 19-10).

FIGURE 19-10: Azure tour page

 6. You can either click through the tour (very brief) or close the popup to get your Dashboard screen
(see Figure 19-11).

Publishing Your Site ❘ 695

c19.indd 12/18/2015 Page 695

FIGURE 19-11: Azure dashboard page

How It Works

In this activity, you created a free Azure subscription that enables you to deploy your application to
another system over the Internet and test how successful that deployment was. Up until now all you
have done is create the initial subscription, you have not signed up for any specifi c services. Don’t forget
that this subscription expires in 30 days!

Now that you have a new system to which you can deploy your application, the next step walks you
through the publishing process.

PUBLISHING YOUR SITE

You have set up your application to support multiple environments by putting information into the
confi guration fi le. You have also set up the destination system to which you will publish your site.
The next step is to publish it, which is demonstrated in the following Try It Out.

TRY IT OUT Publishing Your Site

In this activity you publish your website to either Microsoft Azure or your local system (or both),
depending on your capability to access this third-party system.

696 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 696

 1. Ensure that Visual Studio is running and you have the RentMyWrox application open. Build your
application and double-check your Error List window to ensure that there is nothing wrong with
the application.

 2. In the Solution Explorer window, right-click the RentMyWrox project and select Publish. This
opens the Publish Web dialog shown in Figure 19-12.

FIGURE 19-12: Publish Web dialog

 3. If you are going to publish to Azure, continue from here. If not, you may want to instead go
directly to Step 20.

 4. Under the “Select a publish target” section, click the Microsoft Azure Web Apps button. This
should bring up the dialog shown in Figure 19-13.

FIGURE 19-13: Select Existing Web App dialog

 5. If your account doesn’t appear under the Web Apps section, you will have a link to log in to your
account. Click this link and ensure that you use the same credentials you used in the last activity.

Publishing Your Site ❘ 697

c19.indd 12/18/2015 Page 697

 6. Click the “New…” button. This brings up the Create Web App on Microsoft Azure dialog shown
in Figure 19-14.

FIGURE 19-14: Create Web App on Microsoft Azure dialog

 7. Enter your preferred Web App name. It may take several attempts before you fi nd one that is not
already being used because the Web App name has to be unique within the Azure system.

 8. Select “Create new App Service plan” and enter a value that identifi es your site in the textbox that
appears.

 9. Do the same with the Resource group.

 10. Select a Region that makes the most sense for your location. When completed, your Create Web
App screen should look similar to Figure 19-15.

FIGURE 19-15: Completed Create Web App on Microsoft Azure dialog

698 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 698

 11. Click the Create button. The system will process for a while, as shown by the progress bar in the
lower-left corner of Figure 19-16.

FIGURE 19-16: Creating the new Web App

 12. When completed, you should be back on the Publish Web screen. Click the Validate Connection
button. The dialog shown in Figure 19-17 should appear.

FIGURE 19-17: Creation screen with connection validated

Publishing Your Site ❘ 699

c19.indd 12/18/2015 Page 699

 13. Click the Publish button. You should be able to see an Azure App Service Activity tab in the lower
part of the IDE, where the Output and Error List tabs are located. When the process is fi nished, it
should open your website on the server.

 14. Log in to your Microsoft Azure account, which opens the dashboard dialog.

 15. Click the Web Apps link on the left. This opens the Web Apps page, with the Web App that you
added listed (see Figure 19-18).

FIGURE 19-18: Web Apps listing in Azure

 16. Select the SQL Database link from the menu on the left. This opens the dialog shown in Figure
19-19.

FIGURE 19-19: SQL Database listing in Azure

700 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 700

 17. Select the Create a SQL Database link. This opens a Custom Create dialog. Add a database name,
as shown at the bottom of Figure 19-20.

FIGURE 19-20: Creating a SQL Database

 18. Click the arrow at the bottom-right corner of the window. This brings up the Create Server dialog.
Add a login name and password and select the appropriate region (see Figure 19-21).

 19. Click the check on the lower right of the window. This takes you back to the Azure SQL Database
listing (see Figure 19-22). It may take several minutes for the creation to complete. This is the last
step to publishing to Azure.

 20. The following steps outline the process for publishing to a local fi le directory. You should be at the
Publish Web screen (refer to Figure 19-12).

 a. Select Custom. This brings up the New Custom Profi le dialog. Enter LocalToFile as shown in
Figure 19-23.

 b. Click the OK button. Your screen should change so that the left-hand Connection item is
selected, and you will get the confi guration dialog shown in Figure 19-24.

Publishing Your Site ❘ 701

c19.indd 12/18/2015 Page 701

FIGURE 19-21: Create Server dialog in Azure

FIGURE 19-22: Database being created in Azure

702 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 702

FIGURE 19-23: Adding a custom publish profi le

FIGURE 19-24: Confi guration screen for a custom profi le

 c. Select File System from the Publish method dropdown. This will bring up the Target Location
dialog shown in Figure 19-25.

 d. Click the ellipses button to open a fi le system explorer window. Choose the directory where
you want to publish the fi les. If you need to add a directory, click the small Create New
Folder button above the directory list.

 e. Click the Publish button. You should see lines of information describing what is being copied
being listed in your Output window. When it is completed, open the directory to which you
published. You’ll see a list similar to the one shown in Figure 19-26.

Publishing Your Site ❘ 703

c19.indd 12/18/2015 Page 703

FIGURE 19-25: Selecting a target location for a custom profi le

FIGURE 19-26: Published fi les

704 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 704

How It Works

Two different publishing processes occurred in this activity, but at their core they were doing the same
thing. The goal of publishing is to copy a set of fi les to a remote destination in such a way that they
work; therefore, the class fi les and all the necessary supporting fi les have to be compiled, fi les in the
References have to be copied to the server, necessary folders have to be created, and so on.

When you ran the publishing process for either profi le you created a set of fi les that were copied to
the destination—either onto a Microsoft Azure Web App or onto the local fi le system. Whereas the
publishing part of the process was the same, setting up the profi les was completely different.

The simple approach was creating the publishing profi le for the fi le system, because all you had to do
was select the directory where you will write the output. This profi le, when completed, was saved into a
.pubxml fi le. If you look inside that fi le you see content similar to the following:

<Project ToolsVersion="4.0"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <WebPublishMethod>FileSystem</WebPublishMethod>
 <LastUsedBuildConfiguration>Release</LastUsedBuildConfiguration>
 <LastUsedPlatform>Any CPU</LastUsedPlatform>
 <SiteUrlToLaunchAfterPublish />
 <LaunchSiteAfterPublish>True</LaunchSiteAfterPublish>
 <ExcludeApp_Data>False</ExcludeApp_Data>
 <publishUrl>
 C:\Users\Beginning ASP.NET\Desktop\FileSystemPublish
 </publishUrl>
 <DeleteExistingFiles>False</DeleteExistingFiles>
 </PropertyGroup>
</Project>

If you recall the setup screens, you can see that each of the questions asked has a corresponding element.

The good thing about that is that you no longer have to answer the questions when you publish in the
future, as they will already be fi lled out. However, if you want to do something special when during an
application publish, you can change the setting for that particular publish.

One of the most frequently changed items is the DeleteExistingFiles node, which is currently set to
false. When this is set to true, the publishing process fi rst deletes all the fi les from the website before it
writes the new ones. The process always writes the updated fi les and replaces those fi les on the server;
however, the DeleteExistingFiles setting ensures that all the fi les are copied to the server regardless
of whether they have been changed. This is important when you have a lot of changes, or when you
make changes that remove or rename the current .aspx pages.

It was a lot more complicated to set up the Azure publishing profi le, so it makes sense that the .pubxml
fi le would be a lot more complicated as well—and it is, as shown in Figure 19-27.

http://schemas.microsoft.com/developer/msbuild/2003

Publishing Your Site ❘ 705

c19.indd 12/18/2015 Page 705

FIGURE 19-27: Web App .pubxml fi le

Note, however, that a lot of information fi lled out during the process is not included in this fi le. This
missing information is not part of the publish process and was instead used to create the Azure Web
App to which the application will be published. You could have just as easily set up a Web App from
the Azure dashboard, just as you did to create the SQL Database, and then select that Web App when
publishing.

Deploying your application using the publish process in Visual Studio is very straightforward, even
the fi rst time when you have to ensure everything is correctly confi gured. After that, publishing is
even easier, requiring just a few mouse clicks, because all the information has already been gathered.

You may have noticed that one specifi c part of the publish process was incorrect: connecting to the
database. You have a new database but you have not done anything to add those specifi c confi gura-
tions to the deployed application. There is support for this within Visual Studio as part of the
publishing process, called Web.confi g transformations.

706 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 706

Introducing Web.confi g Transformations
Something you may not have noticed about your Web.config fi le is that it
has an arrow next to it, indicating that it can be expanded. Doing so shows
that two more fi les are available, Web.Debug.config and Web.Release
.config (see Figure 19-28).

These additional fi les are important because they are the ones that manage
your environment-specifi c information. In this case, two are currently defi ned: Release and Debug.
When you are running locally, you are running in Debug mode, so you would use the settings in
this version of the fi le. When you published the application to the server, you published it in Release
mode, which means that the Release version of the confi guration would have been copied to the
server.

You can do more than simply change values between different environments as the confi guration
fi les are run through a process called transformation when they are deployed. The Web.config
fi le has the Web.Release.config fi le applied against it, much like a template, with the result of
this template application being copied to the server. This transformation can do many things. It
can manage the change of values for different confi guration items in the appSettings and con-
nectionString elements as well as alter other attributes in different elements throughout the
confi guration fi le.

You can see an example of this if you published your application to a local directory. The
Web.config fi le that you have been working with contains the following element:

<compilation debug="true" targetFramework="4.5" />

However, if you look at the Web.config fi le that was deployed to your local directory, you will see
this element is instead:

<compilation targetFramework="4.5" />

This means that particular element was transformed.

The transformation rules are confi gured in the different versions of Web.config fi les. In this
instance, if you look into the Web.Release.config fi le, you will see the following code (comments
removed for brevity):

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 </system.web>
</configuration>

Compared to the basic Web.config, there are two things going on in this page. The fi rst is the
xmlns:xdt="", which defi nes the xdt preface as defi ning a transform attribute. If you don’t have
this section, then you will not be able to use the xdt:Transform attribute shown in the contained
elements as the confi guration system will display errors.

This xdt:Transform attribute defi nes the rules. Here, the transformation is going to be run on the
compilation element, as that is the name of the element that includes this transformation attribute.
In this specifi c instance, the transform that was set up by default is called "RemoveAttributes"
and contains "debug", or the name of the attribute to be removed. This one line of code in the
.Release.config fi le ensured that the Web.config fi le was altered during the publishing process.

FIGURE 19-28: Multiple
confi guration fi les

http://schemas.microsoft.com/XML-Document-Transform

Publishing Your Site ❘ 707

c19.indd 12/18/2015 Page 707

XPATH

Your Web.config fi les are XML fi les. This means that when you are working with
them as XML fi les (as opposed to accessing them through the application), you can
use XPath. XPath is a language that enables you to select nodes within an XML
fi le. Because transformation happens outside of the application running, the .NET
Framework supports using XPath to defi ne items that you want to change during
the Web.config transformation process. You will see some simple XPath
statements in this section. For a more thorough overview, go to https://msdn
.microsoft.com/en-us/library/ms256115(v=vs.110).aspx.

Table 19-1 describes other options available during the transformation process.

TABLE 19-1: Transformation Items

NAME DESCRIPTION

Locator = Condition(XPath

expression)
Specifi es an XPath expression that is appended to the cur-
rent element’s XPath expression. Elements that match the
combined XPath expression are selected.

Locator = Match(attribute

names)
Selects the element or elements that have a matching
value for the specifi ed attribute or attributes. If multiple
attribute names are specifi ed, only elements that match all
the specifi ed attributes are selected.

Transform="Replace" Replaces the selected element with the element that is
specifi ed in the transform fi le. If more than one element is
selected, only the fi rst selected element is replaced.

Transform="Insert" Adds the element that is defi ned in the transform fi le as a
sibling to the selected element or elements. The new
element is added at the end of any collection.

Transform="Remove" Removes the selected element. If multiple elements are
selected, the fi rst element is removed.

Transform="RemoveAttributes

(comma-delimited list of one or

more attribute names)"

Removes specifi ed attributes from the selected elements

Transform="SetAttributes(comma-

delimited list of one or more

attribute names)"

Sets attributes for selected elements to the specifi ed val-
ues. The Replace transform attribute replaces an entire
element, including all of its attributes. In contrast, the
SetAttributes attribute enables you to leave the ele-
ment as it is but change selected attributes. If you don’t
specify which attributes to change, all attributes present in
the element in the transform fi le are changed.

https://msdn

708 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 708

Each of the attributes does one of two things. It either identifi es the element that needs to be
changed (the Locator attributes) or defi nes the kind of change that needs to happen (the Transform
attributes). There will always be a Transform attribute, as otherwise there wouldn’t be a transfor-
mation; but the Locator attribute is optional, as demonstrated in the default Release confi gu-
ration fi le. If you don’t specify a Locator attribute, the element to be changed is specifi ed by
the element that contains the Transform attribute. In the following example, the entire system.web
element from the Web.config fi le is replaced, because no Locator attribute is specifi ed to indicate
otherwise:

<?xml version="1.0"?>
<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <system.web xdt:Transform="Replace">
 <customErrors defaultRedirect=" ~/Errors/Error500.aspx " mode="RemoteOnly">
 <error statusCode="500" redirect="~/Errors/Error500.aspx" />
 </customErrors>
 </system.web>
</configuration>

This means that all the content you already have in the system.web node, such as your trace
setup and your other customError pages (such as Error404.aspx), would not be included in the
Release-version transformed confi guration fi le. Thus, you have to be careful when setting up your
transforms because it is easy to transform your confi guration fi les in such a way as to break your
application.

While the Release and Debug versions of the confi guration fi le are included automatically, you actu-
ally have much better control over transformation now that you have created publish profi les, as you
can set the transformation for each of those profi les rather than rely on the default types to manage
these. In many cases you will have different systems all running in Release mode, such as your test
system and your production system. Each of those will likely have different values that need to be
confi gured differently from the other environments, regardless of whether those other environments
are Debug or Release versions.

In this next Try It Out, you add Web.config transformations to your application.

TRY IT OUT Adding Transformations to Your Application

In this activity you manage some of the environment-specifi c changes that you need to handle for the
different versions of your applications. You will be creating different versions of these for each of the
publishing methods that you worked on in the previous exercise.

 1. Ensure that Visual Studio is running and you have the RentMyWrox
application open. Expand the Properties section and the
PublishProfi les folder, as shown in Figure 19-29.

 2. Right-click one of the .pubxml fi les, in this case the
RentMyWroxDemo.pubxml fi le, and select Add Confi g Transform.
After doing that, check your Web.config fi le. It should contain an
additional item (Web.RentMyWroxDemo.confi g or whatever name
you used for your .pubxml fi le), as shown in Figure 19-30.

FIGURE 19-29: Publish-
Profi les directory

http://schemas.microsoft.com/XML-Document-Transform

Publishing Your Site ❘ 709

c19.indd 12/18/2015 Page 709

FIGURE 19-30: New PublishProfi les-based confi guration

 3. Right-click the new fi le and select Preview Transform. You should get a screen similar to the one
shown in Figure 19-31. The left side is the original Web.config fi le, while the right side is the
transformed fi le. You should see the checked areas highlighted.

FIGURE 19-31: Previewing the transformation

 4. Close the preview window. Open your PublishProfile.config fi le, in this case the Web
.RentMyWroxDemo.config fi le. Add the following content to the confi guration element:

<appSettings>
 <add key="StoreCloseTime" value="19"
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)" />
 <add key="StoreOpenTime" value="10"
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)" />
 <add key="StoreOpenStringValue" value="10:00 am"
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)"/>
</appSettings>
[

 5. Right-click this updated fi le and select Preview Transform. You should see additional changed
areas, as shown in Figure 19-32.

710 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 710

FIGURE 19-32: Transformed store hours change

 6. Close the preview window. Back in the confi guration fi le, add the following code. It should look
like Figure 19-33 when done.

<connectionStrings>
 <add name="DefaultConnection" connectionString=""
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"
 providerName="System.Data.SqlClient" />
 <add name="RentMyWroxContext" connectionString=""
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"
 providerName="System.Data.SqlClient" />
 <add name="RentMyWroxConnectionString1" connectionString=""
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"
 providerName="System.Data.SqlClient" />
</connectionStrings>

FIGURE 19-33: Transformed store hours change

 7. Log in to your Microsoft Azure account. Click the SQL Database link on the left, and then click
the name of your SQL Database. This brings up the detail screen shown in Figure 19-34.

 8. Under the Connect to your Database section is a link called “View SQL Database Connection
strings for ADO .NET, ODBC, PHP, and JDBC.” Click this link to go to a Connection Strings
dialog similar to that shown in Figure 19-35.

Publishing Your Site ❘ 711

c19.indd 12/18/2015 Page 711

FIGURE 19-34: SQL Database details screen

FIGURE 19-35: Connection Strings dialog

712 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 712

 9. Copy the top connection string, in the box labeled ADO.NET. Paste this value into the three con-
nection strings that you added in Step 6. One of your connections would look like the following
snippet. You need to replace the highlighted value with your own password.

<add name="DefaultConnection"
 connectionString="Server=tcp:xsrud46v0r.database.windows.net,1433;
 Database=RentMyWroxDB;User ID=rentmywroxdb@xsrud46v0r;
 Password={your_password_here};Trusted_Connection=False;
 Encrypt=True;Connection Timeout=30;"
 xdt:Transform="SetAttributes" xdt:Locator="Match(name)"
 providerName="System.Data.SqlClient" />

 10. Right-click this updated fi le and select Preview Transform. You should see that your connection
string section has been updated as well.

 11. Right-click the Web.Debug.config fi le and select Preview Transform. You should see your original
Web.config values.

How It Works

The transformation process that is run when you publish a profi le can also be run through the Preview
Transform link. This process applies the rules you defi ned against the default Web.config fi le to create
the fi le that you are previewing.

When you were working with the appSettings values, you used a Locator attribute that matched by
the name attribute. Therefore, when this locator is applied, it will fi nd an element in the base confi gura-
tion fi le with the same name. If there is no element with the same name, then the process does nothing.
When the name is matched, the Transform attribute is examined to determine what needs to happen.

When you were working with the connection string data, you were not able to use the Locator with
the name attribute, as the element defi nition was different. You instead had to use the Locator with the
key attribute to ensure that you were able to fi nd the appropriate elements. In all cases you selected the
SetAttribute transformation.

The SetAttribute transformation takes the value of every attribute that is set in the transformation
fi le and sets the result attribute to that value. When an attribute is not in the source fi le, the transforma-
tion ensures that it is added to the output. If the attribute is in the source fi le but not in the transformation
fi le, then the attribute is copied to the output without being changed.

Note that you had to ensure that the parent elements were included in the transformation fi le. This
is because the transform process works its way through the fi le, matching the various elements based
on parent node and the Locator attribute that you selected. Without that complete relationship there
would be no way to perform the match.

Publishing Your Site ❘ 713

c19.indd 12/18/2015 Page 713

You have now confi gured your application so that confi guration values will be set according to the
publish profi le.

Moving Data to a Remote Server
One of the fi rst things that you likely noticed when running your application is how empty it looks,
as shown in Figure 19-36.

FIGURE 19-36: Deployed, but empty, web server

There are two different approaches to getting data into the database. The fi rst is to copy informa-
tion from your development database to the online database. The second is to simply add all the
information directly to the online application. In this next Try It Out activity you copy some of
the information from your local database to the Azure database.

TRY IT OUT Copying Data to the Remote Server

In this activity, you copy some of the local information to your Azure database in the cloud. If you were
unable to create an Azure account, you should still read through this exercise and perform as many
steps as possible.

 1. Log in to your Azure dashboard.

 2. Click the SQL Databases menu item on the left of the screen.

 3. Go into the details of your database by clicking on the name.

 4. Find the menu item “Set up Windows Azure fi rewall rules for this IP address” and click it. This
should bring up a screen like that shown in Figure 19-37. Note the bar at the bottom showing the
IP address.

714 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 714

FIGURE 19-37: Confi rmation screen to add IP address

 5. Open SQL Server Management Studio and ensure that you are connected to your RentMyWrox
database.

 6. Right-click the database name and select Tasks ➪ Generate Scripts as shown in Figure 19-38. This
brings up the dialog shown in Figure 19-39.

 7. Click the Next button, which brings up the Choose Objects dialog. “Select specifi c database
objects” should be enabled. Select the following objects as shown in Figure 19-40.

 ➤ dbo.AspNetRoles

 ➤ dbo.Hobbies

 ➤ dbo.Items

 ➤ dbo.Notifi cations

 ➤ Stored Procedures

Publishing Your Site ❘ 715

c19.indd 12/18/2015 Page 715

FIGURE 19-38: Generate Scripts menu

FIGURE 19-39: Generate Scripts dialog

716 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 716

FIGURE 19-40: Generate Scripts menu

 8. Click the Next button, which brings up the Set Scripting Options dialog. Ensure that “Save to new
query window” is selected, as shown in Figure 19-41.

FIGURE 19-41: Specifying script output

Publishing Your Site ❘ 717

c19.indd 12/18/2015 Page 717

 9. Click the Advanced button, which brings up the Advanced Scripting Options dialog. Change the
following settings. When completed it should look similar to Figure 19-42.

 ➤ Script USE DATABASE - false

 ➤ Type of data to script - Data only

FIGURE 19-42: Advanced Scripting Options

 10. Select OK in the Advanced Scripting Options dialog.

 11. Select Next to get the Summary screen, and then Next again to complete the process. This brings
you to the Save or Publish Scripts dialog shown in Figure 19-43.

 12. Click the Finish button. You should see a long SQL script. In the Object Explorer of SQL Server
Manager, click the Connect button.

 13. In the connection window, enter the information from your Azure connection string. It should look
similar to Figure 19-44 when completed.

 14. Click the Connect button. You should see your Azure SQL database appear in the Object Explorer
window.

 15. Ensuring that you are still on the query window that was created, select Query ➪ Connection ➪
Change Connection. This brings up the Connect to Database Engine dialog.

 16. Your Azure connection should be available in the dropdown for server name. Select that connec-
tion and click Connect.

 17. Select the appropriate database in the dropdown as shown in Figure 19-45.

718 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 718

FIGURE 19-43: Finished creating items

FIGURE 19-44: Connecting to Azure SQL

FIGURE 19-45: Selecting the appropriate database

 18. Click the Execute button. You should see output similar to that shown in Figure 19-46.

Publishing Your Site ❘ 719

c19.indd 12/18/2015 Page 719

FIGURE 19-46: Output of database-seeding

 19. Go to your online application. It should now appear properly, as shown in Figure 19-47.

FIGURE 19-47: Populated online application

720 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 720

How It Works

In this activity you copied data from your development environment and added it to the remote version
of your application. You were able to do this through SQL Server Manager Studio by going through a
series of options that set up a process to write out the SQL scripts necessary to remove only the data
from the selected tables. You did not select all the tables to transfer over, but rather those tables that
contain business information as opposed to user information. This enables you to keep the user infor-
mation separated between the deployed application and your local application.

The scripts that were created copy the data from one system to the other. Three steps happen for
each batch of data, with the fi rst and third steps turning on and turning off functionality in the table,
respectively, and the middle step actually inserting the data. The following snippet shows these steps:

SET IDENTITY_INSERT [dbo].[Hobbies] ON
GO
INSERT [dbo].[Hobbies] ([Id], [Name], [IsActive]) VALUES (1, N'Gardening', 1)
GO
INSERT [dbo].[Hobbies] ([Id], [Name], [IsActive]) VALUES (2, N'Cooking', 1)
GO
SET IDENTITY_INSERT [dbo].[Hobbies] OFF
GO

The functionality that is being fl ipped, IDENTITY_INSERT, enables you to enter in the value for the Id
column. The whole point of an Identity column is to generate the value for you upon insertion, so you
need to turn off the functionality to allow input of the value. Once you have inserted the data, you
then need to ensure that you turn it back on; otherwise, all of your regular your data entry through the
application will fail.

Now that you have completed copying your application and data, it would be easy to assume that
you are fi nished with deployment. However, there is one more thing that you must do on a deploy-
ment, and that is to ensure that the application is working as expected.

SMOKE TESTING YOUR APPLICATION

The phrase “smoke test” comes from the process of testing new electronic hardware when you plug
in a new board and turn on the power. If you see smoke coming from the board, you don’t have to
do any more testing; you know that it failed. Unfortunately, while it is still called smoke testing,
your application will never smoke after a failed deployment. Instead, you have to actually do some
testing to ensure that your application works as desired.

It is important that you perform this testing after each deployment. Many things can go wrong dur-
ing a deployment—a fi le isn’t properly copied, the confi guration transformation doesn’t provide the
expected outcome, a database migration failed, or, even worse, the application just doesn’t work on
the server even though it did locally.

The only way to ensure that the application is working correctly on the server is to test it after
deployment. That means going through the application and trying all the major functionality. This

Smoke Testing Your Application ❘ 721

c19.indd 12/18/2015 Page 721

should usually be a pretty quick process—even enterprise applications can be smoke tested in just a
couple of hours. Applications like the sample application can be smoke tested in just a few minutes.
The following Try It Out walks through a smoke test.

TRY IT OUT Smoke Testing Your Application

In this activity, you smoke test your application to ensure that the deployment was successful.

 1. Open a web browser and go to your deployed application.

 2. Check the color of the background and ensure that the hours are displaying correctly.

 3. While on the front page, click the Next Page link to ensure that you can move to the second page.

 4. Click the Full Details link. Ensure that you see the details for that item.

 5. Ensure that the Recently Reviewed area shows the item that you clicked on.

 6. Click the Add to Cart link. Review the shopping cart area at the top of the screen to ensure that it
shows up appropriately.

 7. Click the Checkout link. You should go to the Login screen.

 8. Click the “Register as a new user” link and ensure that you are taken to the Register screen.

 9. Register a new user to confi rm that you are taken to the User Demographics screen.

 10. Fill out and submit the User Demographics screen. You should be taken to the Checkout screen.

 11. Click the Complete Order button. You should be taken to the Order confi rmation screen (see
Figure 19-48).

FIGURE 19-48: Completed smoke test order

722 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 722

How It Works

This was a simple walk-through of the main functionality of the application. By performing this walk-
through, you were able to verify that all the major components are performing as expected.

Congratulations, you have completed the deployment of your website!

GOING FORWARD

Now that you have worked through a beginning ASP.NET application, you may be curious to
learn more about various topics that could only be briefl y covered during the course of this project.
Fortunately, Wrox has a complete line of books that go over these different aspects of a web applica-
tion in much more detail. Here are just a few:

 ➤ Beginning Visual C# 2015 Programming (ISBN: 978-1-119-09668-9)

 ➤ Beginning Visual Basic 2015 (ISBN: 978-1-119-09211-7)

 ➤ Beginning JavaScript, 5th Edition (ISBN: 978-1-118-90333-9)

 ➤ Web Development with jQuery (ISBN: 978-1-118-86607-8)

 ➤ Professional Visual Studio 2015 (ISBN: 978-1-119-06805-1)

 ➤ Beginning HTML and CSS (ISBN: 978-1-118-34018-9)

Of course, books are not your only source of information about developing ASP.NET web applica-
tions. Following are some online resources that may also be of interest:

 ➤ http://p2p.wrox.com: The public discussion forum from Wrox where you can go for all
your programming-related questions. This book has its own link on that site. You can ask
specifi c questions about the content of this book and I will do my best to answer them.

 ➤ http://www.asp.net: The Microsoft community site for ASP.NET technology. This site
provides additional downloads, a support forum, documentation, and user tutorials.

 ➤ http://msdn.microsoft.com/asp.net: The offi cial home for ASP.NET, it contains docu-
mentation, sample applications, and other resources that support ASP.NET.

SUMMARY

The last thing that you have to do after building an application is make it available to others. When
your application is a web application, “making it available” means that you will be deploying it to
an accessible location so that other people can fi nd and interact with it.

A few different things have to be managed as you deploy an application from your local machine.
One of these tasks is handling database connection strings that will be different because of the new
environment, because you will no longer be connecting to the same database server. Another task is
ensuring that you are not deploying in debug mode; you are not in development anymore!

http://p2p.wrox.com:
http://www.asp.net:
http://msdn.microsoft.com/asp.net:

Summary ❘ 723

c19.indd 12/18/2015 Page 723

Obviously, when you are ready to deploy, you need a destination for your application. In this case
you deployed to Microsoft Azure. Microsoft Azure is a set of products that includes Web Apps
and SQL databases, the two products that you used to host your Internet application. You used the
 publishing functionality that is built into Visual Studio to push the compiled software application
to the web.

Not only does Visual Studio enable you to publish the application, it also saves these publish settings
so that you can use them going forward. Rerunning the publishing process is simple once it has been
confi gured the fi rst time, as you have already fi lled out the settings. You can change them at any
time, of course.

Moving data from development to the remote environment can be a little more tedious, however,
if you choose to do this movement manually as you did here. It gave you complete control over the
information that was copied to the remote system and was simplifi ed due to the support that is
built into SQL Server Management Studio. You could also elect to not add any data and instead
completely confi gure the information through the UI that you created.

Once the application has been physically moved to the server, you always need to ensure that it
has been correctly deployed. The best way to do this is to perform a quick smoke test whereby you
click through the application and validate that it works as necessary. This should be a very simple
and straightforward process, and it should be done every time you make a change to a remote
application.

EXERCISES

 1. You went through a process to copy information from your development environment to your
remote application. Could you use the same approach to copy data from the server back to
your local system?

 2. What would be a reason to copy data from the server?

 3. One of the changes that you did not do is to turn tracing on at the remote server. What code
in the transformation fi le would be necessary to ensure that the following code is available to
anyone who goes to the appropriate trace.axd page, regardless of from where that user is
making the request?

<trace mostRecent="true" enabled="true" requestLimit="1000"
 pageOutput="false" localOnly="true" />

724 ❘ CHAPTER 19 DEPLOYING YOUR WEBSITE

c19.indd 12/18/2015 Page 724

 ▸ WHAT YOU LEARNED IN THIS CHAPTER

Azure SQL Database A relational database-as-a-service that is part of the Azure
product offerings

Azure Web Apps Web Apps in Azure App Service provide a scalable, reliable, and
easy-to-use environment for hosting web applications.

Expression Binding A technique that enables you to bind control properties to
different resources, such as application settings defi ned in Web
.config

Microsoft Azure A collection of different cloud services, including analytics,
computing, database, mobile, networking, storage, and web

Smoke Test The process of doing a quick evaluation of an application to
ensure that it is working as expected. It should always be run
after any deployment.

Publishing Profi le Enables you to save the confi guration information that was
captured during the process of deploying the application

Transformations A built-in ASP.NET feature that manages the maintenance of
confi guration fi les. You can add information, remove information,
or change information in the confi guration.

WebConfigurationManager A class that provides access to data stored in confi guration fi les

bapp01.indd 12/01/2015 Page 725

CHAPTER 1

 1. The difference between HTML and HTTP is that HTML is a markup language used
to defi ne content that is transmitted over the Internet, whereas HTTP is the transfer
protocol that manages the transmittal of HTML over the Internet.

 2. ViewState is how ASP.NET Web Forms manages state even though HTTP is, by defi -
nition, stateless. This is important because it enables your website to determine when
something changes, and allows your application to support many built-in events.

 3. The three architectural components that make up ASP.NET MVC are models, views,
and controllers. A view is what the users see in the browser. Models represent
the data that is displayed within the view. The controller is the part that manages the
interaction between the two—it handles getting the model and making it available to
the view.

 4. Microsoft Visual Studio is the primary integrated development environment (IDE)
used to create ASP.NET sites and applications. We are using this product throughout
the book because it is the de facto standard for Microsoft Windows–based software
development.

CHAPTER 2

 1. The two approaches to building a web-based application are Web Site and Web
Application. A web site does not pre-compile the source code, but instead deploys the
source code to the server. When an application is started, there is JIT compilation.
A Web Application is compiled and then copied to the server where it is run. Web
Forms can be either approach, but MVC applications are only available within Web
Applications.

 2. Project templates are Visual Studio’s way of creating projects that are designed for a
specifi c need. Visual Studio includes numerous project templates, but the two that con-
cern us most are ASP.NET Web Forms and ASP.NET MVC.

Answers to Exercises

726 ❘ APPENDIX ANSWERS TO EXERCISES

bapp01.indd 12/01/2015 Page 726

 3. Compared to a Web Form project, two additional folders are created in an ASP.NET MVC
application: the View folder and the Controller folder. They are not created in Web Form
projects because a Web Form project does not embody the concepts of controllers or views.

CHAPTER 3

 1. .intro p will match those items of type <p> that are completely contained within any kind
of element that has a class named intro. The style p.intro will select all elements with class
intro that are fully contained within a type element of <p>. The style p, .intro will select
those elements that are either of type <p> or have their class set to “intro.”

 2. To stretch the “box” of an element you would use the padding property. The padding prop-
erty extends the visible box of the element, while the margin property pushes the visible box
away from the adjacent element. If, for example, you set the background-color of an element
containing some text, padding would extend the background-color past the text, extending
the colored area. Using margin will move the colored box without changing its size.

 3. To allow the content of a web page to access styles contained in an external stylesheet you
need to create a link between the web page and the external stylesheet. That link is created
through the use of a link element that is placed in the header of the web page. A link looks
like <link href="styles.css" rel="Stylesheet" type="text/css" />.

 4. Some of the various Visual Studio aides include the following:

 ➤ Design mode: Enables the developer to see the rendered version of the HTML source
code

 ➤ Visual aids: Provides different views of the rendered output in Design mode, including
tags, borders around elements, etc.

 ➤ Formatting toolbar: Visible when in Design mode, the formatting toolbar enables devel-
opers to assign and/or create styles directly from within the window.

CHAPTER 4

 1. The string resultsAsAString would be “What is my result? 12” because the & and the +, in
this context, are concatenation operators.

 2. The very last iteration of this loop would cause an exception because you are trying to access
an item in the list that is not present. The loop defi nition should have been i < collection
.Count for C# and 0 To collection.Count - 1 for VB.

 3. The foreach construct is specifi cally designed to iterate through a collection. If you were
going to use a Do loop, you would also have to add code that evaluates whether the list is
completed, whereas the foreach provides that automatically.

Chapter 6 ❘ 727

bapp01.indd 12/01/2015 Page 727

CHAPTER 5

 1. Not every property can be set in the code-behind, as the capability to access the properties in
the code-behind depends on the runat property in the markup. Without that value set in the
markup, there is nothing that you can do with it in code-behind.

 2. The Text in a textbox can be retrieved simply by accessing the Text property. Understanding
the selected checkbox items is different in that a list contains one or more items, each of
which may have been selected. You need to go through the list and determine which of the
item have their IsSelected property set to true. This creates a short list of those items that
were selected.

 3. Adding the runat="server" attribute makes a traditional HTML element an HTML
control. This enables the value and some of the other attributes to be available for use in the
code-behind.

 4. ViewState is how the server is able to keep track of previous versions of information. It acts
as a container for the default server control values that are being sent to the client. When the
form is posted back to the server, the state management server analyzes the information in
the ViewState and the information that was submitted with the form to determine its next
step.

CHAPTER 6

 1. The TextboxFor helper specifi cally binds a property on the model to an HTML element.
This binding is achieved through a lambda expression that helps the system identify which
property on the model should be used for the binding. The Textbox element typically takes
a string name rather than a direct model binding. The name given to the helper is the name
given to the HTML element that it creates. However, as long as the name that is passed into
the helper is the same as the property name with which you want it to be related, the model
binder can interpret which property should get the returned value.

 2. The primary way that the Razor view engine knows the difference between code that it
should process and text that needs to simply be passed through straight into the HTML is
through the use of the @ character and curly brackets, {}. If C# (or VB) code is after the @
character or contained within a set of curly brackets, then the view engine knows to run the
code.

The view engine is also smart enough to realize when you start an HTML element, so it
switches back into text-reading mode. However, if you want it to return to code processing
mode, you need to preface it with the @ character again; thus, you may have @ code within
other @-labeled constructs.

 3. No, views do not always have to match the name of the action. If you return a View(), then
it is expecting a one-to-one correlation; however, you also have the capability to add the

728 ❘ APPENDIX ANSWERS TO EXERCISES

bapp01.indd 12/01/2015 Page 728

name of the view to be returned. This enables you to return any view from a controller action
as long as you appropriately defi ne the view method that is returned.

 4. The model binder is able to determine nested object properties by using dot notation. For
example, suppose you have an object structure like the following:

public class Parent
{
 public Child Child { get; set; }
}

public class Child
{
 public GrandChild GrandChild { get; set; }
}

public class GrandChild
{
 public string SomeProperty { get; set; }
}

A textbox would be able to set the property on the grandchild by ensuring that the name
of the textbox element is “Child.GrandChild.SomeProperty” where the model that was
passed to the view is a parent.

CHAPTER 7

 1. Controllers and web pages are traditional OO classes, so even though they are already inher-
iting other classes, it is easy to add an intermediate class as long as that intermediate class
extends the class that the page was already inheriting. However, views are a different kind of
approach; they do not have a class defi nition or anything that enables you to create an inheri-
tance scheme. They are instead a value that is processed.

 2. The advantage of using the Layout command in the ViewStart fi le is that you do not need a
hard link between your views and your layout. If you did not have the ViewStart and you
wanted to change the layout to point to another fi le, you would have to go into every page
to make the change. The ViewStart enables you to specify your primary layout page and then
assign it by default.

CHAPTER 8

 1. They would end up at http://www.servername.com/Admin/~/default, where they
would most likely get a 404 error for Page Not Found. If the anchor tag were given the
extra attribute for runat="server", then the system would know to replace the ~ with
the application root directory. However, without the runat="server", the HTML from
an HTML element turns into an HTML control, so the system does not do any additional
interpretation of the code.

http://www.servername.com/Admin/~/default

Chapter 9 ❘ 729

bapp01.indd 12/01/2015 Page 729

 2. There are two main approaches to fi nding the code that responds to a request to http://
www.servername.com/results. The fi rst is to look through the project to see if there is a
folder with the name of “results.” If there is, then there is a good chance that the default fi le
in the directory responds to that request. This means that it is being served by an ASP.NET
Web Forms page. If this does not provide a result, the next step would be to look into the
Controllers directory to determine whether there is a controller that would be used to handle
requests to this URL, most likely “ResultsController.” If this controller does exist, look in the
actions to fi nd the one that would serve a get request to the base URL. If you are unable to
fi nd anything there, you need to check the RouteConfig.cs fi le to evaluate whether it con-
tains a hard-coded route that will handle this approach. If so, then follow this routing sugges-
tion to fi nd the appropriate handler.

 3. Friendly URLs were implemented for several reasons. The fi rst is that it makes addresses
easier to remember, as the user doesn’t have to include the extension on the URL. This makes
URLs used for advertising much more effective. Another reason is that it makes other URLs
more predictable and guessable. This gives users confi dence that they can fi nd information on
your site. The last big reason is search engine optimization, which is better supported because
friendly URLS allows the elimination of query strings in favor of URL variables, turning
http://www.servername.com/product.aspx?id=8 to http://www.servername.com/
product/8 or even http://www.servername.com/product/Product_Name.

CHAPTER 9

 1. The _MigrationHistory table keeps a record of every time the update database command was
run in that database. It stores the name of the migration that was created by the developer,
the context to which the migration was assigned, and information on the model(s) that were
used. If you looked in the table, you would be easily able to determine the fi rst two items,
but the model information is stored in a binary format and is not intended to allow reverse
migration outside the context of the Entity Framework.

 2. Attribute routing enables developers to defi ne the URL that an action will respond to directly
on the action, as opposed to a standard template. One of the primary problems with the
template approach is that there always seemed to be at least one route in an application that
could not be easily managed through the template approach. The developer would have to
either hard-code a route in the RouteConfig fi le or otherwise manipulate how the action is
named and called to ensure that it could be managed in the “one size fi ts all” approach of
template-based routing. With attribute routing, however, you can determine at the action
level what URL that action would respond to.

 3. Using the using statement ensures that the item being created, in this case the DbContext,
is disposed of upon completion. Taking this step ensures that the .NET Garbage Collector
will be able to pick this item out of memory the next time the collector runs. Otherwise, this
item would likely linger in memory for a longer period and have a more long-term effect on
memory usage, perhaps affecting the user experience.

http://www.servername.com/results
http://www.servername.com/results
http://www.servername.com/product.aspx?id=8
http://www.servername.com
http://www.servername.com/product/Product_Name

730 ❘ APPENDIX ANSWERS TO EXERCISES

bapp01.indd 12/01/2015 Page 730

CHAPTER 10

 1. If you create a new item, there is a chance that the item will not be displayed in the list page,
especially if you had recently visited the list page. This is because the cache was set to 20
minutes, so visiting the list page, creating or editing an item, and then immediately going
back to the list page will likely result in the list itself being cached; therefore, the new list will
not be called until after expiration of the previous cache. This is a perfect example of when
caching can cause stale data to be presented to the user.

 2. If you are not going to pass information to a view through the use of a ViewBag, then best
approach is to create a ViewModel, which in this case is a class with two properties: the list
of hobbies and the UserDemographics item that is currently being used as the model.

 3. There are multiple reasons why you might want to use a more direct approach to the data-
base, including response time and performance, complicated queries, integration with other
applications that are using database access, and the need to keep consistent behavior between
the applications.

CHAPTER 11

 1. Yes, you can use a user control to solve the same kind of problem. While you will not get the
automatic translation for DisplayFor or EditorFor, that’s OK because neither concept is
supported in the ASP.NET Web Forms world. You would instead create a user control that
has a parameter of the model, or object, that you wanted to display. The code-behind could
take that object and do the necessary work, whether it is simply displaying the item or doing
business logic with that item. While the instantiation of the control is slightly more awkward,
you can create a user control that is very similar to an MVC template.

 2. You do not have to include the controller name in an Html.Action method call when the
action that you are calling is on the same controller. If the action is on a different controller,
you need to ensure that you include the appropriate controller name.

 3. When you are working with attributes in the markup, it is important to remember that every-
thing is actually a string, so putting an integer into a property defi ned as a string will not
cause any problems; the property will be populated with the string version of the integer. It is
going the other way that’s a problem. When you are putting a string value into a non-string
attribute, you must ensure that the string value can be parsed into the appropriate type. If
you don’t do this correctly, such as by putting the value “two” into an integer fi eld, you will
get several warnings. First, a validation error will be displayed in the markup page. Second,
when you try to run the application, you will get an exception page because the system was
not able to do the necessary conversion.

Chapter 13 ❘ 731

bapp01.indd 12/01/2015 Page 731

CHAPTER 12

 1. Request validation has been turned on based on the attribute on the controller, so the only
way any HTML would be allowed through the process is if it were turned on at the model
level. If you examine the model, however, you will see that the Description property has
the appropriate attribute to allow HTML. Thus, any HTML in the Title would cause an
exception to be thrown, while any HTML in the Description would be allowed through the
request process.

 2. The order in which validation controls are added to the page does not affect anything about
the actual validation.

 3. Yes, it is certainly possible to set up a scenario in which a model can never be valid. Even
ruling out such obvious errors as using a “less than” when you should have used a “greater
than,” it is easy to set up these kinds of cases, especially when using validation approaches
that compare the values of one controller to another. If you followed the suggestion of
ensuring that you always have a valid and complete message, then you should be able to
understand and manage scenarios in which you have validated yourself into a corner.

CHAPTER 13

 1. You would not have to do anything different as long as you added both the same <div> tags
and scripting. This will work regardless of the type of ASP.NET that you used to create the
page as long as all of the proper elements are within the page.

 2. Using the Unobtrusive AJAX jQuery library in a Web Form application can be done in
several ways. Perhaps the easiest is to include the script references to the JavaScript libraries,
just as you did in the example. You can then manually add the attributes to the element that
will be fi ring the change, typically an anchor link. An example would be the following:

<a data-ajax="true"
 data-ajax-method="GET"
 data-ajax-mode="replace"
 data-ajax-update="#thelementToReplace"
 href="/URL TO CALL">Displayed Text

The expectation is that you have a URL that will return some HTML that is appropriate to
display in the element identifi ed in the attributes.

 3. There are several potential problems with using a timer to refresh content. The fi rst of these
is the bandwidth and processing that may be used unnecessarily. The browser will con-
tinue to make those calls as long as the page is open. The user could have gone to the page,
looked around for a few minutes, and then decided to do something else without closing the
browser. The page will continue making calls even though the user is not present. Another

732 ❘ APPENDIX ANSWERS TO EXERCISES

bapp01.indd 12/01/2015 Page 732

problem that may be experienced could result from transient network outages or server prob-
lems; rather than getting the expected content part of the page, the user will instead be trying
to deal with an error.

CHAPTER 14

 1. This change is only supposed to work on these particular elements, so the fi rst thing you
should do is add an id to each so that your jQuery work can select the correct item. After
adding ids, you can set the hover function of the <p> element to change the css color value
of the <h1> element. All code is shown here:

<h1 id="colorchange">Title</h1>
<p id="hoverover">Content</p>

$(document).ready(function () {
 $("#hoverover").hover(
 function () {
 $("#colorchange").css('color', 'yellow');
 }, function () {
 $("#colorchange").css('color', 'green');
 });
});

 2. Bundling enables you to combine multiple fi les of the same type, such as CSS or JavaScript,
into a single fi le for download. Bundling becomes important when you want to get multiple
scripts to the client side but the browser only supports a certain number of connections to
a single domain. As the page is rendered, each call to a server may end up being queued.
Therefore, bundling is a great benefi t once you have more than fi ve or six items being down-
loaded. These items can include images, CSS fi les, JavaScript fi les, and any other item that
could be downloaded from the server.

The size of the items that you are bundling is important as well. Putting multiple large fi les
into a single bundle may slow the load time down because your users are getting a very large
fi le over a single channel as opposed to two smaller fi les that can be downloaded at the same
time.

Lastly, the amount of change that happens in your scripting is important. Each change to
the underlying scripts causes a new bundle to be downloaded to the client. Thus, if you are
doing a lot of work on one script, you may want to move it out of the bundle and keep it
separate; otherwise, the browser sees the bundle containing multiple fi les as new, although
only one fi le has actually changed.

 3. The Ajax.Helper class has four different events that you can add to a JavaScript function:
OnBegin enables you to know when a call is getting ready to happen, but before the call to
the server; OnComplete is called after the call to the server has completed but before the page
is updated; OnFailure handles any error conditions; and OnSuccess is called after the page is
updated. Each of these enables you to add a JavaScript function to the workfl ow.

Chapter 17 ❘ 733

bapp01.indd 12/01/2015 Page 733

CHAPTER 15

 1. These two fi les are the Startup.Auth.cs and IdentityConfig.cs. The Startup.Auth.cs
fi le creates the UserManager and SignInManager as well as confi gures the way that cookies
are going to be used for authentication. IdentityConfig.cs sets up the password validation
requirements as well as other default user login details such as lockout periods and maximum
attempts.

 2. Authentication is when a user confi rms who they are, generally through the combination of
username and password. Authorization comes after the user has been authenticated and is
the determination about whether the user can take a particular action or set of actions.

CHAPTER 16

 1. There are a couple of different ways that you can gather this kind of information. One would
be to simply ask users what colors they prefer. While not very sophisticated, it tends to get
relatively accurate information. The other, and more subtle, approach is to track the various
colors that users view during their shopping visits, perhaps also tracking search terms in case
they also regularly contain colors.

 2. There are a lot of different things that you can do with this kind of information. For exam-
ple, you can shade the background of the pages that you display to that user with a color.
Another simple personalization would be displaying the user’s preferred color(s) automati-
cally so the user doesn’t have to make the selection.

CHAPTER 17

 1. When you have multiple catch statements, the framework evaluates the exception against
the catch parameters in order from the top down. Because it takes this approach, you need
to ensure that the most general exception is at the bottom of the list. In this case, no excep-
tion will ever hit the second catch block because they all would be caught by the generic, fi rst
catch block.

 2. You can use either tracing or logging to provide information about anything going on within
your application. This includes the capability to add tracing and/or logging code that will
provide information about the time spent in each method. One approach would be to use
code such as the following:

public ActionResult Details(string id)
{
 DateTime enterDate = DateTime.Now;

 // do lots of work that could take a long time

 string message = string.Format(

734 ❘ APPENDIX ANSWERS TO EXERCISES

bapp01.indd 12/01/2015 Page 734

 "Details methods took {0} milliseconds",
 (DateTime.Now - enterDate).Milliseconds);
 System.Diagnostics.Trace.TraceInformation(message);

 return View();
}

CHAPTER 18

 1. A changeset is the complete set of changes that is checked in at one time. It is important
because it identifi es the fi les that were changed, enabling those changes to be compartmental-
ized and removed (rolled back) if necessary.

 2. A checkout describes when a user notifi es the system, either deliberately or through edit-
ing a fi le, that he or she is going to make changes to a particular fi le. The checkout can be
either locking or non-locking. When a fi le is locked, the system will not allow a different user
to check the fi le out. Checking out is important because a user is not allowed to check in
changes if that fi le has not been checked out.

 3. TFS has the functionality to enable users to the view the history of a fi le. Also, if needed,
users can display these different history versions side-by-side in order to compare specifi c
changes within each version.

CHAPTER 19

 1. Yes, you could use the exact same approach to copy data from the remote server. Note one
caveat, however, with that approach. Because work would be happening both on the server
and locally (developers working on features and real users signing up in production), there
will be contradictory data. You would have no problems bringing remote data to a brand-
new, empty database, but merging two different databases doesn’t work as well.

 2. The main reason that you would copy data from the server is because an error is occurring
that seems to be based on the data in use. Generally, this kind of problem is hard to replicate
because of this dependence on a specifi c piece of data; if none of your test data has that same
error, then you will have problems fi nding it.

 3. You would need to add the following code within the system.web element of the
web.RentMyWroxDemo.config fi le:

<trace mostRecent="true" enabled="true" requestLimit="1000"
 pageOutput="false" localOnly="false"
 xdt:Transform="SetAttributes" xdt:Locator="Match(key)" />

bindex.indd 12/18/2015 Page 735

INDEX

!_ (Not) operator, 103–104
(hash symbol), for Id selector, 59
$(), for selector, 494
$, in jQuery, 490
$. approach, 512, 539
$ factory method, 512, 539
$(this), 532
& (ampersand), in query string, 178, 648
& (And) operator, 103–104
&& (AndAlso) operator, 103–104
() (parentheses), for VB arrays, 97
* (asterisk), as universal selector, 60
/ (backslash), for URL, 234
: (colon), for name/value delimiter, 57
; (semicolon)

for end of line, 57, 89
inside Razor block, 167

? character
and Immediate window, 637
for query string, 178, 648

@ character, for Razor language, 166
[] (square brackets), for C# arrays, 97
_ (underscore), for layout fi lename, 215
{ } (curly braces)

for if statement (C#), 105
for Razor code blocks, 166

|. (Or) operator, 103–104
|| (OrElse) operator, 103–104
~ (tilde)

in URLs, 208–209, 232
and virtual application, 233

< > (angled brackets), for HTML code, 6, 167
<%@ Register, 374
= (equals sign), in query string, 648
301 status code, 255
302 status code, 255
404 error fi le, 623–624

display, 625
404 error, resource not found, 190–191, 260
500 (Internal Server error), 4
500 error page, 624

4XX HTTP codes, for client errors, 4
5XX HTTP codes, for server codes, 4

A
a (anchor) element, 6, 230, 252
absolute URLs, 230–234, 265
abstraction, 54, 84

from jQuery, 501
access modifi ers, 116
AccessFailedCount property, of

IdentityUser, 553
AccessKey attribute, of server controls, 141
AccountController fi le, 46
Action method, 395, 410, 470
ActionLink, 314
actions, users and, 543
active function, 613
Active Server Pages (ASP), 2, 166
active variables, displaying, 632
Add Item dialog, for controller, 182
Add method, for list, 100
Add New Item dialog, 69

ADO.NET Data Entity Model, 287–288
for base page, 221
Web Form with Master Page, 210

Add New Stored Procedure command, 354
Add Scaffolding dialog, 253–254
Add View dialog, 183, 216, 352

for partial view, 388
addClass method (jQuery), 519
add-migration command, 320, 585
AddRange method, for list, 100
AddToCart method, 475–476, 596
AddUserVisit method, 595, 600
Admin directory, default page, 568
AdminItemListPageSize property, 687–688
ADO.NET, 347–348
Advanced Scripting Options dialog, 717

736

bindex.indd 12/18/2015 Page 736

AJAX – ASP.NET MVC

AJAX (Asynchronous JavaScript And XML), 38,
449–498

basics, 450–483
enhancing experience, 466–469
extensions, 146
F12 Developer tools, 451–457
helpers, 481, 495
jQuery in, 489–495
in MVC, 469–483
notifi cation display support, 458–466
practical tips, 495–496
in Web Forms, 457–469
web services in websites, 483–489

AJAX request, action response to, 482–483
@Ajax.ActionLink helper, 470

items for populating, 470–471
AJAX.ActionLink method, 497
AJAXOptions class, 497

properties, 470
allow element, with role, 571
AllowAnonymous attribute, 572
AllowCustomPaging attribute, for GridView

control, 325
AllowPaging attribute, for GridView control, 325
AllowSorting attribute, for GridView control,

325
ALM (Application Lifecycle Management), 661
alphabetizing list, 324. See also sorting
AlternateText attribute, of Image server control,

143
always callback, 490
AmbiguousMatchException, 615
ampersand (&), in query string, 648
And (&) operator, 103–104
AND relationship, of selectors, 58
AndAlso (&&) operator, 103–104
angled brackets (< >), in HTML, 6, 167
animate method (jQuery), 520
animations, for DOM elements, 520
anonymous types, passing to view, 339
Apache license, 503
API Help page, 37
App Services (Azure), 691
App_Data folder, for ASP.NET application, 41
App_Start folder, 172

for ASP.NET application, 41
BundleConfig.cs fi le, 506, 509
IdentityConfig.cs fi le, 556
RouteConfig.cs fi le, 234–235, 249
Startup.Auth.cs fi le, 555

application. See also RentMyWrox application

confi guring to work with roles, 567–572
running without debugging, 629
state in, 147–148
testing, 720–722

Application Cache API (AppCache), 358
application event fi le (.asax), 39
Application Lifecycle Management (ALM) system,

661
Application State section, in trace output, 648
Application_Error method, 623, 651
Application_Start method, 628
ApplicationDbContext class, 544, 553, 578
ApplicationDbMigrations migration fi le, 586
ApplicationSigninManager class, 544, 545, 578
ApplicationUser class, 553, 559, 578, 583–584
ApplicationUserManager class, 544–545, 565

Create method, 557
appSettings element in Web.config fi le, 685

creating, 687
ArgumentNullException, 615, 617
ArgumentOutOfRangeException, 615
arithmetic operators, 92
Array.Resize method (C#), 98
arrays, 97–99, 126

sizing, 98–99
article element, 7
as keyword, 97
.asax (application event fi le), 39
ascending sort order, 326
.ascx fi le extension, 368
ASP (Active Server Pages), 2, 166
asp:Content element, 204, 227
asp:ContentPlaceHolder control, 201, 208, 227
asp.cs fi les, 130
ASP.NET

abstract layer for script download, 505
basics, 1–5
building application, 27–50. . See also

RentMyWrox application
caching options, 358–362
choosing best approach, 17–18
Microsoft community website for, 722
MVC and Web Form fi le difference, 46–47
state engine, 147–157

ASP.NET control errors, 77
ASP.NET MVC, 2, 15–18

AJAX in, 469–483
vs. ASP.NET Web API, 485, 487
vs. ASP.NET Web Forms, 15
Authorize attribute, 571–572
content view creation, 215–219

mailto:@Ajax.ActionLink

737

ASP.NET non-visual controls – author

bindex.indd 12/18/2015 Page 737

controllers, 170–175
convention-based approach to roles of template

views, 405
converting content page between layout pages,

218–219
customizable HandleError attribute, 628
data display, 310–317

lists, 311–314
for error pages, 627
exception management in controller, 627–629
fi le system structure, 41–43
fi le types, 38–41
layout page creation, 214–215
logging in with, 543–547
model approach of, 162–175
navigation, 248–263

structure creation, 253–255
nLog integration into application, 656
relationships management, 185
server caching in, 394
server controls and, 161
sorting and pagination in lists, 330–339
templates in, 400–408
validation of user input, 426–444

jQuery approach, 440–443
model attribution, 426–434

views, 162
adding validation, 435–443
syntax error, 611

for web services, 485
ASP.NET non-visual controls, 77
ASP.NET pages

life cycle events, 12–13
and ASP.NET state engine, 151–152
and control attributes, 386

ASP.NET server controls. See server controls
ASP.NET state engine

basics, 147–148
how it works, 148–157
and page life cycle, 151–152

ASP.NET template, selecting, 31
ASP.NET Web API, 485

vs. ASP.NET MVC, 485, 487
ASP.NET Web Forms, 10–14, 25

account management functionality, 47
AJAX in, 457–469
vs. ASP.NET MVC, 15, 46–47
caching confi guration, 359
confi guration fi les for authorization, 567–568
content page creation, 208–212
control library, 13–14

data controls, 297–310
events and page life cycle, 11–13
fi le types for, 43–46
logging in with, 543–547
mapping, 346–347
markup pages, error during runtime, 610
master page creation, 204–208
MVC design similarities, 17
navigation controls, 236–247
server errors, 610
sorting and pagination in server controls, 324–330
tracing, 647–658
TryUpdateModel method problem, 340
validating user input, 415–426
ViewState, 10–11

ASP.NET Web Parts, 146
AspNetRoles database table, 566, 570
AspNetUserRoles join table, 566, 570
AspNetUsers table, 557, 570
asp:ScriptManager, 458
asp:UpdatePanel, 458
.aspx fi le, 10

user control created in, 369
.aspx.cs fi le, 10
.aspx.vb fi les, 10, 130
assignment

shortcuts, 107
of variable value, 89–90

asterisk (*), as universal selector, 60
asynchronous communications, AJAX for, 450–451
asynchronous JavaScript, 38. See also AJAX

(Asynchronous JavaScript And XML)
asynchronous update, 466
AsyncPostBackTrigger, of UpdatePanel,

465, 466, 497
attr method, 532
attribute routing, 313
attributes

in HTML, 7–8, 25
on model properties, EditorFor and, 177
for validation in MVC, 426–429

Attributes attribute, of server controls, 141
audio element, 7
audio/mpeg type, 68
authentication, 30, 542–543, 578

options in Web Forms, 204
scaffolding for, 553
two-factor, 555

authentication cookie, 546, 558, 564
authentication protocol, 280
author, as style origin, 65

738

authorization – calling code

bindex.indd 12/18/2015 Page 738

authorization, 578
roles and, 566
in Web Forms, 204

authorization attribute, in ASP.NET MVC, 578
authorization element, in web.config fi le, 578
Authorize attribute, 555

override for list of roles, 571–572
AutoId value, 410

for ClientIdMode attribute, 380
automatic migrations, 588–589, 604
AutomaticMigrationDataLossAllowed

property, for database migration
confi guration, 588

AutomaticMigrationsEnabled property, for
database migration confi guration, 588

Autos window, 632–634, 643–644, 647
Azure. See Microsoft Azure
Azure Mobile service templates, 38
Azure SQL database, 724
Azure Web Apps, 724

B
background property (CSS), 62
background-color, of body element, 56
background-color property (CSS), 62
backslash (/), for URL, 234
backup, 661
base class, 227
base exception, 626
base page

centralized, 219–225
creating for ASP.NET Web Form pages, 221–225
inheritance from System.Web.UI.Page

class, 224
binding

control properties to values, 685
exception from, 615

Block Selection option in Visual Studio, 77
blue lock, in Solution Explorer, 675
body element, 6
background-color, 56

bool data type (C#), 91
Boolean data type (VB), 91
bootstrap, 71
border, in layout, 456
border property (CSS), 62, 63–65
border-bottom property (CSS), 62
BoundField, for data control, 298
braces. See curly braces ({ })

Branch dialog, 679
branching, 662, 678–680, 682
break keyword (C#), 110
breakpoint, 361, 629

adding, 189–190, 533
in code-behind fi le, 135–136
deleting, 630
hitting, 534
toggling on and off, 630

Breakpoint window, 634–636
Browse for Servers dialog, 283
browser

closing, 630
DOM enhancements, 500
information on HTML Interpretation, 454–456
validation displayed in, 440
viewing output in, 57

bug fi xes, of released version, 662
Bullet server control, 139
BulletedList server control, 139

special attributes, 142
BulletImageUrl attribute, of BulletedList

server control, 142
BulletStyle attribute, of BulletedList server

control, 142
BundleConfig.cs fi le, 436, 477, 509
bundles, 505, 506–512, 539

creating, 506
purpose of, 509
src attribute in, 511

business logic, 16
Button server control, 133

special attributes, 142
ButtonField, for data control, 298
byte data type, 90

C
C#, data types, 90–91
Cache-Control, 362
caching, 324, 358–363, 365

locations for, 359–360
and partial view, 393
pitfalls with, 362–363

Calendar server control, 139, 150
special attributes, 142

call stack, 613, 621, 660
Call Stack window, 636, 637
callbacks, chaining, 490
calling code, information on problems, 620

739

calling method – Community Edition of Visual Studio

bindex.indd 12/18/2015 Page 739

calling method, 111
cascade, 84
Cascading Style Sheets (CSS), 9, 51, 85

adding new fi le, 80
adding to pages, 68–71
animating set, 520–523
basics, 54–57
changing values, 455
class selector, 59
HTML and, 52–57
id selector, 59–60
jQuery functions for manipulating, 519–520
properties, 61–65
selectors, 58–61

grouping, 60–61
type selector, 59
universal, 60

Case Else (VB), 106
case\when statement, in SQL, 357
casting data types, 96–97
catch keyword, 612, 614

empty block, 617
categorization, in navigation, 263
CEIP (Customer Experience Improvement

Program), 272
centralized base page, 219–225
chain of exceptions, 626
chaining catch blocks, 614
change event (JavaScript), 524
changes

in code management, 198
persisting between postbacks, 10–11
undoing in source control system, 670–672

changeset, 670
Char data type, 91
check in, 682
check out, 682
Checkbox extension, type-safe, 176
CheckBox server control, 139
checkboxes, 192–193

adding set, 189
CheckBoxField, for data control, 298
CheckBoxList server control, 139, 140
checking code in and out, 669–677
checkmark, red, in Solution Explorer, 675
Checkout method, 660
checks, adding to code, 640
ChildrenAsTriggers property, of

UpdatePanel, 465
Choose DIrectory for Extracted Files dialog, 270
Claims property, of IdentityUser, 553
class selector (CSS), 59

Class selector (jQuery), 517
classes, 126

in OOP, 115–116
style for, 57

Classic ASP, 2, 166
clear element, 234
Clear method, for list, 100
click event, event handler for, 531
click event (JavaScript), 524
client and server, 2–5
ClientIdMode attribute, of server and user

controls, 380–381
client-side debugging, of jQuery, 532
client-side redirection, 256, 265
client-side scripts, debugging, 638–647
client-side validation, 434–443, 447

JavaScript for, 423–424
vs. server-side, 415, 444

close tags in HTML, 6
closing browser, 630
cloud services. See Microsoft Azure
code

checking in and out, 669–677
downloads, 27
errors in, 606
reusable, 367

Code fi les (.vb\.cs), 39, 40–41, 50
code fi rst approach, 320

database migration, 307
in Entity Framework, 286–295

code repository, 662
code-behind fi le, 43, 45

breakpoint in, 135–136
for control, editing, 371
and markup (.aspx) fi le, 157

Code-First Entity Framework, Identity framework
and, 557

collections, 99–101, 126
controls supporting, 140
LINQ join from two different, 602
in model, 180

colon (:), for name/value delimiter, 57
column in database, disabling sorting, 326
Command event, of Button server control, 142
CommandArgument attribute, of Button server

control, 142
CommandField, for data control, 298
CommandName attribute, of Button server

control, 142
comments, 89, 112–114
Community Edition of Visual Studio, 18

downloading, 19–20

740

compare validation – Create method

bindex.indd 12/18/2015 Page 740

compare validation, 447
CompareValidator server control, 416, 421, 422,

423
Operator property, 419

comparison
error, 608
operators for, 102–103
validation of, 414

CompatibleWithModel method, of DbContext.
Database class, 348

compilation, just-in-time, 29
compile-time errors, 606
computer hardware, minimum and maximum system

settings, for SQL Server, 275
concatenation operators, 92–93
conditions, in debugging, 636
Conditions selection window, 636
.config (confi guration fi le), 39, 43. See also Web.

config fi le
ConfigManager class, 690
Configuration class, for managing database

migrations, 587
confi guration item, missing from exception, 690
configuration keyword, 604
Configuration.cs class, 604
Confirm property, of AjaxOptions object, 470
confi rmation, of user, 554–555
confl icts in versions, Visual Studio identifi cation

of, 674
Connect to Server dialog (SQL Server Express),

276–277, 283
Connect to Team Foundation Server dialog, 665
connecting

pages to database, 340–347
to SQL Server database, 280
SQL Server to Visual Studio, 282–285
Visual Studio to Team Foundation Services (TFS),

664–669
connection string, 320

for SQL Express, 286–287
Connection Strings dialog (Azure), 710–712
constraints, for routing, 249
constructors, 120–121

in OOP, 120–121
Contains method, for list, 100
contains method (jQuery), 514
content

placement within element, 63–65
separating from display, 54

Content control, 227
Content directory, site.css fi le, 80
Content folder, 71

for ASP.NET application, 41
content page, creating in ASP.NET Web Forms,

208–212
content type, 68–69
content view, creating in ASP.NET MVC, 215–219
ContentControl header, 220
ContentPlaceHolder server control, 200, 227
ContentTemplate attribute, 497
ContentTemplate property, of UpdatePanel, 465
context fi le, updated, 473
ContextKey property, for database migration

confi guration, 588
Control event, 12
Control Tree section, in trace output, 648
Controller class

creating, 182–183
ValidateModel method, 442–443

controllers, 164
action, 196
of AjaxOptions object, 470
ASP.NET MVC and, 162
changes in, 442
error handling in, 627–629
folders for, 42
managing for partial views, 393–400
in MVC framework, 16, 170–175

methods, 171–172
snippet for, 485–486

controls, MVC vs. Web Forms, 162
controls element, in Web.config element,

377–378
ControlToCompare property, for validator, 418
ControlToValidate property, for validator,

418, 423
Convert class, 94
converting data types, 93–96
Convert.ToDouble, 95
ConvertValidationErrorsToString

method, 438
cookie

accessing user information in, 602
for authentication, 546, 564

check for set, 564–565
confi guration, 555–556

display in trace output, 648
coordinated universal time (UTC), 601–602
Create a Visual Studio Online dialog, 663
Create method, 340–341

in controller, 185
of DbContext.Database class, 348
overload, 174
for POST requests, 594

741

bindex.indd 12/18/2015 Page 741

Create Server dialog – datepicker function

Create Server dialog (Azure), 700, 701
Create Web App on Microsoft Azure dialog, 697
CreateDate property, for notifi cation, 372
CreateUser_Click method, 562, 592
credit card number, for Azure sign-up, 691
CreditCard attribute, for validation in MVC, 426
CreditCard value, for DataType validation

attribute, 427
cross-browser incompatibilities, jQuery and, 501
.csproj fi le, 28
CSS, 9. . See also Cascading Style Sheets (CSS)
.css (style sheet), 39
CSS Display:none elements, 77
css function, 532
css method (jQuery), 519
CSS properties window, 75–76
CssClass property, 159

of Menu control, 240
of server controls, 141

CType (VB), 97
curly braces ({ })

for if statement (C#), 105
for Razor code blocks, 166

Currency value, for DataType validation attribute,
427

custom data types, 91
custom error pages, 660
Custom value, for DataType validation attribute,

427
Customer Experience Improvement Program

(CEIP), 272
customErrors element, 622

mapping HTTP status code and web page, 622
CustomValidator server control, 416

D
data

binding, methods, 298
capturing and applying to profi le, 590–600
moving to remote server, 713–720
persistence of, 267
throwing exception due to incoming, 619–620
updating or inserting, 339–347

data annotation, 429–433
data caching, 358
data context class, 291
data controls

fi eld defi nitions, 298
in Web Forms, 297–310

data display controls, 144

data display, details views, 314–317
data entry form creation
DetailsView control for, 297–303
for saving information to database, 299–303

data entry form management controls, 144
data entry screen

with ASP.NET MVC framework, 180–186
building, 152–157

data fi rst, 320
data length validation, 447
data method (jQuery), 514
Data property, of Exception class, 620
data size, validation of, 414
data source controls, 144
data storage, 267
data types, 88–93, 126

validation of, 414
DataAdapter, error thrown by, 615
database, 267

connecting pages to, 340–347
getting data into, 713
migration script to get model changes into,

479–480
non-code fi rst approach to access, 347–357
parameters, 365
SQL Management Studio vs. Visual Studio,

284–285
for user information, 547

database context, adding to application, 287–295
database context fi le, 587
Database Engine Confi guration dialog (SQL Server

Express), 272, 275
database migration, code fi rst, 307
Database property, 348
Databases folder, for SQL Express, 281
database-seeding, output of, 719
DataSourceId property, of Menu control, 240
DataTextField attribute, of BulletedList

server control, 142
DataType attribute, for validation in MVC, 427
DataTypeCheck option, for CompareValidator

Operator property, 419
data-val attribute, in jQuery, 441–442
DataValueField attribute, of BulletedList

server control, 142
date, assigning, 119–120
Date data type (VB), 91
Date value, for DataType validation attribute, 427
DateForDisplay attribute, for user control,

383, 385
datepicker, 491
datepicker function, 407

742

bindex.indd 12/18/2015 Page 742

Datetime data type – Display attribute

Datetime data type (C#), 91
DateTime Display template, 402
DateTime type

Editor and Display template for, 401–408
formatting, 406–407

DateTime value, for DataType validation attribute,
427

DBConcurrencyException, 615
DbContext collection, 339
DbContext fi le, 289, 320
DbContext.Database class, methods, 348
DbEntityValidationResult, 442
dblclick event (JavaScript), 524
DbMigrationConfiguration class, properties,

587–588
dbo.Notifi cations table, View Data, 375
DbSets, adding to RentMyWroxContext fi le, 473
Debug level, of nLog logging, 657
Debug mode

code-behind fi le in, 156
warning dialog, 510–511

debugging, 159, 606, 629–647, 660
AJAX, 451
client-side scripts, 638–647
JavaScript, 532–536
jQuery, 532–536, 539
tools supporting, 629–637

keystrokes, 630
moving around in code, 629–631
toolbar, 630
windows, 631–634, 660

web application, 136
decimal data type, 91
decision-making operations, 101–106
if statement, 104–105

decrement operators, 107
default confi guration and route, for ASP.NET MVC

project, 249–252
default documents, 234, 265
default home page, Index method route of ““, 313
default keyword (C#), 106
default layout fi le, vs. default master page, 213
default master page, vs. default layout fi le, 213
default source control behavior, changing in Visual

Studio, 677–678
default style, 65

for element, 57
Default.aspx fi le, 234, 239

adding, 80
of RentMyWrox application, 374–376

defaultDocument element, 234

DefaultMode attribute, of DetailsView control, 301
defaults, for routing, 249
delay method (jQuery), 521
DELETE (HTTP), 3
Delete method, 186

of DbContext.Database class, 348
Delete parameter, for database, 309
DeleteCommand attribute, for data source

defi nition, 309
DeleteExistingFiles node, 704
DeleteMethod, for data binding, 298
deleting breakpoint, 630
“Deny All” approach, 571
deny element, “?” in, 571
deploying website, 683–724

preparing deployment environment, 691–695
preparing website for, 684–691

avoiding hard-coded settings, 684–685
Web.config fi le, 685. See also Web.

config fi le
publishing site, 695–720

moving data to remote server, 713–720
testing after, 720–722
Web Confi guration Manager class, 687–691

descending sort order, 326
descriptor in class, 115
deserialization, 484, 497
Design mode in Visual Studio, 56, 85

applying styles in, 72–73
Formatting toolbar in, 73
with visual aids enabled, 75

Details method, 644
in controller, 185

Details property, for notifi cation, 372
details views, 314–317
Details.cshtml page, adding AjaxOptions

object properties, 529
DetailsView server control, 297–303, 320
AutoGenerateRows attribute, 300–301

developer, creating and throwing exceptions, 617
development operations (DevOps), 661
Development Settings and Color Theme selection

screen, 20, 22–23
DevOps. See development operations (DevOps)
DirectCast (VB), 97
directories. See folders
DisappearAfter property, of Menu control, 241
display, 410

separating content from, 54
Display attribute

adding to model, 431

743

Display method – Equal option

bindex.indd 12/18/2015 Page 743

for validation in MVC, 427
Display method, 169
Display property

for user control, 385
for validator, 418

Display property (CSS), 62
display templates, 400, 646

for date formatting, 406
for DateTime type, 401–408

Display/DisplayFor helper, 169, 196
displayed item, vs. view source output, 463–464
DisplayEndDate property, for notifi cation, 372
DisplayFor method, and date format consistency,

406
DisplayFor template, 407
DisplayInformation method, 459, 467
display:none CSS property, 77
DisplayStartDate property, for notifi cation, 372
DisplayType attribute, for user control, 383
div element, 7, 83, 153–154, 470

as container for server calls, 493
.dll fi les, 28, 38
<!DOCTYPE html> declaration, 6
documentation, 112–114
DOM (Document Object Model), 454–455

animations for elements, 520
attaching data to elements, 514
browser enhancements to, 500
checking for loaded, 513
and JavaScript, 503–504
jQuery for modifying, 519–532

appearance changes, 519–523
event handling, 523–532

and running scripts, 513
DOM Explorer, 453–454

Computed tab, 455
Layout tab, 456
Network tab, 456
Styles tab, 454–455

done callback, 490, 494
dot notation relationship, 180
double data type, 90
downloading

code for book, 27
logger, 655–658
SQL Server Express, 269
Visual Studio 2015, 19–23

dropdown, code for book, 187
DropdownList extension, type-safe, 176
Duration value, for DataType validation attribute,

427
Dynamic Data controls, 146
dynamic generation of content, 2

E
each method (jQuery), 514
Ecma International, 500
ECMAScript, 500, 539
Edit method, 341–342

in controller, 185, 186
with validation, 438

Edit view, 190
Editor helper, 169, 177
editor templates, 400, 410

for DateTime type, 401–408
EditorFor helper, 169, 177, 441–442
EditorFor template, 407
element braces (< >), for HTML code, 6, 167
elements in HTML, 25

empty, 77
id attribute of, 59

e-mail, confi rmation for user, 555
Email property, of IdentityUser, 553
EMailAddress attribute, for validation in MVC,

427
EmailConfirmed property, of IdentityUser, 553
embedded styles, 85

creating, 71–72
empty catch block, 617
Empty Containers option in Visual Studio, 77
empty template, 34–35
EnableClientScript property, for validator, 418
Enabled attribute

of server controls, 141
for trace confi guration, 649

EnabledViewState attribute, of server controls,
141

EnableSortingAndPagingCallbacks attribute,
for GridView control, 325

EnableViewState control property, 159
encapsulation, 373
End keyword (VB), 115
Ends With selector (jQuery), 516
Entity Data Model Wizard, 288
Entity Framework, 307, 320

approach to data access, 285–297
code fi rst, 286–295
data fi rst, 285

intermediate database table, 294
strength, 347
for updating and inserting data, 339
visual approach, 293

enum, 382
DisplayType as, 385

Equal option, for CompareValidator Operator
property, 419

744

bindex.indd 12/18/2015 Page 744

Equals selector – fi lter

Equals selector (jQuery), 517
equals sign (=), in query string, 648
error handling, 606–629

in controller, 627–629
global, 621–627

Error level, of nLog logging, 657
error messages, 77

302 status code, 255
404, resource not found, 190–191
404 error, resource not found, 260
display for validation failure, 424
from Id absence from URL, 173–174
from incorrect type in user control, 383
“migrations failed” response, 586
from multiple siteMapNodes in sitemap element,

240
“NullReferenceException,” 184
in validation controls, 444
validation warning, 382
views for displaying, 628

error pages, custom, 621–627
ErrorMessage property

text display in ValidationSummary server
control, 423

for validator, 418
errors, 605

types, 606–612
Errors property, 557
Even selector (jQuery), 517
event handlers, 11, 124

adding, 155
for click event, 531
with jQuery, 523–532
jQuery library and, 501

EventArgs, 124
events, in OOP, 123–124
_EVENTVALIDATION input, 137
Exception class, 612

properties, 620–621
exceptions, 605, 660

ambiguous action, 250–251
from array access outside index range, 98
avoid throwing, 442
catching and handling, 612–621
catching then rethrowing, 618, 626
common types, 615–616
confi guration item missing from, 690
in views, 628

ExceptionType property, of HandleError, 627
ExecuteSql method, 350
ExecuteSqlCommand method, 350, 365

of DbContext.Database class, 348

execution stack, 613
Exists method, of DbContext.Database

class, 348
Exit For (VB), 110
expiration period, for caching, 358
expression binding, 724
Expression Editor dialog, 685
expression syntax, 685–686
Expressions dialog, 686
extend method (jQuery), 514
external stylesheet, converting in-page styling too,

69–71
extract directory, for SQL Server Express, 270

F
F12 Developer tools, 451–457, 497, 536

importance, 463
F12 Network tab

calling view, 462
without UpdatePanel, 462

F12 Response body
with UpdatePanel, 463
without UpdatePanel, 462

Facebook, logins from, 546
fadeIn method (jQuery), 521, 531
fadeOut method (jQuery), 521, 531
fadeToggle method (jQuery), 521
failure callback, 490
Failure value, in SignInStatus enum, 545
Fatal level, of nLog logging, 657
Feature Selection dialog (SQL Server Express),

272, 273
fi elds, 126

change in, 148
in OOP, 116

Fields list, in control defi nition, 301
FileBytes attribute, of FileUpload server

control, 142
FileContent attribute, of FileUpload server

control, 142
FileExtensions attribute, for validation in MVC,

427
FileName attribute, of FileUpload server control,

142
FileNotFoundException, 615, 620
fi les, working with, 38–46
FileUpload server control, 139

special attributes, 142
fi lter, for database retrieval, 338

745

FilterConfi g class – hard-coded settings

bindex.indd 12/18/2015 Page 745

FilterConfig class, 628
finally keyword, 612–613
Find operator, for database data, 295
FindById method, 565
fi ring event, 123
First operator, for database data, 295
FirstDayOfWeek attribute, of Calendar server

control, 142
FirstOrDefault operator, for database data, 296
fl oat data type, 90
focus event (JavaScript), 525
folders

for ASP.NET application, 33, 41
mapping local to online, 667, 668

Font attribute, of server controls, 141
font element, 52
Font property (CSS), 62
Fonts folder, for ASP.NET application, 41
footer control, Web.config fi le and, 685
for loop, 106–108
Foreach/For Each loops, 108–109
ForeColor attribute, of server controls, 141
Form Collection section, in trace output, 648
form element, 7, 133
form extensions, 175–177
format, validation of, 414
Formatting Marks option, in Design mode, 74
Formatting toolbar

Apply New Style, 82
in Design mode, 73

forwarding page, 258
friendly URLs, 234–236, 265
from\in keyword (LINQ), 338
function keys

for debugging, 630
F4 key to open Properties window, 243
F5 for Debug mode, 136, 629
F11 for running code one line at time, 136, 629
F12 for Developer tools, 453

functions, 110–112
from lambda expressions, 170
naming conventions, 505

G
garbage collection, 294
“garbage in, garbage out,” 413
Generate Scripts menu, 715–716
GenerateEmptyAlternateText attribute, of

Image server control, 143
generics, 99–100

GET (HTTP), 3, 482
Create method and, 185
Delete method and, 186
disallowing JSON object return through, 489
and security, 489

Get dialog, for retrieving specifi c version, 673
get keyword, 118
GetApplicationUser method, 561, 563, 565
GetBaseException method, 626
GetCurrentClassLogger method, 657
getJSON method, 489–490, 497
GetLastError method, 626
GetShoppingCartSummary method, 475, 593
getStoreHours function (JavaScript), 491, 494,

507
GetUserId method, 563, 564, 565
GetUserManager method, 565
GetValidationErrors method, 442
Git, 663–664
global error handler, 622, 660
Global.asax fi le, 622, 627
Application_Error method, 623, 651, 656
Application_Start method, 628

Globalize module, 502
Globally Unique Id (GUID), 347, 481
GNU General Public License, 503
Google, logins from, 546
Google Chrome, Developer tools, 451–452
grandchild object, 660
Greater Than selector (jQuery), 517
GreaterThan option, for CompareValidator

Operator property, 419
GreaterThanEqual option, for

CompareValidator Operator property, 419
green plus sign, in Solution Explorer, 675
GridView control, 320

adding, 303–310
SelectedIndexChanged method of, 310
sorting in, 324–330

grouping. See also bundles
in queries, 357
selectors in CSS, 60–61

GUID (Globally Unique Id), 347, 481

H
h1 element, 7

style for, 56–57
HandleError attribute, 627–628, 660

limitations, 628
hard-coded settings, avoiding, 684–685

746

bindex.indd 12/18/2015 Page 746

hasClass method – IDE

hasClass method (jQuery), 519
HasFile attribute, of FileUpload server control,

142
HasFiles attribute, of FileUpload server control,

142
hash symbol (#), for Id selector, 59
hashing, 558, 578
head element, 6

reference link for script download, 505
header element, 7
headers, content sections, in master page, 200
Headers Collection section, in trace output, 648
Height attribute, of server controls, 141
height method (jQuery), 519
height of element, 456
Height property (CSS), 62
helpers, form-building, 175–194
Editor and EditorFor, 177
form extensions, 175–177
model binding, 177–194

HelpLink property, of Exception class, 620
HiddenField extension, type-safe, 176
HiddenField server control, 139
hide method (jQuery), 522
history of fi le check-ins, 675–676
hitting breakpoint, 534
hobbyList, adding, 345
HobbyReport method, 351
home page

design needs of, 78
initial styles for, 80–83

hosting view, sending model from, 399
hover event (JavaScript), 525, 532
href attribute, 8

of link element, 68
.html (Web fi le), 39
HTML 5, 5–9, 25

attributes in, 7–8
commonly used elements, 6–7
converting element to server control, 143
and CSS, 52–57
and DOM, 500
example, 8–9
for Html.ActionLink HTML helper, 481–482
markup, 5–7
in MVC, 164–165
simple web page example, 52–53

Html element, 6
HTML elements

converting into server control, 575
intermingling with code snippets, 164

HTML fi les, 43

styles in, 53
HTML output, validation helper and, 441
HTML script element, src attribute for

downloading script fi le, 505
HTML server controls, 14, 159
Html value, for DataType validation attribute, 427
Html.Action method, 480–481
HTML.ActionLink helper, 265
@Html.ActionLink method, 252–253
@Html.DisplayFor method, 169
#Html.InputType, 175
HtmlMeta class, 225
HTML.RenderPartial extension method, 389
HtmlValidationMessageFor helper, 434
HTTP (HypertextTransfer Protocol), 2–5

and AJAX, 449
examining request for potentially dangerous

content, 424–426
mapping status code and web page, 622
as stateless protocol, 10
verbs, 3

and attributes, 174–175
HTTP request, 2
HTTP response, 4
HttpContext class

accessing instance, 565
Current property, 565
exception accessible on, 626

HttpContext.Current.User.IsInRole,
572–573

HttpGet attribute, 175
HttpMethod property, 481

of AjaxOptions object, 470
HttpRequestValidationException, 615
HyperLink server control, 139

special attributes, 142
HyperlinkField, for data control, 298
HyperText Markup Language. See HTML 5
HypertextTransfer Protocol (HTTP). See HTTP

(HypertextTransfer Protocol)

I
icons, folder or branch, 679
id attribute, of HTML element, 59
Id property

of IdentityUser, 553
of UpdatePanel, 465

id selector, in CSS, 59–60
Id selector (jQuery), 517
IDE (integrated development environment), 25, 28

mailto:@Html.ActionLink
mailto:@Html.DisplayFor

747

identity – Internet Explorer

bindex.indd 12/18/2015 Page 747

identity
adding profi le information to, 582
and security, 542

Identity database, 602
Identity framework, 546, 558, 566, 578

Code-First Entity Framework and, 557
support for roles in authorization, 570–572

IDENTITY_INSERT, 720
IdentityConfig.cs fi le, 556
IdentityModels.cs fi le, System.Component.

DataAnnotations, 583
IdentityResult object, 557, 578
IdentityUser class, 553–554
@if, in element defi nition, 336
if statement, 104–105
IIS (Internet Information Services), 5
IIS management console, RentMyWrox as virtual

application, 233
Image server control, 139

special attributes, 143
ImageField, for data control, 298
ImageHeight attribute, of Hyperlink server

control, 142
image/png type, 69
ImageUrl attribute, of Hyperlink server control,

142, 143
ImageUrl value, for DataType validation attribute,

427
ImageWidth attribute, of Hyperlink server

control, 142
img element, 6
Immediate window, 636–637
inArray method (jQuery), 514
Include method, 566, 660
IncludeStyleBlock attribute, and menus, 244
IncludeStyleBlock property, of Menu control,

241
increment operators, 107
Index method, 311

in controller, 185
route of ““ for default home page, 313

Index.cshtml page, AjaxOptions, 529–530, 531
IndexOutOfRangeException, 615
Individual User Accounts, for authentication, 32
information

calling server and displaying retrieved, 490–495
in debugging, analysis, 631
gathering from users, 414–415

information capture form, for user demographics,
180–186

Informative Text area, on home page, 79
Inherit value, for ClientIdMode attribute, 381
inheritance, 61, 84, 126

in OOP, 121–123
from System.Web.UI.Page class, 224

InheritClientIdMode value, 410
Inherits keyword (VB), 122
Init event, 12
InitComplete event, 12
InitialCreate fi le, 308
Initialization stage, in ASP.NET page life-cycle, 11
inline comments, 112–113
inline styles, 85

creating, 71–72
InnerException property, 626

of Exception class, 620
in-page styling, converting to external stylesheet,

69–71
input. See user input
input element, 7, 154

relationship to model, 175
input logic, 16
Insert method, for list, 100
Insert parameter, for database, 309
InsertCommand attribute, for data source

defi nition, 309
InsertionMode property, 481

of AjaxOptions object, 470
InsertItem method, 301
InsertMethod, for data binding, 298
InsertRange method, for list, 101
installing

jQuery UI package, 404
logger, 655–658
Visual Studio 2015, 19–23

Instance Confi guration dialog (SQL Server Express),
274

instantiation, 127
of array, 98, 99
constructors for, 120–121

int data type, 90
integrated development environment (IDE), 25, 28
Intellisense, 55, 82

and enums, 382
and Error List pane, 607
for help selecting OnClick event, 133–134
support for server controls, 131

interacting with team, 677–678
Internal Server error, 4
International Atomic Time, 601
International Telecommunications Union, 601
Internet

beginnings, 1–2
growth, 1

Internet Explorer, 9
enabling debugging, 533

748

Internet Options – launching Visual Studio 2015

bindex.indd 12/18/2015 Page 748

F12 Developer tools, 451–457, 497, 536
breakpoint, 534–535

Internet Options, Accessibility, 65
Internet service providers, 2
Interval property, of Timer control, 469
invalid data, error when trying to save, 433
invalid property, error from, 611
InvalidCastException, 616
inventory, Web page for adding, 152–157
IOException, 620
IP address, confi rmation screen to add, 714
is methods (jQuery), 515
IsActive fl ag, 293
IsAdminOnly property, for notifi cation, 372
IsInRole method, 579
isLarge variable, 531
isPersistent value, 545
IsValid property, 424
Item_Id property, 480
ItemController.cs fi le, 596–597
ItemList.aspx fi le, 239

J
JavaScript

adding breakpoints, 638
adding fi le, 508
bundling fi les, 506–512
for client-side validation, 423–424, 434
common events, 524–528
debugging, 532–536
early development, 500
error in, 513
problems with universal adoption, 500
removing from layout page, 509

JavaScript fi le (.js), 39, 43, 44
JavaScript libraries, 482

jQuery as, 499
JavaScript Object Notation (JSON), 146

to add store hours, 487–489
job titles, vs. roles, 576
jQuery, 434

in AJAX, 489–495
basics, 499–512
bundles, 506–512
custom attributes in, 441
debugging, 532–536, 539
DOM modifi cation with, 519–532
event handlers with, 523–532
modules, 501–502
practical tips, 536–537

Promise Framework, 490
role of, 500–503
selecting items using, 516–519
syntax, 512–519
utility methods, 514–516

jQuery Core, 513
jQuery library

availability for client download, 505
features supported, 501
including, 503–505

jQuery Mobile module, 501
jQuery Mouse Wheel Plugin, 502
jQuery NuGet package, 539
jQuery UI module, 501
jQuery UI package, 407

installing, 404
jQuery Unobtrusive library, 482
jQuery validation library, 434
jQuery validation module, 502
jQuery Validation package, 435
jQuery.org website, 537
.js (JavaScript fi le), 39
JSON (JavaScript Object Notation), 146

to add store hours, 487–489
Json method, 489, 497
just-in-time compilation, 29

K
Key attribute, 301–302

for Entity Framework, 293
key name, state engine and, 148
KeyNotFoundException, 616
keypress event (JavaScript), 525
key-value pairs

in query string, 178–179
serializer and, 484

L
Label server control, 133, 139
labeling, 682
labeling versions, 676–677
lambda expressions, 169–170
#Html.InputType, 175
HtmlValidationMessageFor helper and, 434

Language Integrated Query (LINQ), 338
join from two different collections, 602

launching Visual Studio 2015, 20

749

layout – margins

bindex.indd 12/18/2015 Page 749

layout
in ASP.NET MVC, 198

creating, 212–215
converting content page between different, 218–219
creating page with MVC, 214–215
impact of having, 217
master pages for consistency, 198–219
model for page, 392

Left property (CSS), 62
Less Than selector (jQuery), 518
LessThan option, for CompareValidator

Operator property, 419
LessThanEqual option, for CompareValidator

Operator property, 419
li element, 7
License Terms dialog, for SQL Server Express,

271–272
licensing agreement, open source, 502–503
life cycle

of control, 148
events for ASP.NET pages, 12–13

and state engine, 151–152
steps, 11

line breaks, removal, 512
link element, 68
LinkButton server control, 139

special attributes, 142
linking page, to stylesheets, 68
LINQ (Language Integrated Query), 338

join from two different collections, 602
Linux, ASP.NET on, 18
list controls, 140
List type, 99
ListBox server control, 139
listeners, web.config fi le with enabled, 653
lists, 127

in Razor, 168
styles, 327

literal string, in Razor, 167
Load event, 12
Load stage, in ASP.NET page life-cycle, 11
Load ViewState stage, in page life cycle, 151
LoadComplete event, 13
LoadingElementId property, of AjaxOptions

object, 470
local browser cache, 358
local copy for caching, 358
local directory

mapping to online directory, 667, 668
publishing to, 701

LocalOnly attribute, for trace confi guration, 649
Locals window, 634, 635, 641, 646
location

for caching, 359–360
for project fi le storage, 30

Locator attribute, 707–708
lock icon, blue, in Solution Explorer, 675
lock on checkout, prompt for, 678
LockedOut value, in SignInStatus enum, 545
LockoutEnabled property, of IdentityUser, 553
LockoutEndDateUtc property, of IdentityUser,

553
log fi le, 656
logger, downloading, installing, and confi guring,

655–658
logging, 654–658, 660
logging in, with ASP.NET, 543–547
logic, adding to user controls, 381–387
logic errors, 606, 607–608, 660
logical operators, 103–104
login area, on home page, 79
login controls, 145
login information, for SQL Express, 286
login screen

for CheckOut link, 550
for users who are not authenticated, 575–576
for Visual Studio, 20, 22

Login.aspx.cs fi le, 563
LoginPath property, 555–556
Logins property, of IdentityUser, 553
logo area, on home page, 78
long data type, 90
loops, 106–110

exiting, 110
Foreach/For Each loops, 108–109
for loop, 106–108
while loop, 109

M
MainPageManagement.js fi le, adding breakpoints,

533
maintenance, of released version, 662
malicious users, preventing data input from, 444
Manage NuGet Packages dialog, 403
Manage.cshtml fi le, 437, 439
ManageHobby Web Form, code-behind fi le, 300
ManageItem page, 379
Management folder, for SQL Express, 281
many-to-many relationship, 294
mapping local directory to online directory, 667
MapRoute template, 313
Margin property (CSS), 63–65
margins

in layout, 456

750

Margins and Padding visual aids – model

bindex.indd 12/18/2015 Page 750

styles for, 156
Margins and Padding visual aids, 75, 77
markup (.aspx) fi le, 28, 159

and code-behind, 157
master pages, 43, 198–219

changing in Web Form, 211–212
creating and using, 198–208
header content sections, 200
link between content page and, 208
nesting, 202–203
ScriptManager in, 457
selecting, 153
user controls in, 373

Master property, of HandleError, 627
max-age, for Cache-Control, 362
MaximumDynamicDisplayLevels property, of

Menu control, 241
MaximumValue property, for validator, 418
MaxLength attribute

problem from, 609–610
of TextBox server control, 143
for validation in MVC, 428

memory
freeing, 294
limits, 616
for SQL Server Express, 275

menu area, on home page, 78
Menu control, 236, 237, 240–247, 265

adding, 241–245
attributes, 240–241
confi guring in Design mode, 242
data source for, 242
HTML created by, 244
sitemap display in, 244
styles for, 245–247

menus, options based on roles, 573–575
merge method (jQuery), 515
merging, 678–680, 682
Message property, of Exception class, 621
meta tags, 220
metadata, 220, 225
methods, 110–112, 127

adding comments, 113
in OOP, 120

Microsoft, logins from, 546
Microsoft Azure, 663–664, 691–695, 724

App Services, 691
dashboard page, 695
database being created, 701
Free Trial, 692–693
home page, 692
hosting project in, 33–34

logging into account, 699
managing deployment of project to, 30
registering for, 692–695
sign-up page, 693
SQL Database link, 710
SQl Database listing, 699
SQL Database service, 691
Subscription is Ready page, 694
Web Apps listing, 699

Microsoft Internet Explorer. See Internet Explorer
Microsoft Internet Information Services Express

(IIS Express), 49
Microsoft Internet Information Services (IIS), 5
Microsoft jQuery Unobtrusive Validation, 435
Microsoft Live account, 662–663
Microsoft SQL Server, 267

for user accounts, 32
Microsoft SQL Server Express, 268–285, 321

connecting to Visual Studio, 282–285
data types supported, 281
indicator for running, 280
installing, 269–276
minimum and maximum system settings, 275
selecting data from database, 295–297
table creation window, 279

Microsoft SQL Server Management Studio, 276–281,
321

folders, 281
vs. Visual Studio, 284–285

Microsoft Unobtrusive jQuery libraries, 503
migration confi guration fi le, 587
Migration directory, 307–308, 604
migration script, 308, 479–480

Package Manager Console for, 584
processing, 473

migrations, automatic, 588–589, 604
“migrations failed” response, 586
MigrationsDirectory property, for database

migration confi guration, 588
MIME type, 68
MinimumValue property, for validator, 418
MinLength attribute, for validation in MVC, 428
mis-assignment error, 608
MIT license, 502
mobile devices

jQuery Mobile module for, 501
two-factor authentication, 555

model, 165–166. See also ASP.NET MVC
collections in, 180
defi nition, validation helper and, 441
sending from hosting view, 399
workfl ow for, 163

751

model binding – null

bindex.indd 12/18/2015 Page 751

model binding, 169, 177–194, 297
Model class, creating, 181–182
Model View Controller (MVC) design, 2, 15, 25

control over output, 17
testability, 16–17
vs. Web Forms, 17, 46–47

Models folder, for ASP.NET application, 41
Models namespace, 553
ModelState, 447
ModelState.IsValid property, 301
monitoring process, 456
Mono software platform, 18
MostRecent attribute, for trace confi guration, 649
mousedown event (JavaScript), 525
mouseenter event (JavaScript), 526
mouseleave event (JavaScript), 526
mousemove event (JavaScript), 526
mouseout event (JavaScript), 527
mouseover event (JavaScript), 527
mouseup event (JavaScript), 527
moving around in code, 629–631
moving data to remote server, 713–720
Mozilla Firefox, developer tools, 452, 497
MultilineText value, for DataType validation

attribute, 427
Multiple-select extension, type-safe, 176
MVC (Model View Controller), 2, 25

templates, 36, 50
MVCLayout.cshtml fi le, 436–437, 507, 689–690

in RentMyWrox application, 573

N
names

of code, 662
of functions, 505
of routes, 248
of variables, 89
of views, 395
for Web App in Azure, 697

name/value delimiter, colon (:) for, 57
NavigateUrl attribute, of Hyperlink server

control, 142
navigation, 229–266

absolute and relative URLs, 230–234
in ASP.NET MVC, 248–263

default confi guration and route, 249–252
of call stack in Visual Studio, 613
default documents, 234
friendly URLs, 234–236

practical tips, 262–263
programmatic redirection, 255–258
server-side redirects, 258–262
structure

creating, 252–255
goal of, 230–236

navigation controls, 145
from ASP.NET Web Forms, 236–247

nested elements, in HTML page, 5–6
nested exceptions, 626
nesting master pages, 202–203
.NET Framework, 2
Netscape Navigator 2, 500
New ASP.NET Project window, 33
New Custom Profi le dialog, 700, 702
New Database dialog (SQL Server Express), 278
New keyword, 121
New Project dialog (Visual Studio), 30, 48

authentication options, 31–32
New Style dialog, 73, 82
Next button, event handler for, 460
Next keyword, 107
NextMonthText attribute, of Calendar server

control, 142
nLog

adding to application, 655–658
logging levels, 657

No authentication option, 32
non-code fi rst approach, to database access,

347–357
NoNullAllowedException, 616
NOSQL databases, 268
Not (!_) operator, 103–104
Not EqualTo selector (jQuery), 517
NotEqual option, for CompareValidator

Operator property, 419
Notification.cs class, 370–371
notifi cations

AJAX to support display, 458–466
controller with actions, 397
properties, 372
user controls for, 369–373

Notifications_Tick method, 467
NuGet Package Manager, 407, 435

command to run, 320
search results, 476

NuGet packages, 503
jQuery, 539

null
error from parameter value, 174
exception from reference, 615

752

NullReferenceException – padding

bindex.indd 12/18/2015 Page 752

searching Locals window for, 646
validating that input is not, 423, 433
variable conversion and, 97

NullReferenceException, 616, 617, 646

O
object data type, 91
Object Explorer (SQL Server), 276, 277, 282, 289,

321
RentMyWrox database, Tables folder, 292

object-oriented programming (OOP), 114–115, 127
classes, 115–116
constructors, 120–121
events, 123–124
fi elds, 116
inheritance, 121–123
methods, 120
properties, 117–120

objects
constructors, 120–121
exceptions as, 612
returning single to page, 451
translation into string for transference, 484

Odd selector (jQuery), 518
offset, in layout, 456
ol element, 7
OnBegin event, 531
OnBegin property, of AjaxOptions object,

470, 531
onchange attribute, calls to JavaScript function,

504–505
onchange event, 336
OnClick event, 154, 159

assigning event handler, 133–134
of Button server control, 142

OnClientClick event, of Button server control,
142

OnComplete event, 531
OnComplete property, of AjaxOptions object, 470
OnFailure event, 531
OnFailure property, of AjaxOptions object, 470
online account setup, in Visual Studio 2015,

662–669
online directory, mapping local directory to,

667, 668
online profi le, 23
online resources, for web application development,

722
OnLoad method, 224

overriding, 222

Only Child selector (jQuery), 518
Only Of Type selector (jQuery), 518
OnSuccess event, 531
OnSuccess property, of AjaxOptions object, 470
OnTick event handler, 469
OOP. . See also object-oriented programming (OOP)
open source, 502–503, 539
open tags in HTML, 6
Open Web Interface for .NET (OWIN), 544
OpenFile attribute, of FileUpload server control,

142
Operator property, for validator, 419
operators, 91–93

arithmetic, 92
concatenation, 92–93

Or (|.) operator, 103–104
OR relationship, of selectors, 58
Order class, 472–473
order confi rmation view, 647
order controller, 647
Order_Id property, 480
OrderBy method, 295
OrderBy operator, for database data, 296
OrderByDescending operator, for database

data, 296
OrderController controller, 644
OrderDetail class, 472, 478–479
OrElse (||) operator, 103–104
Organization Accounts authentication option, 32
organizing code, 110–114
Orientation property, of Menu control, 241
origin of style, 65
OS X, ASP.NET on, 18
OutOfMemoryException, 616
output

caching, 361
control over, in ASP.NET MVC, 17
viewing in browser, 57

override, 224
OwinContext, 544, 565, 579

P
p element, 7
Package Manager Console, 430–431

for migration script, 584
update-database, 586
in Visual Studio 2015, 304–305

padding, 77
in layout, 456

753

bindex.indd 12/18/2015 Page 753

Padding property – PostBackTrigger

Padding property (CSS), 63–65
Page class, 424
@Page directive, Trace attribute in, 649
page layout. See layout
Page Not Found errors, 628
Page_Load method, 134, 149, 343, 371, 384,

459–460
breakpoint in, 135–136
setting values in, 386

Page_PreRender event handler, 386
Page.IsPostBack property, 150
Page.IsValid, 447
PageOutput attribute, for trace confi guration, 649
PagerSettings-FirstPageText attribute, for

GridView control, 325
PagerSettings-LastPageText attribute, for

GridView control, 325
PagerSettings-Mode attribute, for GridView

control, 326
PagerSettings-PageButtonCount attribute, for

GridView control, 326, 329
PagerSettings-Position attribute, for

GridView control, 326, 329
PagerSettings-Visible attribute, for GridView

control, 326, 328
pages. See also layout; templates

connecting to database, 340–347
default for Admin directory, 568
displaying links by, 329
Start page for Visual Studio, 23
Web design, 51–85

for adding inventory items, 152–157
Pages element, Controls node, 377
PageSize attribute, for GridView control,

326, 329
pagination, 323, 324–339, 365

in MVC lists, 330–339
previous page vs. next page, 337
in Web Form server controls, 324–330

Panel server control, 139
param element, 113
parameters, and SQL injection, 349
Parent selector (jQuery), 519
parentheses [()]

for methods, 111
for VB arrays, 97

Parse method, 96
parseHTML method (jQuery), 515
parser error, 610
parsing engine, and input fi eld, 180
Partial extension method, 410
Partial method, parameters available, 389

partial postback, timer for, 469
partial views

adding to template page, 480–481
in ASP.NET MVC, 387–400

adding to hosting view, 389–393
creating, 388–389

confi guration for new, 474
controller management for, 393–400
method signatures for, 390

password, 31, 543, 545
for SQL Server, 280
validation, 556
visibility in trace output, 648

Password extension, type-safe, 176
Password value, for DataType validation attribute,

427
PasswordHash, 557
PasswordHash property, of IdentityUser, 553
PasswordValidator class, 579
Path.Combine method, 347
Pending Changes view, 669–670
performance

caching and, 358
and tracing, 654

persistence of data, 267
personalization, defi nition, 604
personalizing websites, 581–604

initial confi guration, 582–590
profi les, 582–603

creating, 582–590
username display, 599–600

Phone attribute, for validation in MVC, 428
PhoneNumber property, of IdentityUser, 554
PhoneNumber value, for DataType validation

attribute, 427
PhoneNumberConfirmed property, of

IdentityUser, 554
Picture property, 317
pixel spacing, in layout, 456
placeholders, for span element, 469
plus sign (+), green, in Solution Explorer, 675
position method (jQuery), 520
position property (CSS), 63
POST (HTTP), 3
Create method and, 185, 594
Edit method and, 186

PostalCode value, for DataType validation
attribute, 427

postback, 10, 137, 159
Postback event handling stage, in ASP.NET page

life-cycle, 12
PostBackTrigger, 497

754

precedence – RecentItems view

bindex.indd 12/18/2015 Page 754

of UpdatePanel, 465
precedence, 85
style attribute and, 71–72

predictable ClientIdMode, 410
Predictable value, for ClientIdMode attribute,

381
Prefi x selector (jQuery), 516
Preinit event, 12
PreLoad event, 12
Premium Edition of Visual Studio, 18
PreRender event, 13
PreRenderComplete event, 13
Preserve keyword (VB), 98–99
Preview Database Updates dialog, 284
Previous button, event handler for, 460
PrevMonthText attribute, of Calendar server

control, 142
private caching, 362
private keyword, 116
problems, fi nding. See debugging
process template, in TFS, 664
Product area, on home page, 79
Professional Edition of Visual Studio, 18
profi le manager, 582
profi les, 582–603

capturing and applying data, 590–600
creating, 582–590

programming, 202. See also object-oriented
programming (OOP)

arrays and collections, 97–101
basics, 87–110
comments and documentation, 112–114
converting and casting data types, 93–97
data types and variables, 88–93
decision-making operations, 101–106
loops, 106–110
organizing code, 110–114

methods, 110–112
project templates, support for authentication, 31–32
projects, available types, 28–29, 50
prompt for checkout, 678
proof of identity, 542
properties, 85, 127

in CSS, 61–65
in empty template, 34
error from invalid, 611
of GridView control, 303–304
mapping order, 178
in OOP, 117–120
in server control markup, 132
for standard controls, 140–143

Properties window, F4 key to open, 243

proxy servers, 359
pseudocode, 202
public caching, 362
public keyword, 116
publish process in Visual Studio, 705
publishing profi le, 724

creating, 704
.pubxml fi les, 704–705, 708
PUT (HTTP), 3

Q
quality, exception policy and, 618
queries, 350–359

grouping in, 357
query string, 178–179

to parameter mapping, 365
QueryString Collection section, in trace output, 648
question mark (?)

and Immediate window, 637
for query string, 178, 648

question mark (?), in query string, 648
queue method (jQuery), 515
queue of work, by jQuery, 513
QUnit module, 502

R
RadioButton extension, type-safe, 176
RadioButton server control, 139
RadioButtonList server control, 139
RAM. See memory
Range attribute

adding to model, 431
for validation in MVC, 428

range of data, validation of, 414, 447
RangeValidator server control, 416, 417
rapid application development (RAD), 13
Razor, 166–170

approach to content display, 217
attribute creation by, 441–442
commands, 40
syntax, 164
type-safe extensions, 175–176

RDBMS (Relational Database Management System),
268, 321

ready event (JavaScript), 527, 528
ready method, 513
RecentItems view, 597

755

red check – RentMyWrox application

bindex.indd 12/18/2015 Page 755

red check, in Solution Explorer, 675
ReDim keyword (VB), 98–99
redirection, programmatic, 255–258
redirectMode attribute, 627
references, in empty template, 34–35
Register command, 410
Register.aspx page, 591–592
Register.aspx.cs fi le, CreateUser_Click

method, 562
RegisterBundles method, 436
registering

for Microsoft Azure, 692–695
user controls, 373–374
user controls sitewide, 376–379

regular expressions, validation of, 447
RegularExpression attribute, for validation in

MVC, 428
RegularExpressionValidator server control,

416
rel attribute, of link element, 68
Related Work Items section, 670
Relational Database Management System (RDBMS),

268
relationships, many-to-many, 294
relative URLs, 230–234, 265
reliability, caching and, 358
remote server

moving app to. See deploying website
moving data to, 713–720
publishing set of fi les to, 704

RemoteOnly setting, for custom error page, 622
Remove method, for list, 101
RemoveAt method, for list, 101
removeClass method (jQuery), 520
RemoveRange method, for list, 101
Render event, 13
RenderAction method, 395, 411
RenderBody command, 213, 215, 217, 227
RenderBody method, 598
Rendering stage, in ASP.NET page life-cycle, 12
RenderingMode property, of Menu control, 241
RenderMode property, of UpdatePanel, 465
RenderPartial method, 411

parameters available, 389
@RenderSection command, 213–214, 227
RenderSection command, providing content to,

217
RentMyWrox application, 23–24

Add New Item dialog, for base page, 221
additions

content page and linking to master page,
210–211

controls to Update Panel, 467–469
data annotation, 429–433
database context, 287–295
error pages, 623–627
jQuery, 528–532
logic to user controls, 383–385
nLog, 655–658
partial view, 390–393
roles, 568–572
transformations, 708–712
user controls to page, 374–376
Web Forms validation, 420–424
Web.config transformations, 708–712

AJAX for notifi cation display, 458–466
caching for, 360–362
calling server and displaying retrieved information,

490–495
capturing and applying data to profi le, 590–600
Checkout window, 642
converting ASP.NET MVC content page between

layout pages, 218–219
creating with ASP.NET MVC template, 47–49
custom templates, creating and using, 401–408
data entry form

creation, 186–194
for saving information to database, 299–303

database for, 278–279
database Tables folder, 292
debugging

with F12 Developer tools, 453–456
faulty code, 638–647

demographic information form for, 180–186
Details.cshtml page, 529
error when checking out, 641
GridView control

adding, 303–310
confi guration, 327

hobbylist, 342
home page

list on, 311–314
styles, 80–83

Index method, 331–332
Index.cshtml page, AjaxOptions, 529–530, 531
installed jQuery packages, 504
interactive control, creating, 132–136
JavaScript

debugging, 532–536
fi les bundle, 506–512

JSON object to add store hours, 487–489
MainPageManagement.js fi le, adding

breakpoints, 533
Manage NuGet Packages, 403

756

RentMyWrox.css fi le – RESTful web services

bindex.indd 12/18/2015 Page 756

Manage view, 343
Menu control styles, 245–247
MVC layout page creation, 214–215
MVSLayout.cshtml fi le, 573
navigation structure creation

adding menu control, 241–245
with ASP.NET MVC, 253–255
server-side redirects, 259–261
user redirection, 256–258

NotificationsControl.ascx , 467
order detail screen, 645
page views required, 78
populated online application, 719
product details page, 315–317
registration capability, 547–548
scripts, 529–530
shopping cart, 530

AJAX calls to add items, 471–-483
decreasing response size for adding item,

483–484
display of empty, 478
updating based on user, 559–566

ShoppingCartController, 642–643
ShoppingCartSummary class, 478–479
sitewide user control registration, 377–379
state management, 148–152
store hours, hard-coded settings, 684–685
tracing confi guration, 651–654
user control for special notifi cations, 369–373
UserDemographicsController fi le, 340–347
views

adding partial view, 395–400
code, 352–353

as virtual application, 233
Web Forms Master page, 204
Web page for adding inventory items, 152–157

RentMyWrox.css fi le
selectors, 468
styles

.storeOpen/storeClose, 492

.checkout, 549
for details, 316
for list display, 312–313
.moveLeft, 477
for recentItems, 598
#shoppingCartsummary, 478

Replication folder, for SQL Express, 281
Reporting controls, 146
reports, 350–357
repository, 682

selecting projects to use, 666

representational state transfer (REST), 37. . See also
RESTful web services

request body, information sent as part of body,
UpdatePanel and, 464

Request Cookies Collection section, in trace output,
648

Request Details section, in trace output, 648
request headers, 456
Request object, Querystring property, 179
Request stage, in ASP.NET page life-cycle, 11
request validation, 448

in ASP.NET MVC, 443–444
in ASP.NET Web Forms, 424–426

Request Validation, exception when failure, 615
RequestLink attribute, for trace confi guration, 649
request/response, parts, 456
request-response model, 2–3

in HTTP, 170
Required attribute

adding to model, 431
for validation in MVC, 428

required fi elds, validation of, 414, 448
RequiredFieldValidator server control, 417,

420–421, 422, 423
RequireDigit property, for password validation,

556
RequiredLength property, for password

validation, 556
RequiredLowercase property, for password

validation, 556
RequireNonLetterOrDigit property, for

password validation, 556
RequiresVerification value, in SignInStatus

enum, 545
RequireUppercase property, for password

validation, 556
research materials, on generics, 100
response

decreasing size for adding item to shopping cart,
483–484

wait for, 450
Response Cookies Collection section, in trace output,

648
Response object, adding cookie to, 546
ResponseRedirect, 622, 627
Response.Redirect command, 255

vs. Server.TransferRequest, 262
Response.RedirectPermanent command, 255
ResponseRewrite, 622, 627
responsive design approach, 71
RESTful web services, 37

757

returns element – serialization

bindex.indd 12/18/2015 Page 757

returns element, 113
reusable code, 367
reverse merge, 680
rmw:ControlName element, 374
roles, 543, 566–576, 579

adding, 568–572
Authorize attribute override for list, 571–572
confi guring application to work with, 567–572
vs. job titles, 576
menu options based on, 573–575
programmatically checking, 572–576

Roles property, of IdentityUser, 554
root directory, and URL, 232
route values, for AjaxOptions object, 470
RouteConfig.cs fi le, 172, 251–252
routing, in ASP.NET MVC, 172–174, 248–252, 265
Ruler and Grid option

in Design mode, 74–75
and visual placement of content, 76

rules
confi guration for nLog, 657
in CSS, 58

runat=”server” attribute, 130, 143, 159, 200, 232
runtime errors, 606, 609–612, 660
run-time stack, 613

S
salting, 558, 579
sample application. See RentMyWrox application
Save or Publish Scripts dialog, 717, 718
Save ViewState stage, in page life cycle, 151
SaveChanges method, 301

debug value after, 302–303
SavedItem_Clicked method, 155–156
SaveItem_Clicked method, 344, 422
SaveStateComplete event, 13
saving

data using Entity Framework, 339
invalid data, error when trying, 433

scaffolding, 146, 194
in ASP.NET, 48–49
for authentication selection, 553
for controller, 185, 396
for data display, 310

ScriptManager control, 457, 498
adding, 461

ScriptManagerProxy, 498
ScriptManagerProxy control, 457
scripts

for AJAX server controls, 461
client-side, debugging, 638–647
migration, 308

Scripts folder
for ASP.NET application, 41
new packages in, 436

@Scripts.Render command, 477
search engine optimization (SEO), 255
section, calling, 451
section element, 7
@Section keyword, 227
section keyword (Razor), 217
security, 541–579. See also authentication

basics, 542–566
authentication, 542–543
authorization, 543
identity, 542
logging in, 543–547

login controls, 145
managing in SQL Server, 280
practical tips, 576
roles, 566–576
web application confi guration for, 547–558

Security folder, for SQL Express, 281
SecurityStamp property, of IdentityUser, 554
Seed method, 587
Select Case statement (VB), 105–106
select element, 336–337
sortExp attribute, 336

Select Existing Web App dialog, 696
select keyword (LINQ), 338
SelectedDate attribute, of Calendar server

control, 142
SelectedDates attribute, of Calendar server

control, 142
SelectedIndexChanged method, of GridView

control, 310
selecting

data from SQL database, 295–297
items using jQuery, 516–519

SelectMethod, for data binding, 298
selectors, 85

in CSS, 58–61
grouping, 60–61
universal, 60

in jQuery, 490
semicolon (;)

for end of line, 57, 89
inside Razor block, 167

SEO (search engine optimization), 255
serialization, 484, 498

mailto:@Scripts.Render

758

server and client – sortExp attribute

bindex.indd 12/18/2015 Page 758

server and client, 2–5
server caching, 411

in MVC, 394
Server Confi guration dialog, 272, 274
server control types, 137–145

data controls, 144
HTML, 143–144
login controls, 145
navigation controls, 145
standard controls, 138–143

general attributes, 141
special attributes, 142–143

validation, 144–145, 416–417
server controls, 13, 129–159

adding to UpdatePanel, 467–469
basics, 129–130
ClientIdMode attribute, 380–381
converting HTML element into, 575
defi ning in pages, 130–137
HTML created by, 137
properties for, 140–143
runat attribute, 130, 143, 159, 200, 232
special attributes, 142–143
user control affect on ID, 379–381
vs. user controls, 368

Server Explorer, 307, 321
Add New Stored Procedure, 354
Data Connections section, 550
Database, Tables, 570

Server Objects folder, for SQL Express, 281
Server property, 626
Server Variables section, in trace output, 648
ServerAndClient setting, 360
server-based code, embedding in web page, 166
server-side redirects, 258–262, 265
server-side validation, 448

vs. client-side, 415, 444
Server.Transfer method, 258, 261

exception, 260
Server.TransferRequest method, 258, 261
Session State section, in trace output, 648
set keyword, 118
Set method, for writing to Web.config fi le, 691
Set Scripting Options dialog, 716
SetAttribute transformation, 712
setTimeout method, 495
shelvesets, 672, 682

fi nding saved, 674–675
shopping cart, 530

AJAX calls to add items to, 471–-483
decreasing response size for adding item, 483–484

displaying empty, 478
updating based on user, 559–566

ShoppingCartController page, 642–643
Checkout method, 552

ShoppingCartController.cs fi le, 549–550, 593
ShoppingCartSummary class, 472, 481

converting object to JSON string, 483
ShoppingCartSummary.cs fi le, 593
ShoppingCartSummary.cshtml page, 549,

593–594
short data type, 90
shouldLockout, 545
show method (jQuery), 522
ShowGridLines attribute, of Calendar server

control, 142
ShowStartingNode property, 243
SignalR, 165
SignInStatus enum, 545, 579
Single data type, 90
Single Page Application (SPA), 451, 498

template, 37–38
site pages, adding user controls, 373–381
site.css fi le, 80
SiteMap, 43, 145

example, 237
SiteMapDataSource control, 244
siteMapNode, error from multiple in sitemap

element, 240
SiteMapPath control, 236
Site.Master fi le, 548, 573–574
sitewide registration, of user controls, 376–379, 411
sizing, array, 98–99
Skin fi le, 43
Skip method, 339
SkipLink anchor tag, 244–245
slideDown method (jQuery), 522
slideToggle method (jQuery), 522
slideUp method (jQuery), 523
smoke testing application, 720–722, 724
Solution Explorer, 55

Add Selection to Source Control dialog, 667
ApplicationDbMigrations directory, 585
for getting specifi c version of code, 673
Publish Web dialog, 696
seeing changed fi les in, 675
Source Code menu, 673

SortByCategory setting, for trace information
display, 649

SortByTime setting, for trace information display,
649

sortExp attribute, of select element, 336

759

SortExpression attribute – submit event

bindex.indd 12/18/2015 Page 759

SortExpression attribute, 326
for database columns, 329–330

sorting, 323, 324–339, 365
change and return to fi rst page, 337
in MVC lists, 330–339
in Web Form server controls, 324–330

source branch, 680
source code, with bundling, 511
source control, 661–682

branching and merging, 678–680
changing default behavior in Visual Studio,

677–678
reasons for using, 662
shelvesets, 672
storing changes without overwriting current

version, 672
undoing changes, 670–672

Source Control Explorer window, 668, 679
Source mode in Visual Studio, 56, 85
Source property, of Exception class, 621
SPA (Single Page Application), 451, 498

template, 37–38
span element, 7, 74, 83, 470

for Timer control, 469
special attributes, of server controls, 142–143
specifi city, rules for, 66–67
Split method, 111
Split mode in Visual Studio, 56, 70, 85
SQL (Structured Query Language), 268, 321

queries and stored procedures, 350–359
SQL Database service (Azure), 691, 724
SQL injection attack, 349, 365
SQL Server. See also Microsoft SQL Server

development vs. production, 691
SQLDataSource server control, 309, 321
SqlQuery command, 356–357, 365
SqlQuery method, of DbContext.Database class,

348
square brackets ([]), for C# arrays, 97
src attribute

in bundle, 511
for user control registration, 374

stack, 613
stack trace, 660

breaking, 626
StackOverflowException, 616
StackTrace property, of Exception class, 621
stale data, 363, 365
standard controls, 159
start condition, in for loop, 107
Start page, for Visual Studio, 23

Start stage, in ASP.NET page life-cycle, 11
Startup_Auth page, 544

authentication cookie setup, 546
Startup.Auth.cs fi le, 555, 565
state

in application, 147–148
management, 148–152

state engine in ASP.NET
basics, 147–148
how it works, 148–157
and page life cycle, 151–152

stateless protocol, HTTP (HypertextTransfer
Protocol) as, 10

Static value, for ClientIdMode attribute, 380,
411

StaticDisplayLevels property, of Menu control,
241

status codes in HTTP, 4
stepping through code execution, 629
stopping debugging, 630
store hours

hard-coded settings, 684–685
transformed, 710

stored procedures, 350–359
StoreOpenController.cs fi le, 689
string data type, 91

converting other types to, 93–96
StringLength attribute

adding to model, 431
error caused by, 432
for validation in MVC, 429

style attribute, 71
of server controls, 141

style element, 53, 68, 70
Visual Studio IntelliSense and, 55

style property, editing values, 455
<style/> tags, 57
styles. See also Cascading Style Sheets (CSS)

applying, 72–78
default, for elements, 57, 65
in HTML fi les, 53
for lists, 327
managing, 78–84
for margins, 156
for Menu control, 245–247
precedence in, 65–67

stylesheets, 43, 67–72
code, 206–207
embedded and inline, creating, 71–72
linking page to, 68

submit event (JavaScript), 528

760

submitButton_Click method – ToString method

bindex.indd 12/18/2015 Page 760

submitButton_Click method, 134–135, 136
subquery, 357
subroutines, 110–112
Success value, in SignInStatus enum, 545
summary element, 113
switch statement (C#), 105–106
synchronous communications, 450
syntax errors, 606–607, 660
System Confi guration Checker, for SQL Server

Express, 270
System.Component.DataAnnotations, 583
System.Web.Mvc.AllowHtml class, 444
System.Web.UI.Page class, 134

error from page not extending, 225
inheritance from, 219, 224

T
TabIndex attribute, of server controls, 141
Tag Marks, in Design mode, 75
TagName attribute, for user control registration, 374,

376, 411
TagPrefix attribute, for user control registration,

374, 376, 411
Take operator, for database data, 296
target branch, 680
target for nLog, 657
Target Location dialog (Azure), 702, 703
Target property, of Menu control, 241
TargetDatabase property, for database migration

confi guration, 588
TargetSite property, of Exception class, 621
team, interacting with, 677–678
Team Explorer - Connect dialog, 664
Team Explorer pane, 667

context menu, 671
Pending Changes view, 669–671, 675

Team Foundation Server list, 666
Team Foundation Services (TFS), 661–678

connecting Visual Studio to, 664–669
linking Visual Studio to account, 668
version control, 663–664

template region labels, 77
TemplateField, for data control, 298
templates, 227, 505

adding partial view, 480–481
in ASP.NET MVC, 36, 400–408
Azure Mobile service, 38
empty, 34–35
master page as, 153, 198
New ASP.NET Project window section for, 30

process, in TFS, 664
Single Page Application, 37–38
Web API, 36–37
Web Forms, 35–36

Test Professional Edition of Visual Studio, 18
testability, of model-view-controller (MVC) design,

16–17
testing application, 720–722
Text property

for CompareValidator Operator property, 419
for validator, 423

Text to Display, for AjaxOptions object, 470
Text value, for DataType validation attribute, 427
text-align property (CSS), 63
textarea element, 154
TextArea extension, type-safe, 175
textbox, state engine and, 150
TextBox element (ASP), 133
TextBox extension, type-safe, 175
TextBox server control, 132, 139

special attributes, 143
TextChanged event, of TextBox server control, 143
text-decoration property (CSS), 63
text/html type, 68
TextMode attribute, of TextBox server control, 143
text/plain type, 68
TFS, 682. See also Team Foundation Services (TFS)
ThenBy operator, for database data, 296
ThenByDescending operator, for database data,

296
third-party software

interaction with, 546–547
for logging, 655

this keyword, 634
tilde (~)

in URLs, 208–209, 232
and virtual application, 233

time, coordinated universal time (UTC), 601–602
Time value, for DataType validation attribute, 427
Timer server control (AJAX), 466, 469
TimeSpan element, 689
title element, 6
Title property, for notifi cation, 372
toggle method (jQuery), 523
toggleClass method (jQuery), 520
toolbar

Add Comment, 113
for debugging, 630–631

Toolbox menu in Visual Studio 2015, 131
validation controls, 415

ToolTip attribute, of server controls, 141
ToString method, 93, 96

761

Trace details page – user controls

bindex.indd 12/18/2015 Page 761

Trace details page, 650
with error, 653

Trace Information section, in trace output, 648
Trace level, of nLog logging, 657
Trace listing page, 649
TraceError method, 651
TraceInformation method, 651
TraceMode attribute, for trace confi guration, 649
TraceWarning method, 651
tracing, 647–658, 660

adding your own information, 650–654
confi guring, 651–654
output, 648
and performance, 654

Transact-SQL (T-SQL), 268
TransferTemporaryUserToRealUser method,

561, 564, 565–566
Transform attribute, 712
transformations, 724. See also Web.config

transformations
items for, 707
process, 706

TreeView control, 236, 237–238
Triggers element, 466
Triggers property, of UpdatePanel, 465
trim method (jQuery), 515
trunk, 679–680
trust relationship, 546–547
try keyword, 612, 614
TryParse method, 347
TryUpdateModel method, 301, 340, 365
Twitter, logins from, 546
two-factor authentication, 555
TwoFactorEnabled property, of IdentityUser,

554
type attribute, of link element, 68
Type property, for validator, 419
type selector (CSS), 59
type-safe extensions, 169, 175–176

U
UIHint attribute, 405
UI-specifi c logic, in MVC application, 16
ul element, 7

in Menu control, 247
Ultimate Edition of Visual Studio, 18
underscore (_), for layout fi lename, 215
unique identifi er, 293

for database items, 268
Unit Test project setup, 33

unit tests, 16, 30
JavaScript framework for, 502

universal selector, 60
Universal selector (jQuery), 519
Unload event, 13
Unload stage, in ASP.NET page life-cycle, 12
Unobtrusive approach, 539

AJAX, 498
Microsoft-specifi c jQuery library, 503
Native jQuery library, 442
for validation, 448

Update parameter, for database, 309
UpdateCommand attribute, for data source

defi nition, 309
update-database command, 308–309, 321, 587,

588–589
UpdateItem method, 344
UpdateMethod, for data binding, 298
UpdateMode property, of UpdatePanel, 465
UpdateModel method, 365
UpdatePanel server control, 457, 498

adding controls to, 467–469
AsyncPostBackTrigger setting in, 497
common properties, 465
F12 Network tab without, 462
information in request body and, 464
output from, 461

UpdateProgress server control (AJAX), 466, 495,
498

UpdateTargetId property, 481
of AjaxOptions object, 470

Upload value, for DataType validation attribute,
427

uploaded fi le, storing on server, 156
URIs (uniform resource identifi ers), 230
Url attribute, for validation in MVC, 429
Url value, for DataType validation attribute, 427
@Url.Action method, 252–253
URLs (uniform resource locators)

absolute and relative, 230–234
for online account, 663
pattern for route, 249
request for, 173
tilde (~) in, 208–209
values passed in query string, 648
for Visual Studio Online account, 665

user, as style origin, 65
User Account Control acceptance, 20
User Account Control dialog, 269
user controls, 14, 368–387

adding logic to, 381–387
adding to site pages, 373–381

mailto:@Url.Action

762

user demographic information capture form – versions

bindex.indd 12/18/2015 Page 762

attributes for registration, 374
ClientIdMode attribute, 380–381
creating, 369–373
effect on ID of server controls, 379–381
error from incorrect type, 383
implementing, 374
markup page for, 372
registering, 373–374
setting values programmatically, 385–386
sitewide registration, 376–379
for special notifi cations, 369–373
UpdatePanels added to, 458
ViewState and, 386

user demographic information capture form,
180–186

user information
accessing, 559
accessing in cookie, 602

user input. See also validation of user input
checkboxes for, 189, 192–193
converting to specifi c type, 423
dropdown to control, 187–188
exception from potentially malicious, 615

User property, 559
user redirection, 256–258
user style sheets, creating, 65–66
UserDemographics class, 291
UserDemographics class, data annotation for,

429–433
UserDemographicsController class
ActionResults HobbyReport method, 351
Create method, 437–438

UserDemographicsController.cs fi le, 340–347
Index method, 402

UserHelper class, 563, 566, 600
UserHelper.cs fi le, 595
using statement, 559–561

UserId, 481
User.Identity, 575
User.IsInRole method, 572–573
UserList.aspx fi le, 239
username, 31, 543, 545

displaying, 599–600
for SQL Server, 280

UserName property, of IdentityUser, 554
users

confi rmation of, 554–555
gathering information from, 414–415
roles, 543
shopping cart update base on, 559–566
working with, in application, 558–566

UserVisit class, 584

using statement, 222
for database, 294
to reference object, 189

UTC (coordinated universal time), 601–602
utility methods, 512, 514–516

V
Validate Connection dialog (Azure), 698
ValidateInput attribute, 443–444
ValidateModel method, 442–443, 448
ValidateRequest=”False”, 425
validation controls, 14, 144–145
validation of user input, 413–448

check before SaveChanges method, 442
client-side, 434–443
in MVC, 426–444

adding to view, 435–443
model attribution, 426–434

need for, 444
password, 556
tips, 444
in Web Forms, 415–426

validation warning, 382
ValidationExpression property, for validator,

419
ValidationGroup property, for validator, 420
ValidationSummary server control, 417, 420, 444

confi guration, 437
ErrorMessage text display in, 423

Value property, of HTML element, 143
variables, 88–93

defi ning, 88–91
displaying active, 632
vs. methods, 111
monitoring values, 631–632
in Razor, 167

VaryByParam attribute, for caching, 362
.vb\.cs (Code fi le), 39
.vbhtml fi le(View fi le), 39
VB.NET, data types, 90–91
.vbproj fi le, 28
VBScript, 2
verbs

attributes, 196
in HTTP protocol, 3

versions, 661
getting specifi c from server, 672–675
history and comparison, 675–676
labeling, 676–677

763

video element – web server

bindex.indd 12/18/2015 Page 763

management system, 662
managing for jQuery, 505
Visual Studio identifi cation of confl icts, 674

video element, 7
video/mpeg type, 69
view fi le, 312
View fi le type (.vbhtml), 39
View property, of HandleError, 627
ViewBag object, 392–393
ViewData object, 392–393
ViewDataDictionary class, 392
ViewModel, 392, 479
views, 50, 166. See also partial views

adding partial view to host, 389–393
adding validation, 435–443
changing name, 190–191
data elements in, validation helper and, 440–441
dialog to add, 183
for displaying error messages, 628
exception in, 628
folders for, 42
as layout, 213
in MVC, 15–16, 162, 163–164
vs. partial view, action returning, 394–395

Views directory, with Templates directories, 401
_viewstart fi le, 216
ViewState, 10–11, 137, 159

and user controls, 386
VIEWSTATEGENERATOR input, 137
virtual applications, 232–233
virtual directories, 232
virtual keyword, for database property, 290
Visibility property (CSS), 63
visibility:hidden property, 77
Visible Borders option in Visual Studio, 77
Visual aids in Visual Studio, 77
Visual Aids option, in Design mode, 74
visual effects, for DOM elements, 520
Visual Studio 2015, 18–23

AJAX controls available, 457
Browser Link, 165
connecting SQL Server to, 282–285
connecting to Team Foundation Server, 664–669
creating and applying styles, 72–76
creating websites, 28–38
debugging JavaScript and jQuery code in, 534–535
downloading and installing, 19–23
Error List in, 607
launching, 20
navigating call stack in, 613
online account setup, 662–669
Package Manager Console, 304–305

publish process in, 705
sample application, 23–24
scaffolding, 48–49
Toolbox menu, 131
versions, 18–19
viewing values of objects, 629

Visual Studio Online account, URLs for, 665
Visual Studio Online, initial login message, 663
Visual Studio, Start page for, 23
void, 127

W
W3C (World Wide Web Consortium), 5

website, 6
wait for response, 450
Warn level, of nLog logging, 657
warning dialog, in debug mode, 510–511
Watch windows, 631–632, 633
WCF (Windows Communication Foundation), 484
Web API template, 36–37
web application

confi guration for security, 547–558
debugging, 136
resources for developing, 722

Web application project, 29, 50
web browser companies, product differentiation, 5
web communications. See AJAX (Asynchronous

JavaScript And XML)
Web Confi guration Manager class, 687–691
Web Developer Express edition of Visiual Studio, 18
Web fi le (.html), 39. See also HTML
Web Form page, 55
Web Forms, 2. See also ASP.NET Web Forms

changing master pages in, 211–212
event handlers, 124
events, 123
GridView control, 303–311
IDE views in Visual Studio, 56
markup and code-behind, 162
for server controls in form elements, 136

Web Forms template, 35–36, 50
web page

design, 51–85. See also layout
for adding inventory items, 152–157

returning single object to, 451
Web Parts (ASP.NET), 146
web resources, jQuery.org website, 537
web server controls, 14. See also server controls
web server, deployed, but empty, 713

764

web services – zero-indexed lists

bindex.indd 12/18/2015 Page 764

web services, 36, 498
in AJAX websites, 483–489
defi nition, 484
ways of creating, 484

Web site project, 50
vs. Web application project, 28

Web User Control, 43
Web.config fi le, 287, 376–377
appSettings element, 685

creating, 687
authorization element in, 578
compilation element, 706
compilation mode, 509, 510
configSections element, 655
connection strings section, 289–290,

547–548
custom error pages in system.web node, 622
with listeners enabled, 653
roles and, 568, 570
Set method for writing to, 691
setting default documents in, 234
system.web element, 624–625

enabling tracing, 649
listener confi guration, 651–652
pages element, 377

Web.config transformations, 705, 706–712
adding to application, 708–712
preview, 709

WebConfigurationManager class, 724
Web.Debug.config fi le, 706

preview, 712
WebForms.Master master page, 299
Web.Release.config fi le, 706
Web.RentMyWroxDemo.config fi le
appSettings, 709
connectionStrings, 710

WebResource.axd handler, 423–424
Web.sitemap fi le

creating, 238–240
example, 237

websites. See also deploying website
consistency, 197–227
multiple applications, 232
Visual Studio for creating, 28–38

Weekly Specials advertising page, redirection for, 257
where keyword (LINQ), 338
Where operator, for database data, 296
while loop, 109
white space, removal, 512
white-list approach to security, 576
Width attribute, of server controls, 141

width method (jQuery), 520
width of element, 456
Windows 10 Edge browser, 453
Windows Authentication, 32
WIndows Authentication Mode, 280
Windows Communication Foundation (WCF), 484
windows for debugging, 631–634

Autos window, 632–634
Breakpoint window, 634–636
Call Stack window, 636
Immediate window, 636–637
Locals window, 634, 635
Watch windows, 631–632, 633

Windows Live account, for Microsoft Azure, 692
Windows Services, 275
Word selector (jQuery), 516
workspace, 682

confi guring, 667
World Wide Web Consortium (W3C), 5

website, 6
Write method, 651
WriteIf method, 651
WriteLine method, 651
writing trace, 654

X
xdt preface, for transform attribute, 706
xdt:Transform attribute, 706
XML. See also AJAX (Asynchronous JavaScript And

XML)
comments, 113
for Menu control, 247
sitemap as, 239
Web.config fi le as, 707

XPath, 707

Y
“Yellow Screen of Death,” 621

Z
zero-indexed lists

arrays as, 97
collections as, 99

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction�������������������
	Chapter 1 Getting Started with ASP.NET 6.0���
	An Introduction to ASP.NET vNext���������������������������������������
	Hypertext Transfer Protocol (HTTP)���
	Microsoft Internet Information Services��

	HTML 5�������������
	HTML Markup������������������
	Attributes in HTML�������������������������
	HTML Example�������������������

	ASP.NET Web Forms������������������������
	ViewState����������������
	ASP.NET Web Forms Events and Page Lifecycle��
	Control Library����������������������

	ASP.NET MVC������������������
	Testability������������������
	Full Control over Output�������������������������������

	Web Forms and MVC Similarities�������������������������������������
	Choosing the Best Approach���������������������������������

	Using Visual Studio 2015�������������������������������
	Versions���������������
	Downloading and Installing���������������������������������

	The Sample Application�����������������������������
	Summary��������������

	Chapter 2 Building an Initial ASP.NET Application��
	Creating Websites with Visual Studio 2015��
	Available Project Types������������������������������
	Web Site Project–Based Approach��������������������������������������
	Web Application Project������������������������������

	Creating a New Site��������������������������
	While Creating a Project�������������������������������
	Empty Template���������������������
	Web Forms Template�������������������������
	MVC Template�������������������
	Web API Template�����������������������
	Single Page Application Template���������������������������������������
	Azure Mobile Service Template������������������������������������

	Working with Files in Your Application���
	File Types of an ASP.NET MVC Application���
	File System Structure of an ASP.NET MVC Application��
	File Types of an ASP.NET Web Forms Application���

	MVC and Web Form File Differences��
	Creating the Sample Application��������������������������������������
	Summary��������������

	Chapter 3 Designing Your Web Pages���
	HTML and CSS�������������������
	Why Use Both HTML and CSS?���������������������������������
	An Introduction to CSS�����������������������������

	More CSS���������������
	Selectors����������������
	Properties�����������������
	Precedence in Styles���������������������������

	The Style Sheet����������������������
	Adding CSS to Your Pages�������������������������������
	Creating Embedded and Inline Style Sheets��

	Applying Styles����������������������
	Managing Styles����������������������
	Summary��������������

	Chapter 4 Programming in C# and VB.NET���
	Introduction to Programming����������������������������������
	Data Types and Variables�������������������������������
	Defining a Variable��������������������������
	Operators����������������

	Converting and Casting Data Types��
	Converting Data Types����������������������������
	Casting Data Types�������������������������

	Using Arrays and Collections�����������������������������������
	Using Arrays�������������������
	Using Collections������������������������

	Decision-Making Operations���������������������������������
	Comparison Operators���������������������������
	Logical Operators������������������������
	If Statement�������������������
	Switch/Select Case Statement�����������������������������������

	Loops������������
	For Loop���������������
	Foreach/For Each Loops�����������������������������
	While Loop�����������������
	Exiting Loops��������������������

	Organizing Code����������������������
	Methods: Functions and Subroutines���
	Writing Comments and Documentation���

	Object-Oriented Programming Basics���
	Important OO Terminology�������������������������������
	Classes��������������
	Fields�������������
	Properties�����������������
	Methods��������������
	Constructors�������������������
	Inheritance������������������
	Events�������������

	Summary��������������

	Chapter 5 ASP.NET Web Form Server Controls���
	Introduction to Server Controls��������������������������������������
	Defining Controls in Your Pages��������������������������������������
	Types of Controls������������������������
	Standard Controls������������������������
	HTML Controls��������������������
	Data Controls��������������������
	Validation Controls��������������������������
	Navigation Controls��������������������������
	Login Controls���������������������
	AJAX Extensions����������������������
	Other Control Sets�������������������������

	The ASP.NET State Engine�������������������������������
	How the State Engine Works���������������������������������
	Summary��������������

	Chapter 6 ASP.NET MVC Helpers and Extensions���
	Why MVC Has Fewer Controls Than Web Forms��
	A Different Approach���������������������������
	Razor������������
	Controller�����������������
	Routing��������������
	HTTP Verbs and Attributes��������������������������������

	Form-Building Helpers����������������������������
	Form Extensions����������������������
	Editor and EditorFor���������������������������
	Model Binding��������������������

	Summary��������������

	Chapter 7 Creating Consistent-Looking Websites���
	Consistent Page Layout with Master Pages���
	Creating and Using Master Pages in ASP.NET Web Forms���
	Creating a Content Page in ASP.NET Web Forms���
	Creating Layouts in ASP.NET MVC��������������������������������������
	Creating a Content View in ASP.NET MVC���

	Using a Centralized Base Page������������������������������������
	Summary��������������

	Chapter 8 Navigation���������������������������
	Different Ways to Move around Your Site��
	Understanding Absolute and Relative URLs���
	Understanding Default Documents��������������������������������������
	Friendly URLs��������������������

	Using the ASP.NET Web Forms Navigation Controls��
	Using the Menu Control�����������������������������

	Navigating in ASP.NET MVC��������������������������������
	Routing��������������
	Default Configuration and Route��������������������������������������

	Creating a Navigational Structure��
	Programmatic Redirection�������������������������������
	Programmatically Redirecting the Client to a Different Page��
	Server-Side Redirects����������������������������

	Practical Tips on Navigation�����������������������������������
	Summary��������������

	Chapter 9 Displaying and Updating Data���
	Working with SQL Server Express��������������������������������������
	Installation�������������������
	SQL Server Management Studio�����������������������������������
	Connecting in Visual Studio����������������������������������

	Entity Framework Approach to Data Access���
	Data First�����������������
	Code First�����������������
	Selecting Data from the Database���������������������������������������

	Data Controls in Web Forms���������������������������������
	Details View�������������������
	Web Form GridView������������������������

	Data Display in MVC��������������������������
	List Display in MVC��������������������������
	Details Views��������������������

	Summary��������������

	Chapter 10 Working with Data—Advanced Topics���
	Sorting and Pagination�����������������������������
	Sorting and Pagination in Web Form Server Controls���
	Sorting and Pagination in MVC Lists��

	Updating and/or Inserting Data�������������������������������������
	A Non-Code First Approach to Database Access���
	Using SQL Queries and Stored Procedures��

	Caching��������������
	Different Ways to Cache Data in ASP.NET Applications���
	Common Pitfalls with Caching Data��

	Summary��������������

	Chapter 11 User Controls and Partial Views���
	Introduction to User Controls������������������������������������
	Creating User Controls�����������������������������
	Adding User Controls���������������������������
	Sitewide Registration of a User Control��
	Managing the IDs of Any Controls���������������������������������������

	Adding Logic to Your User Controls���

	Using Partial Views��������������������������
	Adding a Partial View����������������������������
	Managing the Controller for a Partial View���

	Templates����������������
	Summary��������������

	Chapter 12 Validating User Input���������������������������������������
	Gathering Data from the User�����������������������������������
	Validating User Input in Web Forms���
	Understanding Request Validation���������������������������������������

	Validating User Input in MVC�����������������������������������
	Model Attribution������������������������
	Client-Side Validation�����������������������������
	Request Validation in ASP.NET MVC��

	Validation Tips����������������������
	Summary��������������

	Chapter 13 ASP.NET AJAX������������������������������
	Introducing the Concept of AJAX��������������������������������������
	F12 Developer Tools��������������������������
	Using ASP.NET AJAX in Web Forms��������������������������������������
	The Initial AJAX Experience����������������������������������
	Enhancing the AJAX Experience������������������������������������

	Using AJAX in MVC������������������������

	Using Web Services in AJAX Websites��
	jQuery in AJAX���������������������
	Practical AJAX Tips��������������������������
	Summary��������������

	Chapter 14 JQuery������������������������
	An Introduction to jQuery��������������������������������
	Early JavaScript�����������������������
	jQuery’s Role��������������������
	Including the jQuery Library�����������������������������������
	Bundles��������������

	jQuery Syntax��������������������
	jQuery Core������������������
	Working with the jQuery Utility Methods��
	Selecting Items Using jQuery�����������������������������������

	Modifying the DOM with jQuery������������������������������������
	Changing Appearance with jQuery��������������������������������������
	Handling Events����������������������

	Debugging jQuery�����������������������
	Practical Tips on jQuery�������������������������������
	Summary��������������

	Chapter 15 Security in Your ASP.NET Website��
	Introducing Security���������������������������
	Identity: Who Are You?�����������������������������
	Authentication: How Can Users Prove Who They Are?��
	Authorization: What Are You Allowed to Do?���
	Logging in with ASP.NET������������������������������
	Configuring Your Web Application for Security��
	Working with Users within Your Application���

	Roles������������
	Configuring Your Application to Work with Roles��
	Programmatically Checking Roles��������������������������������������

	Practical Security Tips������������������������������
	Summary��������������

	Chapter 16 Personalizing Websites��
	Understanding the Profile��������������������������������
	Creating the Profile���������������������������
	Using the Profile������������������������

	Practical Personalization Tips�������������������������������������
	Summary��������������

	Chapter 17 Exception Handling, Debugging, and Tracing��
	Error Handling���������������������
	Different Types of Errors��������������������������������
	Syntax Errors��������������������
	Logic Errors�������������������
	Runtime Errors���������������������

	Catching and Handling Exceptions���������������������������������������
	Global Error Handling and Custom Error Pages���
	Error Handling in a Controller�������������������������������������

	The Basics of Debugging������������������������������
	Tools Support for Debugging����������������������������������
	Moving Around in Debugged Code�������������������������������������
	Debugging Windows������������������������
	Other Windows��������������������

	Debugging Client-Side Script�����������������������������������

	Tracing Your ASP.NET Web Pages�������������������������������������
	Adding Your Own Information to the Trace���
	Tracing and Performance������������������������������

	Logging��������������
	Downloading, Installing, and Configuring a Logger��

	Summary��������������

	Chapter 18 Working with Source Control���
	Introducing Team Foundation Services���
	Why Use Source Control�����������������������������
	Setting Up a Visual Studio Online Account��
	Checking Code In and Out�������������������������������
	Undoing Changes����������������������
	Shelvesets�����������������
	Getting a Specific Version from the Server���
	Seeing Changed Items in Solution Explorer��
	Looking at History and Comparing Versions��
	Labeling���������������

	Interacting with a Team������������������������������
	Changing Default Source Control Behavior in Visual Studio��

	Branching and Merging����������������������������
	Summary��������������

	Chapter 19 Deploying Your WEBSITE��
	Preparing Your Website for Deployment��
	Avoiding Hard-Coded Settings�����������������������������������
	The Web.config File��������������������������
	Expression Syntax������������������������
	The Web Configuration Manager Class��

	Preparing for Deployment�������������������������������
	Microsoft Azure����������������������

	Publishing Your Site���������������������������
	Introducing Web.config Transformations���
	Moving Data to a Remote Server�������������������������������������

	Smoke Testing Your Application�������������������������������������
	Going Forward��������������������
	Summary��������������

	Answers to Exercises���������������������������
	Index������������
	EULA

